Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.521
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892464

RESUMEN

In this study, we investigated whether severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein may modify angiotensin-converting enzyme 2 (ACE2) activity in the plasma, heart, kidney, liver, lung, and six brain regions (amygdala, brain stem, cortex, hippocampus, hypothalamus, and striatum) of diabetic and hypertensive rats. We determine ACE2 activity in the plasma and lysates of heart, kidney, liver, lung, and six brain regions. MLN-4760 inhibits ACE2 activity in the plasma and all organs. On the other hand, soluble ACE2 (sACE2) activity increased in the plasma of diabetic rats, and there was no change in the plasma of hypertensive rats. ACE2 activity was augmented in the liver, brain stem, and striatum, while it decreased in the kidney, amygdala, cortex, and hippocampus of diabetic rats. ACE2 activity increased in the kidney, liver, and lung, while it decreased in the heart, amygdala, cortex, and hypothalamus of hypertensive rats. We measured the ACE2 content via enzyme-linked immunosorbent assay and found that ACE2 protein levels increased in the heart, while it decreased in the plasma, kidney, brain stem, cortex, hippocampus, hypothalamus, and striatum of diabetic rats. ACE2 protein levels decreased in the brain stem, cortex, hippocampus, and hypothalamus of hypertensive rats. Our data showed that the spike protein enhanced ACE2 activity in the liver and lungs of diabetic rats, as well as in the heart and three of the brain regions (cortex, hypothalamus, and striatum) of hypertensive rats.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Hipertensión , Glicoproteína de la Espiga del Coronavirus , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Ratas , Glicoproteína de la Espiga del Coronavirus/metabolismo , Masculino , Hipertensión/metabolismo , SARS-CoV-2 , Diabetes Mellitus Experimental/metabolismo , Encéfalo/metabolismo , Encéfalo/enzimología , COVID-19/metabolismo , COVID-19/virología , Carboxipeptidasas/metabolismo , Riñón/metabolismo , Riñón/enzimología , Humanos , Imidazoles , Leucina/análogos & derivados
2.
J Stroke Cerebrovasc Dis ; 33(7): 107738, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701940

RESUMEN

OBJECTIVES: Edaravone dexborneol is neuroprotective against ischemic stroke, with free radical-scavenging and anti-inflammatory effects, but its effects in hemorrhagic stroke remain unclear. We evaluated whether edaravone dexborneol has a neuroprotective effect in intracerebral hemorrhage, and its underlying mechanisms. MATERIALS AND METHODS: Bioinformatics were used to predict the pathway of action of edaravone dexborneol. An intracerebral hemorrhage model was established using type IV collagenase in edaravone dexborneol, intracerebral hemorrhage, Sham, adeno-associated virus + edaravone dexborneol, and adeno-associated virus + intracerebral hemorrhage groups. The modified Neurological Severity Score was used to evaluate neurological function in rats. Brain water content was measured using the dry-wet weight method. Tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid levels were determined by enzyme-linked immunosorbent assay. The expression levels of neurofilament light chain and γ-aminobutyric acid transaminase were determined by western blot. Nissl staining was used to examine neuronal morphology. Cognitive behavior was evaluated using a small-animal treadmill. RESULTS: Edaravone dexborneol alleviated neurological defects, improved cognitive function, and reduced cerebral edema, neuronal degeneration, and necrosis in rats with cerebral hemorrhage. The expression levels of neurofilament light chain, tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid were decreased, while γ-aminobutyric acid transaminase expression was up-regulated. CONCLUSIONS: Edaravone dexborneol regulates γ-aminobutyric acid content by acting on the γ-aminobutyric acid transaminase signaling pathway, thus alleviating oxidative stress, neuroinflammation, neuronal degeneration, and death caused by excitatory toxic injury of neurons after intracerebral hemorrhage.


Asunto(s)
Edema Encefálico , Modelos Animales de Enfermedad , Edaravona , Interleucina-1beta , Fármacos Neuroprotectores , Ratas Sprague-Dawley , Animales , Edaravona/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Interleucina-1beta/metabolismo , Edema Encefálico/patología , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/enzimología , Edema Encefálico/prevención & control , 4-Aminobutirato Transaminasa/metabolismo , 4-Aminobutirato Transaminasa/antagonistas & inhibidores , Conducta Animal/efectos de los fármacos , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patología , Hemorragia Cerebral/enzimología , Antiinflamatorios/farmacología , Cognición/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/enzimología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Mediadores de Inflamación/metabolismo
3.
ACS Sens ; 9(5): 2605-2613, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38718161

RESUMEN

Several new lines of research have demonstrated that a significant number of amyloid-ß peptides found in Alzheimer's disease (AD) are truncated and undergo post-translational modification by glutaminyl cyclase (QC) at the N-terminal. Notably, QC's products of Abeta-pE3 and Abeta-pE11 have been active targets for investigational drug development. This work describes the design, synthesis, characterization, and in vivo validation of a novel PET radioligand, [18F]PB0822, for targeted imaging of QC. We report herein a simplified and robust chemistry for the synthesis of the standard compound, [19F]PB0822, and the corresponding [18F]PB0822 radioligand. The PET probe was developed with 99.9% radiochemical purity, a molar activity of 965 Ci.mmol-1, and an IC50 of 56.3 nM, comparable to those of the parent PQ912 inhibitor (62.5 nM). Noninvasive PET imaging showed that the probe is distributed in the brain 5 min after intravenous injection. Further, in vivo PET imaging with [18F]PB0822 revealed that AD 5XFAD mice harbor significantly higher QC activity than WT counterparts. The data also suggested that QC activity is found across different brain regions of the tested animals.


Asunto(s)
Enfermedad de Alzheimer , Aminoaciltransferasas , Tomografía de Emisión de Positrones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Tomografía de Emisión de Positrones/métodos , Aminoaciltransferasas/metabolismo , Aminoaciltransferasas/antagonistas & inhibidores , Animales , Ratones , Radioisótopos de Flúor/química , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/enzimología , Radiofármacos/química , Radiofármacos/síntesis química , Biomarcadores/metabolismo , Humanos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/análisis , Ligandos
4.
Environ Toxicol ; 39(7): 3856-3871, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38558378

RESUMEN

Discharges to the aquatic environment of pharmaceuticals represent a hazard to the aquatic organisms. Subchronic assay with 17-alpha-ethinylestradiol (EE2) and in vitro essays with pharmaceuticals of environmental concern were conducted to examine the sensitivity of tissue acetylcholinesterase (AChE) and carboxylesterase (CbE) activities of Tinca tinca to them. Subchronic exposure to 17-alpha-EE2 caused significant effects on brain, liver, and muscle CbE, but no on AChE activities. Most of the pharmaceuticals tested in vitro were considered as weak inhibitors of tissular AChE activity. Depending on the tissues, some compounds were classified as moderate inhibitors of CbE activity while other were categorized as weak enzymatic inhibitors. An opposite trend was observed depending on the tissue, while brain and liver CbE activities were inhibited, the muscle CbE activity was induced. Changes experienced on enzymatic activities after exposure to pharmaceuticals might affect the physiological functions in which these enzymes are involved. In vitro exposure to 17-alpha-EE2 in tench could be an informative, but not a surrogate model to know the effect of this synthetic estrogen on AChE and CbE activities.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Hígado/efectos de los fármacos , Hígado/enzimología , Cyprinidae , Acetilcolinesterasa/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Inhibidores de la Colinesterasa/toxicidad , Músculos/efectos de los fármacos , Músculos/enzimología , Carboxilesterasa/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Colinesterasas/metabolismo
5.
J Biol Chem ; 300(5): 107301, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641068

RESUMEN

Ubiquinol or coenzyme Q (CoQ) is a lipid-soluble electron carrier in the respiratory chain and an electron acceptor for various enzymes in metabolic pathways that intersect at this cofactor hub in the mitochondrial inner membrane. The reduced form of CoQ is an antioxidant, which protects against lipid peroxidation. In this study, we have optimized a UV-detected HPLC method for CoQ analysis from biological materials, which involves a rapid single-step extraction into n-propanol followed by direct sample injection onto a column. Using this method, we have measured the oxidized, reduced, and total CoQ pools and monitored shifts in the CoQ redox status in response to cell culture conditions and bioenergetic perturbations. We find that hypoxia or sulfide exposure induces a reductive shift in the intracellular CoQ pool. The effect of hypoxia is, however, rapidly reversed by exposure to ambient air. Interventions at different loci in the electron transport chain can induce sizeable redox shifts in the oxidative or reductive direction, depending on whether they are up- or downstream of complex III. We have also used this method to confirm that CoQ levels are higher and more reduced in murine heart versus brain. In summary, the availability of a convenient HPLC-based method described herein will facilitate studies on CoQ redox dynamics in response to environmental, nutritional, and endogenous alterations.


Asunto(s)
Oxidación-Reducción , Ubiquinona , Animales , Humanos , Ratones , Cromatografía Líquida de Alta Presión/métodos , Ubiquinona/química , Ubiquinona/metabolismo , Miocardio/enzimología , Encéfalo/enzimología , Femenino , Ratones Endogámicos C57BL , Células HT29
6.
Int J Biol Macromol ; 266(Pt 2): 131339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574925

RESUMEN

The AcPase exhibits a specific activity of 31.32 U/mg of protein with a 728-fold purification, and the yield of the enzyme is raised to 3.15 %. The Zn2+-dependent AcPase showed a purification factor of 1.34 specific activity of 14 U/mg of proteins and a total recovery of 5.14. The SDS-PAGE showed a single band corresponding to a molecular weight of 18 kDa of AcPase and 29 kDa of Zn2+-dependent AcPase. The AcPase enzyme has shown a wide range of substrate specificity for p-NPP, phenyl phosphate and FMN, while in the case of ZnAcPase α and ß-Naphthyl phosphate and p-NPP were proved to be superior substrates. The divalent metal ions like Mg2+, Mn2+, and Ca2+ increased the activity, while other substrates decreased the enzyme activity. The Km (0.14 mM) and Vmax (21 µmol/min/mg) values of AcPase were higher than those of Zn2+-AcPase (Km = 0.5 mM; Vmax = 9.7 µmol/min/mg). The Zn2+ ions activate the Zn2+-AcPase while Fe3+, Al3+, Pb2+, and Hg2+ showed inhibition on enzyme activity. Molybdate, vanadate and phosphate were found to be competitive inhibitors of AcPase with Ki values 316 µM, 185 µM, and 1.6 mM, while in Zn2+-AcPase tartrate and phosphate also showed competitive inhibition with Ki values 3 mM and 0.5 mM respectively.


Asunto(s)
Fosfatasa Ácida , Encéfalo , Pollos , Zinc , Animales , Zinc/química , Especificidad por Sustrato , Fosfatasa Ácida/metabolismo , Fosfatasa Ácida/química , Fosfatasa Ácida/aislamiento & purificación , Encéfalo/enzimología , Cinética , Concentración de Iones de Hidrógeno , Peso Molecular
7.
J Mol Biol ; 435(24): 168354, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37935253

RESUMEN

Mutations causing loss of PTEN lipid phosphatase activity can promote cancer, benign tumors (PHTS), and neurodevelopmental disorders (NDDs). Exactly how they preferentially trigger distinct phenotypic outcomes has been puzzling. Here, we demonstrate that PTEN mutations differentially allosterically bias P loop dynamics and its connection to the catalytic site, affecting catalytic activity. NDD-related mutations are likely to sample conformations of the functional wild-type state, while sampled conformations for the strong, cancer-related driver mutation hotspots favor catalysis-primed conformations, suggesting that NDD mutations are likely to be weaker, and our large-scale simulations show why. Prenatal PTEN isoform expression data suggest exons 5 and 7, which harbor NDD mutations, as cancer-risk carriers. Since cancer requires more than a single mutation, our conformational and genomic analysis helps discover how same protein mutations can foster different clinical manifestations, articulates a role for co-occurring background latent driver mutations, and uncovers relationships of splicing isoform expression to life expectancy.


Asunto(s)
Trastorno Autístico , Encéfalo , Neoplasias , Fosfohidrolasa PTEN , Humanos , Trastorno Autístico/genética , Encéfalo/enzimología , Mutación , Neoplasias/genética , Isoformas de Proteínas/genética , Fosfohidrolasa PTEN/genética
8.
J Chem Neuroanat ; 133: 102345, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778734

RESUMEN

Thimet oligopeptides (THOP 1) is a metal-dependent peptidase involved in the metabolism of neuropeptides and the presentation of peptides via MHC-1. It has been shown to play a role in the regulation of protein-protein interactions and the metabolism of intracellular peptides. THOP 1 is associated with important biological processes such as metabolism and neurodegenerative diseases, among others. The objective of this study is to elucidate the distribution of THOP 1 in the Bufo marinus brain. The analysis of THOP 1 amino acid sequences indicates that they have been conserved throughout evolution, with significant homology observed across various phyla. When comparing amphibians with other species, more than 70% identity can be identified. Immunohistochemistry analysis of the toad's brain has demonstrated that the enzyme has a ubiquitous distribution, consistent with previous findings in mammals. THOP 1 can be found in important areas of the brain, such as bulb, thalamic nuclei, striatum, hypothalamus, and among others. Nonetheless, THOP 1 is consistently localized within the nucleus, a pattern also observed in the rat brain. Therefore, based on these results, the toad appears to be an excellent model for studying the general biology of THOP 1, given the substantial homology of this enzyme with mammals and its similarity in distribution within the brain.


Asunto(s)
Bufo marinus , Metaloendopeptidasas , Animales , Ratas , Bufo marinus/metabolismo , Péptidos/metabolismo , Núcleos Talámicos/enzimología , Metaloendopeptidasas/metabolismo , Encéfalo/enzimología
9.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686081

RESUMEN

Proteins with extended polyglutamine regions are associated with several neurodegenerative disorders, including Huntington's disease. Intracellular proteolytic processing of these proteins is not well understood. In particular, it is unclear whether long polyglutamine fragments resulting from the proteolysis of these proteins can be potentially cleaved by the proteasome. Here, we studied the susceptibility of the glutamine-glutamine bond to proteolysis by the proteasome using oligoglutamine-containing peptides with a fluorophore/quencher pair. We found that the addition of the 11S proteasomal regulator (also known as PA28) significantly accelerated the hydrolysis of oligoglutamine-containing peptides by the 20S proteasome. Unexpectedly, a similar effect was observed for the 26S proteasome in the presence of the 11S regulator. LC/MS data revealed that the hydrolysis of our peptides with both 20S and 26S proteasomes leads to N-terminal fragments containing two or three glutamine residues and that the hydrolysis site does not change after the addition of the 11S regulator. This was confirmed by the docking experiment, which shows that the preferred hydrolysis site is located after the second/third glutamine residue. Inhibitory analysis revealed that trypsin-like specificity is mainly responsible for the proteasomal hydrolysis of the glutamine-glutamine bond. Together, our results indicate that both 20S and 26S proteasomes are capable of degrading the N-terminal part of oligoglutamine fragments, while the 11S regulator significantly accelerates the hydrolysis without changing its specificity. This data suggests that proteasome activity may be enhanced in relation to polyglutamine substrates present in neurons in the early stages of polyglutamine disorders.


Asunto(s)
Encéfalo , Péptidos , Complejo de la Endopetidasa Proteasomal , Proteolisis , Animales , Ratones , Encéfalo/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Hidrólisis , Péptidos/metabolismo , Tripsina/metabolismo
10.
J Biol Chem ; 299(9): 105128, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543361

RESUMEN

Gliomas are the most prevalent primary tumor of the central nervous system. Despite advances in imaging technologies, neurosurgical techniques, and radiotherapy, a cure for high-grade glioma remains elusive. Several groups have reported that protein tyrosine phosphatase receptor type Z (PTPRZ) is highly expressed in glioblastoma, and that targeting PTPRZ attenuates tumor growth in mice. PTPRZ is modified with diverse glycan, including the PTPRZ-unique human natural killer-1 capped O-mannosyl core M2 glycans. However, the regulation and function of these unique glycans are unclear. Using CRISPR genome-editing technology, we first demonstrated that disruption of the PTPRZ gene in human glioma LN-229 cells resulted in profoundly reduced tumor growth in xenografted mice, confirming the potential of PTPRZ as a therapeutic target for glioma. Furthermore, multiple glycan analyses revealed that PTPRZ derived from glioma patients and from xenografted glioma expressed abundant levels of human natural killer-1-capped O-Man glycans via extrinsic signals. Finally, since deficiency of O-Man core M2 branching enzyme N-acetylglucosaminyltransferase IX (GnT-IX) was reported to reduce PTPRZ protein levels, we disrupted the GnT-IX gene in LN-229 cells and found a significant reduction of glioma growth both in vitro and in the xenograft model. These results suggest that the PTPR glycosylation enzyme GnT-IX may represent a promising therapeutic target for glioma.


Asunto(s)
Glioma , N-Acetilglucosaminiltransferasas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Animales , Humanos , Ratones , Encéfalo/enzimología , Encéfalo/fisiopatología , Glioma/fisiopatología , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Polisacáridos/metabolismo , Línea Celular Tumoral , Femenino , Ratones SCID , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/deficiencia , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Técnicas de Silenciamiento del Gen
11.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2656-2668, 2023 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-37584122

RESUMEN

Somatostatin (SST) is an inhibitory polypeptide hormone that plays an important role in a variety of biological processes. Somatostatin receptor 2 (SSTR2) is the most widely expressed somatostatin receptor. However, the specific cell types expressing Sstr2 in the tissues have not been investigated. In this study, we detected the expression pattern of SSTR2 protein in mouse at different development stages, including the embryonic 15.5 days and the postnatal 1, 7, 15 days as well as 3 and 6 months, by multicolour immunofluorescence analyses. We found that Sstr2 was expressed in some specific cells types of several tissues, including the neuronal cells and astrocytes in the brain, the mesenchymal cells, the hematopoietic cells, the early hematopoietic stem cells, and the B cells in the bone marrow, the macrophages, the type Ⅱ alveolar epithelial cells, and the airway ciliated cells in the lung, the epithelial cells and the neuronal cells in the intestine, the hair follicle cells, the gastric epithelial cells, the hematopoietic stem cells and the nerve fibre in the spleen, and the tubular epithelial cells in the kidney. This study identified the specific cell types expressing Sstr2 in mouse at different developmental stages, providing new insights into the physiological function of SST and SSTR2 in several cell types.


Asunto(s)
Encéfalo , Animales , Ratones , Encéfalo/enzimología , Encéfalo/metabolismo
12.
Bull Exp Biol Med ; 175(2): 191-195, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37462806

RESUMEN

Hypothermia in homeotherms significantly affects the neurotransmitter systems of the brain, including the cholinergic system. The function of the brain cholinergic system during prolonged moderate hypothermia is not known yet. We studied the effects of moderate hypothermia of various durations on the activity and kinetic parameters of synaptic acetylcholinesterase in rat brain. Immediately after body temperature decrease to 30°C, the efficiency of synaptic acetylcholinesterase catalysis significantly increases due to changes in both the maximum rate of reaction (Vmax; the rate of reaction when the enzyme is saturated with substrate) and Michaelis constant (Km). However, in the dynamics of prolonged hypothermia (1-3 h), it decreases to a level of intact animals, which was associated with normalization of the kinetic parameters of the enzyme. The detected changes in the kinetic parameters of the enzyme are compensatory and can be associated with both its reversible post-translational modifications and changes in the annular lipids.


Asunto(s)
Encéfalo , Hipotermia Inducida , Masculino , Animales , Ratas Wistar , Encéfalo/enzimología , Acetilcolinesterasa/metabolismo , Factores de Tiempo , Ratas , Cinética
13.
J Neurosci ; 43(19): 3567-3581, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36977578

RESUMEN

Metachromatic leukodystrophy (MLD) is a rare, inherited, demyelinating lysosomal storage disorder caused by mutations in the arylsulfatase-A gene (ARSA). In patients, levels of functional ARSA enzyme are diminished and lead to deleterious accumulation of sulfatides. Herein, we demonstrate that intravenous administration of HSC15/ARSA restored the endogenous murine biodistribution of the corresponding enzyme, and overexpression of ARSA corrected disease biomarkers and ameliorated motor deficits in Arsa KO mice of either sex. In treated Arsa KO mice, when compared with intravenously administered AAV9/ARSA, significant increases in brain ARSA activity, transcript levels, and vector genomes were observed with HSC15/ARSA Durability of transgene expression was established in neonate and adult mice out to 12 and 52 weeks, respectively. Levels and correlation between changes in biomarkers and ARSA activity required to achieve functional motor benefit was also defined. Finally, we demonstrated blood-nerve, blood-spinal and blood-brain barrier crossing as well as the presence of circulating ARSA enzyme activity in the serum of healthy nonhuman primates of either sex. Together, these findings support the use of intravenous delivery of HSC15/ARSA-mediated gene therapy for the treatment of MLD.SIGNIFICANCE STATEMENT Herein, we describe the method of gene therapy adeno-associated virus (AAV) capsid and route of administration selection leading to an efficacious gene therapy in a mouse model of metachromatic leukodystrophy. We demonstrate the therapeutic outcome of a new naturally derived clade F AAV capsid (AAVHSC15) in a disease model and the importance of triangulating multiple end points to increase the translation into higher species via ARSA enzyme activity and biodistribution profile (with a focus on the CNS) with that of a key clinically relevant biomarker.


Asunto(s)
Arilsulfatasas , Terapia Genética , Leucodistrofia Metacromática , Animales , Ratones , Macaca fascicularis , Arilsulfatasas/genética , Ratones Noqueados , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/fisiopatología , Leucodistrofia Metacromática/terapia , Modelos Animales de Enfermedad , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Encéfalo/enzimología , Trastornos Motores/genética , Trastornos Motores/terapia , Administración Intravenosa , Biomarcadores/análisis , Barrera Hematoencefálica , Masculino , Femenino , Humanos
14.
Science ; 379(6634): 795-802, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36821679

RESUMEN

Interfacing electronics with neural tissue is crucial for understanding complex biological functions, but conventional bioelectronics consist of rigid electrodes fundamentally incompatible with living systems. The difference between static solid-state electronics and dynamic biological matter makes seamless integration of the two challenging. To address this incompatibility, we developed a method to dynamically create soft substrate-free conducting materials within the biological environment. We demonstrate in vivo electrode formation in zebrafish and leech models, using endogenous metabolites to trigger enzymatic polymerization of organic precursors within an injectable gel, thereby forming conducting polymer gels with long-range conductivity. This approach can be used to target specific biological substructures and is suitable for nerve stimulation, paving the way for fully integrated, in vivo-fabricated electronics within the nervous system.


Asunto(s)
Biopolímeros , Encéfalo , Conductividad Eléctrica , Enzimas , Sistema Nervioso Periférico , Animales , Biopolímeros/biosíntesis , Encéfalo/enzimología , Electrodos , Electrónica , Enzimas/metabolismo , Sanguijuelas , Modelos Animales , Sistema Nervioso Periférico/enzimología , Polimerizacion , Pez Cebra
15.
Science ; 379(6634): 758-759, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36821689
16.
Aging Cell ; 22(3): e13780, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36644807

RESUMEN

The contribution of cellular senescence to the behavioral changes observed in the elderly remains elusive. Here, we observed that aging is associated with a decline in protein phosphatase 2A (PP2A) activity in the brains of zebrafish and mice. Moreover, drugs activating PP2A reversed age-related behavioral changes. We developed a transgenic zebrafish model to decrease PP2A activity in the brain through knockout of the ppp2r2c gene encoding a regulatory subunit of PP2A. Mutant fish exhibited the behavioral phenotype observed in old animals and premature accumulation of neural cells positive for markers of cellular senescence, including senescence-associated ß-galactosidase, elevated levels cdkn2a/b, cdkn1a, senescence-associated secretory phenotype gene expression, and an increased level of DNA damage signaling. The behavioral and cell senescence phenotypes were reversed in mutant fish through treatment with the senolytic ABT263 or diverse PP2A activators as well as through cdkn1a or tp53 gene ablation. Senomorphic function of PP2A activators was demonstrated in mouse primary neural cells with downregulated Ppp2r2c. We conclude that PP2A reduction leads to neural cell senescence thereby contributing to age-related behavioral changes and that PP2A activators have senotherapeutic properties against deleterious behavioral effects of brain aging.


Asunto(s)
Conducta Animal , Encéfalo , Senescencia Celular , Envejecimiento Cognitivo , Neuronas , Proteína Fosfatasa 2 , Senoterapéuticos , Animales , Ratones , Compuestos de Anilina/farmacología , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Biomarcadores/metabolismo , Encéfalo/enzimología , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Senescencia Celular/fisiología , Envejecimiento Cognitivo/fisiología , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Daño del ADN , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Modelos Animales , Mutación , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/fisiología , Cultivo Primario de Células , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Senoterapéuticos/farmacología , Sulfonamidas/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra
17.
Nature ; 611(7937): 827-834, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36418452

RESUMEN

Vacuolar-type adenosine triphosphatases (V-ATPases)1-3 are electrogenic rotary mechanoenzymes structurally related to F-type ATP synthases4,5. They hydrolyse ATP to establish electrochemical proton gradients for a plethora of cellular processes1,3. In neurons, the loading of all neurotransmitters into synaptic vesicles is energized by about one V-ATPase molecule per synaptic vesicle6,7. To shed light on this bona fide single-molecule biological process, we investigated electrogenic proton-pumping by single mammalian-brain V-ATPases in single synaptic vesicles. Here we show that V-ATPases do not pump continuously in time, as suggested by observing the rotation of bacterial homologues8 and assuming strict ATP-proton coupling. Instead, they stochastically switch between three ultralong-lived modes: proton-pumping, inactive and proton-leaky. Notably, direct observation of pumping revealed that physiologically relevant concentrations of ATP do not regulate the intrinsic pumping rate. ATP regulates V-ATPase activity through the switching probability of the proton-pumping mode. By contrast, electrochemical proton gradients regulate the pumping rate and the switching of the pumping and inactive modes. A direct consequence of mode-switching is all-or-none stochastic fluctuations in the electrochemical gradient of synaptic vesicles that would be expected to introduce stochasticity in proton-driven secondary active loading of neurotransmitters and may thus have important implications for neurotransmission. This work reveals and emphasizes the mechanistic and biological importance of ultraslow mode-switching.


Asunto(s)
Encéfalo , Mamíferos , ATPasas de Translocación de Protón Vacuolares , Animales , Adenosina Trifosfato/metabolismo , Encéfalo/enzimología , Encéfalo/metabolismo , Mamíferos/metabolismo , Protones , Vesículas Sinápticas/enzimología , Vesículas Sinápticas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Neurotransmisores/metabolismo , Transmisión Sináptica , Factores de Tiempo , Cinética
18.
Neurocrit Care ; 37(1): 293-301, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35534658

RESUMEN

BACKGROUND: According to international guidelines, neuroprognostication in comatose patients after cardiac arrest (CA) is performed using a multimodal approach. However, patients undergoing extracorporeal membrane oxygenation (ECMO) may have longer pharmacological sedation and show alteration in biological markers, potentially challenging prognostication. Here, we aimed to assess whether routinely used predictors of poor neurological outcome also exert an acceptable performance in patients undergoing ECMO after CA. METHODS: This observational retrospective study of our registry includes consecutive comatose adults after CA. Patients deceased within 36 h and not undergoing prognostic tests were excluded. Veno-arterial ECMO was initiated in patients < 80 years old presenting a refractory CA, with a no flow < 5 min and a low flow ≤ 60 min on admission. Neuroprognostication test performance (including pupillary reflex, electroencephalogram, somatosensory-evoked potentials, neuron-specific enolase) toward mortality and poor functional outcome (Cerebral Performance Categories [CPC] score 3-5) was compared between patients undergoing ECMO and those without ECMO. RESULTS: We analyzed 397 patients without ECMO and 50 undergoing ECMO. The median age was 65 (interquartile range 54-74), and 69.8% of patients were men. Most had a cardiac etiology (67.6%); 52% of the patients had a shockable rhythm, and the median time to return of an effective circulation was 20 (interquartile range 10-28) minutes. Compared with those without ECMO, patients receiving ECMO had worse functional outcome (74% with CPC scores 3-5 vs. 59%, p = 0.040) and a nonsignificant higher mortality (60% vs. 47%, p = 0.080). Apart from the neuron-specific enolase level (higher in patients with ECMO, p < 0.001), the presence of prognostic items (pupillary reflex, electroencephalogram background and reactivity, somatosensory-evoked potentials, and myoclonus) related to unfavorable outcome (CPC score 3-5) in both groups was similar, as was the prevalence of at least any two such items concomitantly. The specificity of each these variables toward poor outcome was between 92 and 100% in both groups, and of the combination of at least two items, it was 99.3% in patients without ECMO and 100% in those with ECMO. The predictive performance (receiver operating characteristic curve) of their combination toward poor outcome was 0.822 (patients without ECMO) and 0.681 (patients with ECMO) (p = 0.134). CONCLUSIONS: Pending a prospective assessment on a larger cohort, in comatose patients after CA, the performance of prognostic factors seems comparable in patients with ECMO and those without ECMO. In particular, the combination of at least two poor outcome criteria appears valid across these two groups.


Asunto(s)
Encéfalo , Coma , Oxigenación por Membrana Extracorpórea , Paro Cardíaco , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/enzimología , Encéfalo/fisiopatología , Coma/etiología , Coma/fisiopatología , Coma/terapia , Electroencefalografía , Femenino , Paro Cardíaco/complicaciones , Humanos , Masculino , Fosfopiruvato Hidratasa/metabolismo , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos
19.
Chemosphere ; 294: 133791, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35104548

RESUMEN

Several studies have indicated that hospital effluents can produce genotoxic and mutagenic effects, cytotoxicity, hematological and histological alterations, embryotoxicity, and oxidative stress in diverse water organisms, but research on the neurotoxic effects hospital wastewater materials can generate in fish is still scarce. To fill the above-described knowledge gap, this study aimed to determine whether the exposure of adult zebrafish (Danio rerio) to several proportions (0.1%, 2.5%, 3.5%) of a hospital effluent can disrupt behavior or impair redox status and acetylcholinesterase content in the brain. After 96 h of exposure to the effluent, we observed a decrease in total distance traveled and an increase in frozen time compared to the control group. Moreover, we also observed a significant increase in the levels of reactive oxygen species in the brains of the fish, especially in hydroperoxide and protein carbonyl content, relative to the control group. Our results also demonstrated that hospital effluents significantly inhibited the activity of the AChE enzyme in the brains of the fish. Our Pearson correlation demonstrated that the response to acetylcholinesterase at the lowest proportions (0.1% and 2.5%) is positively related to the oxidative stress response and the behavioral changes observed. The cohort of our studies demonstrated that the exposure of adult zebrafish to a hospital effluent induced oxidative stress and decreased acetylcholinesterase activity in the brain of these freshwater organisms, which can lead to alterations in their behavior.


Asunto(s)
Acetilcolinesterasa , Conducta Animal , Estrés Oxidativo , Contaminantes Químicos del Agua , Pez Cebra , Acetilcolinesterasa/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Hospitales , Humanos , México , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Natación , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo
20.
J Neurosci ; 42(10): 1945-1957, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35101965

RESUMEN

Phosphatase and tensin homolog (PTEN) is a major negative regulator of the phosphatidylinositol-3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway. Loss-of-function mutations in PTEN have been found in a subset of patients with macrocephaly and autism spectrum disorder (ASD). PTEN loss in neurons leads to somal hypertrophy, aberrant migration, dendritic overgrowth, increased spine density, and hyperactivity of neuronal circuits. These neuronal overgrowth phenotypes are present on Pten knock-out (KO) and reconstitution with autism-associated point mutations. The mechanism underlying dendritic overgrowth in Pten deficient neurons is unclear. In this study, we examined how Pten loss impacts microtubule (MT) dynamics in both sexes using retroviral infection and transfection strategies to manipulate PTEN expression and tag the plus-end MT binding protein, end-binding protein 3 (EB3). We found Pten KO neurons sprout more new processes over time compared with wild-type (WT) neurons. We also found an increase in MT polymerization rate in Pten KO dendritic growth cones. Reducing MT polymerization rate to the WT level was sufficient to reduce dendritic overgrowth in Pten KO neurons in vitro and in vivo Finally, we found that rescue of dendritic overgrowth via inhibition of MT polymerization was sufficient to improve the performance of Pten KO mice in a spatial memory task. Taken together, our data suggests that one factor underlying PTEN loss dependent dendritic overgrowth is increased MT polymerization. This opens the possibility for an intersectional approach targeting MT polymerization and mTOR with low doses of inhibitors to achieve therapeutic gains with minimal side effects in pathologies associated with loss of neuronal PTEN function.SIGNIFICANCE STATEMENT Loss of Pten function because of genetic deletion or expression of mutations associated with autism spectrum disorder (ASD), results in overgrowth of neurons including increased total dendritic length and branching. We have discovered that this overgrowth is accompanied by increased rate of microtubule (MT) polymerization. The increased polymerization rate is insensitive to acute inhibition of mechanistic target of rapamycin (mTOR)C1 or protein synthesis. Direct pharmacological inhibition of MT polymerization can slow the polymerization rate in Pten knock-out (KO) neurons to rates seen in wild-type (WT) neurons. Correction of the MT polymerization rate rescues increased total dendritic arborization and spatial memory. Our studies suggest that phosphatase and tensin homolog (PTEN) inhibits dendritic growth through parallel regulation of protein synthesis and cytoskeletal polymerization.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Microtúbulos , Fosfohidrolasa PTEN , Animales , Trastorno del Espectro Autista/enzimología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Encéfalo/citología , Encéfalo/enzimología , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Ratones , Microtúbulos/metabolismo , Plasticidad Neuronal/fisiología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Polimerizacion , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA