Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.051
Filtrar
1.
Int J Med Mushrooms ; 26(8): 1-11, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967207

RESUMEN

Ganoderma lucidum is a medicinal mushroom that has been used since ancient times. We studied whether chronic oral administration of G. lucidum extract withstands increases in levels of proinflammatory TNF-α and lipid peroxide (LPO), an indicator of oxidative stress, in the gingival tissues of periodontitis model rats. G. lucidum extract was initially examined for inhibition of in vitro oxidative stress, produced by Fenton's reagents in whole homogenates of fresh gum tissues from rats. Prior to in vivo and in vitro experiments with rats, G. lucidum extract was quantitatively tested for its total polyphenol and/or flavonoid contents and ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH)-free radicals. Chronic oral administration of G. lucidum extract (300 mg/kg BW) significantly decreased TNF-α and LPO levels in the gingival tissues of periodontitis model rats. G. lucidum extract also inhibited (P < 0.05) in vitro oxidative stress, as indicated by reduced levels of LPO in G. lucidum extract-preincubated gum tissue homogenates of fresh rats. The in vitro results were, thus, consistent with the in vivo inhibition of lipid peroxidation, DPPH free radical-scavenging effects, and the presence of total polyphenols/flavonoids in G. lucidum extract. Our results provide the evidence, at least partially, for the beneficial effects of G. lucidum on periodontitis, an inflammatory condition of gums which is associated with oxidative stress and preceded by infectious gum diseases.


Asunto(s)
Encía , Estrés Oxidativo , Periodontitis , Reishi , Factor de Necrosis Tumoral alfa , Animales , Estrés Oxidativo/efectos de los fármacos , Periodontitis/tratamiento farmacológico , Periodontitis/prevención & control , Factor de Necrosis Tumoral alfa/metabolismo , Reishi/química , Encía/efectos de los fármacos , Encía/metabolismo , Ratas , Masculino , Administración Oral , Modelos Animales de Enfermedad , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Ratas Wistar
2.
Shanghai Kou Qiang Yi Xue ; 33(2): 141-147, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-39005089

RESUMEN

PURPOSE: To study the stability of physicochemical properties and sterilizing effect about two commercially available hypochlorous acid (HClO) products under simulated clinical conditions, and to evaluate the compatibility of HClO on soft and hard tissues and cells in oral cavity. METHODS: Samples of HClO solution with different production processes were prepared, to detect the changes of physicochemical indexes of each sample over time under simulated clinical conditions (shielded from light at 20-25 ℃, open the cover for 5 minutes every day), including free available chlorine, oxidation-reduction potential and pH. Through suspension quantitative germicidal test, the antibiosis-concentration curve of HClO solution was made, so as to calibrate the change of antibacterial ability of disinfectant with the decrease of available chlorine content during storage. Pulp, tongue and dentine were immersed in PBS, 100 ppm HClO, 200 ppm HClO and 3% NaClO. The influence on soft and hard tissues was evaluated by weighing method and microhardness test. The toxic effects of HClO, NaClO and their 10-fold diluent on human gingival fibroblasts were determined by CCK-8 cytotoxicity assay. GraphPad PRIS 8.0 software was used to analyze the data. RESULTS: Under simulated conditions, the free available chlorine (FAC) of HClO solution decayed with time, and the attenuation degree was less than 20 ppm within 1 month. The bactericidal effect of each HClO sample was still higher than 5log after concentration decay. There was no obvious dissolution and destruction to soft and hard tissues for HClO(P>0.05). The cell viability of HClO to human gingival fibroblast cells (HGFC) was greater than 80%, which was much higher than 3% NaClO (P<0.001). CONCLUSIONS: The bactericidal effect and stability of HClO solution can meet clinical needs, which has low cytotoxicity and good histocompatibility. It is expected to become a safe and efficient disinfection product in the field of living pulp preservation and dental pulp regeneration.


Asunto(s)
Fibroblastos , Ácido Hipocloroso , Boca , Ácido Hipocloroso/química , Humanos , Boca/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Encía/citología , Encía/efectos de los fármacos , Irritantes , Desinfectantes/farmacología , Desinfectantes/química , Antibacterianos/farmacología , Antibacterianos/química
3.
IET Nanobiotechnol ; 2024: 4391833, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863970

RESUMEN

The massive growth of various microorganisms on the orthodontic bracket can form plaques and cause diseases. A novel amine-terminated hyperbranched zirconium-polysiloxane (HPZP) antimicrobial coating was developed for an orthodontic stainless steel tank (SST). After synthesizing HPZP and HPZP-Ag coatings, their structures were characterized by nuclear magnetic resonance spectroscopy, scanning electron microscopy, thickness measurement, contact angle detection, mechanical stability testing, and corrosion testing. The cell toxicity of the two coatings to human gingival fibroblasts (hGFs) and human oral keratinocytes (hOKs) was detected by cell counting kit eight assays, and SST, HPZP@SST, and HPZP-Ag@SST were cocultured with Staphylococcus aureus, Escherichia coli, and Streptococcus mutans for 24 hr to detect the antibacterial properties of the coatings, respectively. The results show that the coatings are about 10 µm, and the water contact angle of HPZP coating is significantly higher than that of HPZP-Ag coating (P < 0.01). Both coatings can be uniformly and densely distributed on SST and have good mechanical stability and corrosion resistance. The cell counting test showed that HPZP coating and HPZP-Ag coating were less toxic to cells compared with SST, and the toxicity of HPZP-Ag coating was greater than that of HPZP coating, with the cell survival rate greater than 80% after 72 hr cocultured with hGFs and hOKs. The antibacterial test showed that the number of bacteria on the surface of different materials was ranked from small to large: HPZP@SST < HPZP-Ag@SST < SST and 800 µg/mL HPZP@SST showed a better bactericidal ability than 400 µg/mL after cocultured with S. aureus, E. coli, and S. mutans, respectively (all P < 0.05). The results showed that HPZP coating had a better effect than HPZP-Ag coating, with effective antibacterial and biocompatible properties, which had the potential to be applied in orthodontic process management.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Soportes Ortodóncicos , Siloxanos , Acero Inoxidable , Circonio , Acero Inoxidable/química , Acero Inoxidable/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Soportes Ortodóncicos/microbiología , Circonio/química , Circonio/farmacología , Siloxanos/química , Siloxanos/farmacología , Fibroblastos/efectos de los fármacos , Ensayo de Materiales , Aminas/química , Aminas/farmacología , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Escherichia coli/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Encía/citología , Encía/efectos de los fármacos
4.
BMC Oral Health ; 24(1): 573, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760715

RESUMEN

BACKGROUND: The aim of this study is to examine the cytotoxic effects of dental gels with different contents, which are frequently used during teething, on gingival mesenchymal stem cells (G-MSCs). METHOD: The teething gels used in this study were Dentinox, Gengigel, Osanite, and Jack and Jill. The human gingival mesenchimal stem cells (hG-MSCs) were incubated with these teething gel solutions (0.1%, 50% and 80% concentrations). Reproductive behavior of G-MSCs was monitored in real time for 72 h using the xCELLigence real-time cell analyzer (RTCA) system. Two-way repeated Anova test and post hoc Bonferroni test were used to evaluate the effect of concentration and dental gel on 0-hour and 72-hour viability. Significance was evaluated at p < 0.05 level. RESULTS: Teething gels prepared at 50% concentration are added to the G-MSC culture, the "cell index" value of G-MSCs to which Dentinox brand gel is added is significantly lower than all other groups (p = 0.05). There is a statistically significant difference between the concentrations in terms of cell index values at the 72nd hour compared to the 0th hour (p = 0.001). CONCLUSIONS: The local anesthetic dental gels used in children have a more negative effect on cell viability as concentration increases.


Asunto(s)
Supervivencia Celular , Geles , Encía , Células Madre Mesenquimatosas , Humanos , Encía/citología , Encía/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas In Vitro
5.
J Appl Oral Sci ; 32: e20230294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747782

RESUMEN

OBJECTIVE: This study aims to develop a compound biomaterial to achieve effective soft tissue regeneration. METHODOLOGY: Compound hyaluronic acid (CHA) and liquid horizontal-platelet-rich fibrin (H-PRF) were mixed at a ratio of 1:1 to form a CHA-PRF gel. Human gingival fibroblasts (HGFs) were used in this study. The effect of CHA, H-PRF, and the CHA-PRF gel on cell viability was evaluated by CCK-8 assays. Then, the effect of CHA, H-PRF, and the CHA-PRF gel on collagen formation and deposition was evaluated by qRT‒PCR and immunofluorescence analysis. Finally, qRT‒PCR, immunofluorescence analysis, Transwell assays, and scratch wound-healing assays were performed to determine how CHA, H-PRF, and the CHA-PRF gel affect the migration of HGFs. RESULTS: The combination of CHA and H-PRF shortened the coagulation time of liquid H-PRF. Compared to the pure CHA and H-PRF group, the CHA-PRF group exhibited the highest cell proliferation at all time points, as shown by the CCK-8 assay. Col1a and FAK were expressed at the highest levels in the CHA-PRF group, as shown by qRT‒PCR. CHA and PRF could stimulate collagen formation and HGF migration, as observed by fluorescence microscopy analysis of COL1 and F-actin and Transwell and scratch healing assays. CONCLUSION: The CHA-PRF group exhibited greater potential to promote soft tissue regeneration by inducing cell proliferation, collagen synthesis, and migration in HGFs than the pure CHA or H-PRF group. CHA-PRF can serve as a great candidate for use alone or in combination with autografts in periodontal or peri-implant soft tissue regeneration.


Asunto(s)
Movimiento Celular , Proliferación Celular , Supervivencia Celular , Fibroblastos , Encía , Ácido Hialurónico , Fibrina Rica en Plaquetas , Regeneración , Ácido Hialurónico/farmacología , Humanos , Fibroblastos/efectos de los fármacos , Encía/efectos de los fármacos , Encía/citología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Regeneración/efectos de los fármacos , Factores de Tiempo , Movimiento Celular/efectos de los fármacos , Reproducibilidad de los Resultados , Técnica del Anticuerpo Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa , Colágeno , Ensayo de Materiales , Cicatrización de Heridas/efectos de los fármacos , Materiales Biocompatibles/farmacología , Colágeno Tipo I/análisis
6.
Mol Med Rep ; 30(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38785151

RESUMEN

Periodontal disease is a common infectious disease that can lead to the loss of teeth. Hower how to effectively suppress the inflammation with medication is unclear. The aim of the present study was to investigate the anti­inflammatory effect of Oroxylin A in periodontitis and its potential role through heme oxygenase­1 (HO­1). Primary rat gingival fibroblasts (RGFs) were cultured using the tissue block method and identified by immunofluorescence. Following lipopolysaccharide (LPS) stimulation of RGFs, Oroxylin A was administered at 50, 100, 200 or 400 µg/ml. Reverse transcription­quantitative PCR was used to assess mRNA expression of cyclooxygenase (COX)­2, TNF­α, RANKL and osteoprotegerin (OPG). Western blotting was used to detect protein expression levels of COX ­2, TNF­α, RANKL and OPG. Following HO­1 knockdown, the same treatment was performed. The expression of COX­2 in rat gingival tissue was observed by immunohistochemistry. One­way analysis of variance and Student's t test were used for statistical analysis. Oroxylin A downregulated mRNA expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. With increase of Oroxylin A dose, the expression of HO­1 was gradually upregulated. When HO­1 was knocked down, Oroxylin A did not downregulate the expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. Immunohistochemical results showed that expression of COX­2 was downregulated by Oroxylin A, and the expression of TNF­α, RANKL and OPG were also downregulated. Oroxylin A decreased expression of inflammatory cytokines in LPS­induced RGFs and had a good inhibitory effect on periodontitis in rats.


Asunto(s)
Ciclooxigenasa 2 , Fibroblastos , Flavonoides , Periodontitis , Ligando RANK , Animales , Ratas , Flavonoides/farmacología , Periodontitis/metabolismo , Periodontitis/tratamiento farmacológico , Periodontitis/patología , Ligando RANK/metabolismo , Ligando RANK/genética , Masculino , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Lipopolisacáridos , Encía/metabolismo , Encía/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Citocinas/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Células Cultivadas , Ratas Sprague-Dawley
7.
J Trace Elem Med Biol ; 84: 127466, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692230

RESUMEN

BACKGROUND: Boric acid (BA) has been found to have therapeutic effects on periodontal disease through beneficially affecting antibacterial, anti-viral, and anti-inflammatory actions. METHODS: This study was conducted to determine the effect of BA on cell viability and on mRNA expressions of proinflammatory and anti-inflammatory cytokines and on oxidative stress enzymes induced by IL-1ß (1 ng/mL) in Human Gingival Fibroblasts (HGF) cultured for 24 and 72 h in DMEM media. The BA concentrations added to the media were 0.09 %, 0.18 %, 0.37 %, and 0.75 %. RESULTS: All of the BA concentrations increased the viability of cell cultured in DMEM media only, indicating that these concentrations were not toxic and actually beneficial to cell viability. The addition of 1 ng/m: of IL-1ß decreased cell viability that was overcome by all concentrations of BA at both 24 and 72 h. The IL-1ß addition to the media increased the expressions of the proinflammatory cytokines IL-1ß, IL-6, IL-8, and IL-17; the anti-inflammatory cytokine IL-10; and the oxidative stress enzymes superoxide dismutase (SOD0 and glutathione peroxidase (GPX). The IL-1ß induced increase mRNA expression of IL-1ß was decreased at 24 h by the 0.37 % and 0.75 % BA additions to the media and decreased in a dose-dependent manner by all concentrations of BA at 72 h. The IL-1ß induced increase in the expression of IL-6 was decreased in dose-dependent manner at 72 h by BA. All BA concentrations decreased the IL-1ß induced expression of IL-8 at both 24 and 72 h. The induced increase in IL-17 by IL-1ß was not significantly affected by the BA additions. The increase in the anti-inflammatory cytokine IL10 induced by IL-1ß was increased further by all BA additions in dose dependent manner at both 24 and 72 h. The mRNA expressions of SOD and GPX increased by IL-1ß were further increased by the 0.37 % and 0.75 % BA concentrations at 72 h. CONCLUSIONS: These findings indicate that BA can significantly modulate the cytokines that are involved in inflammatory stress and reactive oxygen species action and thus could be an effective therapeutic agent in the treatment of periodontal disease.


Asunto(s)
Ácidos Bóricos , Supervivencia Celular , Fibroblastos , Encía , Interleucina-1beta , Humanos , Ácidos Bóricos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Encía/citología , Encía/efectos de los fármacos , Interleucina-1beta/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Citocinas/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética
8.
J Dent ; 145: 105033, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38697505

RESUMEN

OBJECTIVES: This study aimed to enhance gingival fibroblast function and to achieve antibacterial activity around the implant abutment by using a zinc (Zn)-containing bioactive glass (BG) coating. METHODS: 45S5 BG containing 0, 5, and 10 wt.% Zn were coated on zirconia disks. The release of silica and Zn ions in physiological saline and their antibacterial effects were measured. The effects of BG coatings on human gingival fibroblasts (hGFs) were assessed using cytotoxicity assays and by analyzing the gene expression of various genes related to antioxidant enzymes, wound healing, and fibrosis. RESULTS: BG coatings are capable of continuous degradation and simultaneous ion release. The antibacterial effect of BG coatings increased with the addition of Zn, while the cytotoxicity remained unchanged compared to the group without coatings. BG coating enhances the expression of angiogenesis genes, while the Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CONCLUSIONS: The antibacterial effect of BG improved with the increase in Zn concentration, without inducing cytotoxicity. BG coating enhances the expression of angiogenesis genes, and Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CLINICAL SIGNIFICANCE: Adding 10 wt% Zn to BG could enhance the environment around implant abutments by providing antibacterial, antioxidant, and anti-fibrotic effects, having potential for clinical use.


Asunto(s)
Antibacterianos , Cerámica , Pilares Dentales , Fibroblastos , Encía , Vidrio , Propiedades de Superficie , Zinc , Circonio , Circonio/farmacología , Circonio/química , Humanos , Zinc/farmacología , Fibroblastos/efectos de los fármacos , Antibacterianos/farmacología , Encía/citología , Encía/efectos de los fármacos , Vidrio/química , Cerámica/farmacología , Cerámica/química , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Antioxidantes/farmacología , Ensayo de Materiales , Colágeno , Cicatrización de Heridas/efectos de los fármacos , Materiales Dentales/farmacología , Materiales Dentales/química , Células Cultivadas
9.
Biomater Sci ; 12(13): 3345-3359, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38767599

RESUMEN

Nanocoatings based on plant polyphenols have been recently suggested as a potent strategy for modification of implant surfaces for enhancing host cell attachment and reducing bacterial colonisation. In this study we aimed to investigate how serum proteins impact the early adhesion dynamics of human gingival fibroblasts onto titanium surfaces coated with tannic acid (TA). Silicate-TA nanocoatings were formed on titanium and pre-conditioned in medium supplemented with 0, 0.1, 1 or 10% FBS for 1 hour. Dynamics of fibroblasts adhesion was studied using quartz crystal microbalance with dissipation (QCM-D). Time-lapse imaging was employed to assess cell area and motility, while immunofluorescence microscopy was used to examine cell morphology and focal adhesion formation. Our results showed that in serum-free medium, fibroblasts demonstrated enhanced and faster adhesion to TA coatings compared to uncoated titanium. Increasing the serum concentration reduced cell adhesion to nanocoatings, resulting in nearly complete inhibition at 10% FBS. This inhibition was not observed for uncoated titanium at 10% FBS, although cell adhesion was delayed and progressed slower compared to serum-free conditions. In addition, 1% FBS dramatically reduced cell adhesion on uncoated titanium. We revealed a positive relationship between changes in dissipation and changes in cell spreading area, and a negative relationship between dissipation and cell motility. In conclusion, our study demonstrated that serum decreases fibroblasts interaction with surfaces coated with TA in a concentration dependent manner. This suggests that controlling serum concentration can be used to regulate or potentially prevent fibroblasts adhesion onto TA-coated titanium surfaces.


Asunto(s)
Adhesión Celular , Fibroblastos , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie , Taninos , Titanio , Fibroblastos/efectos de los fármacos , Fibroblastos/citología , Taninos/química , Taninos/farmacología , Humanos , Adhesión Celular/efectos de los fármacos , Titanio/química , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Encía/citología , Encía/efectos de los fármacos , Polifenoles
10.
J Indian Prosthodont Soc ; 24(2): 152-158, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38650340

RESUMEN

AIM: In routine dental care, various dental luting cements are utilized to cement the dental prosthesis. Thus, the aim of the current study was to assess the Cytotoxic effect of three different dental luting cements on human gingival mesenchymal stem cell and evaluation of cytokines and growth factors release. SETTINGS AND DESIGN: Cytotoxicity of glass ionomer cement (GIC), resin modified glass ionomer cement (RMGIC) and resin cement (RC) on the human gingival mesenchymal stem cells (HGMSCs) was evaluated. Amongst the cements tested, least cytotoxic cement was further tested for the release of cytokines and growth factors. MATERIALS AND METHODS: MTT test was used to evaluate the cytotoxicity of the dental luting cements at 1 h, 24 h, and 48 h on HGMSCs. Cytokines such as interleukin (IL) 1α & IL 8 and growth factors such as platelet derived growth factor & transforming growth factor beta release from the least cytotoxic RC was evaluated using flow cytometry analysis. STATISTICAL ANALYSIS USED: The mean absorbance values by MTT assay and cell viability at various time intervals between four groups were compared using a one way analysis of variance test and Tukey's post hoc test. The least cytotoxic RC group and the control group's mean levels of cytokines and growth factors were compared using the Mann-Whitney test. RESULT: As exposure time increased, the dental luting cement examined in this study were cytotoxic. RC was the least cytotoxic, RMGIC was moderate and glass ionomer cement showed the highest cytotoxic effect. Concomitantly, a significant positive biological response of gingival mesenchymal stem cells with the release of ILs when exposed to the RC was observed. CONCLUSION: For a fixed dental prosthesis to be clinically successful over the long term, it is imperative that the biocompatibility of the luting cement be taken into account in order to maintain a healthy periodontium surrounding the restoration.


Asunto(s)
Citocinas , Cementos Dentales , Encía , Péptidos y Proteínas de Señalización Intercelular , Células Madre Mesenquimatosas , Humanos , Encía/citología , Encía/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Citocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Cementos Dentales/farmacología , Cementos Dentales/química , Cementos Dentales/toxicidad , Técnicas In Vitro , Cementos de Ionómero Vítreo/farmacología , Cementos de Ionómero Vítreo/toxicidad , Cementos de Ionómero Vítreo/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas
11.
BMC Oral Health ; 24(1): 510, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689229

RESUMEN

BACKGROUND: Periodontitis is a chronic osteolytic inflammatory disease, where anti-inflammatory intervention is critical for restricting periodontal damage and regenerating alveolar bone. Ropinirole, a dopamine D2 receptor agonist, has previously shown therapeutic potential for periodontitis but the underlying mechanism is still unclear. METHODS: Human gingival fibroblasts (HGFs) treated with LPS were considered to mimic periodontitis in vitro. The dosage of Ropinirole was selected through the cell viability of HGFs evaluation. The protective effects of Ropinirole on HGFs were evaluated by detecting cell viability, cell apoptosis, and pro-inflammatory factor levels. The molecular docking between NAT10 and Ropinirole was performed. The interaction relationship between NAT10 and KLF6 was verified by ac4C Acetylated RNA Immunoprecipitation followed by qPCR (acRIP-qPCR) and dual-luciferase reporter assay. RESULTS: Ropinirole alleviates LPS-induced damage of HGFs by promoting cell viability, inhibiting cell apoptosis and the levels of IL-1ß, IL-18, and TNF-α. Overexpression of NAT10 weakens the effects of Ropinirole on protecting HGFs. Meanwhile, NAT10-mediated ac4C RNA acetylation promotes KLF6 mRNA stability. Upregulation of KLF6 reversed the effects of NAT10 inhibition on HGFs. CONCLUSIONS: Taken together, Ropinirole protected HGFs through inhibiting the NAT10 ac4C RNA acetylation to decrease the KLF6 mRNA stability from LPS injury. The discovery of this pharmacological and molecular mechanism of Ropinirole further strengthens its therapeutic potential for periodontitis.


Asunto(s)
Fibroblastos , Indoles , Factor 6 Similar a Kruppel , Acetiltransferasas N-Terminal , Periodontitis , Humanos , Acetilación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Encía/efectos de los fármacos , Encía/metabolismo , Indoles/farmacología , Indoles/uso terapéutico , Factor 6 Similar a Kruppel/metabolismo , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Acetiltransferasas N-Terminal/antagonistas & inhibidores
12.
Eur Arch Paediatr Dent ; 25(3): 417-425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38662172

RESUMEN

PURPOSE: To investigate the in vitro biocompatibility of human gingival fibroblasts with preformed paediatric crowns and resistance to acid exposure at levels that simulate the oral environment. METHODS: This laboratory study investigated primary HGFs viability, metabolic activity, cytotoxicity, and apoptotic events on preformed metal crown discs, composite resin-coated wells, and monolithic zirconia fragments at 24, 48, and 72 h using the ApoTox-Glo Triplex assay. The PPCs were also immersed in 0.1% lactic acid, 0.2% phosphoric acid, or 10% citric acid for 7 days at 37 °C to reproduce conditions associated with dietary intake or gastric reflux. Samples were then subject to inductively coupled plasma optical emission spectrometry to quantitate the release of ions. RESULTS: The viability of HGFs on stainless steel and CR significantly declined at 48 and 72 h, representing potential cytotoxicity (p < 0.05). Cytotoxicity of HGFs was also higher for stainless steel and ZR compared to control (p < 0.05). PMCs and ZR crowns gave minimal ion release. Meanwhile, significant quantities of metallic ions, including copper (Cu), iron (Fe), nickel (Ni), and zinc (Zn), were present in eluates from veneered-preformed metal crowns. CONCLUSION: As PPCs can be exposed to highly acidic environments for many years, thus the release of metallic ions from V-PMCs should form the further investigation in future studies.


Asunto(s)
Materiales Biocompatibles , Coronas , Fibroblastos , Encía , Ensayo de Materiales , Acero Inoxidable , Circonio , Humanos , Fibroblastos/efectos de los fármacos , Acero Inoxidable/química , Acero Inoxidable/toxicidad , Encía/efectos de los fármacos , Encía/citología , Resinas Compuestas/toxicidad , Resinas Compuestas/química , Supervivencia Celular/efectos de los fármacos , Niño , Zinc , Ácido Cítrico , Técnicas In Vitro , Níquel , Cobre , Ácidos Fosfóricos , Ácido Láctico , Cromo/toxicidad , Materiales Dentales/toxicidad , Aleaciones Dentales/toxicidad , Aleaciones Dentales/química , Ácidos , Hierro
13.
Int J Oral Maxillofac Implants ; 39(2): 320, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38457263

RESUMEN

PURPOSE: To investigate the biocompatibility of silver nanoparticle (AgNP)-doped Ti-6Al-4V surfaces by evaluating the viability and proliferation rate of human gingival fibroblasts (HGFs)-as the dominant cells of peri-implant soft tissues-seeded on the modified surfaces. MATERIALS AND METHODS: AgNPs (sizes 8 nm and 30 nm) were incorporated onto Ti-6Al-4V specimen surfaces via electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations of 100 ppm, 200 ppm, and 300 ppm. One control and six experimental groups were included in the study: (1) control (Ti-6Al-4V), (2) 8 nm/100 ppm, (3) 8 nm/200 ppm, (4) 8 nm/300 ppm, (5) 30 nm/100 ppm, (6) 30 nm/200 ppm, and (7) 30 nm/300 ppm. HGF cell primary cultures were isolated from periodontally healthy donor patients and cultured in direct contact with the group specimens for 24 and 72 hours. The cytotoxicity of AgNP-doped Ti-6Al-4V specimens toward HGF was assessed by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) assay tests. Calcein AM and ethidium homodimer (EthD-1) fluorescent stains were used to determine the live and dead cells. The morphology and attachment properties of the HGFs were determined via scanning electron microscopy (SEM). RESULTS: Energy dispersive x-ray (EDX) analysis confirmed the presence of AgNPs on the specimens. The MTT test revealed that AgNPs of both sizes and all concentrations presented a decreased cellular metabolic activity compared to the control discs. All concentrations of both sizes of AgNPs affected the cell proliferation rate compared to the control group, as revealed by the BrdU assay. Overall, cytotoxicity of the modified Ti-6Al-4V surfaces depended on cell exposure time. Observation via confocal microscopy confirmed the results of the MTT and BrdU assay tests. Specifically, most cells remained alive throughout the 72-hour culture period. SEM images revealed that adjacent cells form bonds with each other, creating confluent layers of conjugated cells. CONCLUSIONS: The findings of the present study indicate that Ti-6Al-4V surfaces modified with 8 nm and 30 nm AgNPs at concentrations of 100 ppm, 200 ppm, and 300 ppm do not produce any serious cytotoxicity toward HGFs. The initial arrest of the HGF proliferation rate recovered at 72 hours. These results on the antibacterial activity against common periodontal pathogens, in combination with the results found in a previous study by the same research group, suggest that AgNP-doped Ti-6Al-4V surfaces are potential candidates for use in implant abutments for preventing peri-implant diseases.


Asunto(s)
Aleaciones , Proliferación Celular , Supervivencia Celular , Fibroblastos , Encía , Nanopartículas del Metal , Plata , Propiedades de Superficie , Tiazoles , Titanio , Humanos , Fibroblastos/efectos de los fármacos , Titanio/toxicidad , Titanio/química , Encía/citología , Encía/efectos de los fármacos , Plata/química , Plata/toxicidad , Proliferación Celular/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Aleaciones/toxicidad , Ensayo de Materiales , Aleaciones Dentales/química , Aleaciones Dentales/toxicidad , Microscopía Electrónica de Rastreo , Colorantes , Materiales Biocompatibles/química , Sales de Tetrazolio
14.
J Periodontal Res ; 59(3): 468-479, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38311974

RESUMEN

OBJECTIVE: The aim of this study was to: (1) evaluate the anti-inflammatory effects of cannabidiol (CBD) on primary cultures of human gingival fibroblasts (HGFs) and (2) to clinically monitor the effect of CBD in subjects with periodontitis. BACKGROUND: The use of phytocannabinoids is a new approach in the treatment of widely prevalent periodontal disease. MATERIALS AND METHODS: Cannabinoid receptors were analyzed by western blot and interleukin production detected using enzyme immunoassay. Activation of the Nrf2 pathway was studied via monitoring the mRNA level of heme oxygenase-1. Antimicrobial effects were determined by standard microdilution and 16S rRNA screening. In the clinical part, a placebo-control double-blind randomized study was conducted (56 days) in three groups (n = 90) using dental gel without CBD (group A) and with 1% (w/w) CBD (group B) and corresponding toothpaste (group A - no CBD, group B - with CBD) for home use to maintain oral health. Group C used dental gel containing 1% chlorhexidine digluconate (active comparator) and toothpaste without CBD. RESULTS: Human gingival fibroblasts were confirmed to express the cannabinoid receptor CB2. Lipopolysaccharide-induced cells exhibited increased production of pro-inflammatory IL-6 and IL-8, with deceasing levels upon exposure to CBD. CBD also exhibited antimicrobial activities against Porphyromonas gingivalis, with an MIC of 1.5 µg/mL. Activation of the Nrf2 pathway was also demonstrated. In the clinical part, statistically significant improvement was found for the gingival, gingival bleeding, and modified gingival indices between placebo group A and CBD group B after 56 days. CONCLUSIONS: Cannabidiol reduced inflammation and the growth of selected periodontal pathogenic bacteria. The clinical trial demonstrated a statistically significant improvement after CBD application. No adverse effects of CBD were reported by patients or observed upon clinical examination during the study. The results are a promising basis for a more comprehensive investigation of the application of non-psychotropic cannabinoids in dentistry.


Asunto(s)
Cannabidiol , Fibroblastos , Encía , Gingivitis , Humanos , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Método Doble Ciego , Fibroblastos/efectos de los fármacos , Adulto , Masculino , Femenino , Encía/efectos de los fármacos , Gingivitis/tratamiento farmacológico , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2 , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Clorhexidina/uso terapéutico , Clorhexidina/farmacología , Clorhexidina/análogos & derivados , Células Cultivadas , Interleucina-6/análisis , Periodontitis/tratamiento farmacológico , Interleucina-8/efectos de los fármacos , Hemo-Oxigenasa 1
15.
J Periodontal Res ; 59(3): 542-551, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38146226

RESUMEN

BACKGROUND AND OBJECTIVE: Efferocytosis is a process whereby macrophages remove apoptotic cells, such as neutrophils, that have accumulated in tissues, which is required for resolution of inflammation. Efferocytosis is impaired in individuals with increasing age and in those with various systemic diseases. Recently, efferocytosis has been reported to be related to the pathogenesis and progression of periodontitis, and enhancement of efferocytosis, especially in the subjects with impaired efferocytosis, was suggested to lead to periodontitis prevention and care. Various anti-inflammatory ingredients are used in oral care products, but their effect on efferocytosis is unclear. Here, we aimed to identify ingredients contained in oral care products that are effective for efferocytosis regulation. METHODS: The ability of dead cells to induce inflammation in human gingival fibroblast (HGF) cells were evaluated by measuring IL-6 secretion. Six ingredients in oral care products used as anti-inflammatory agents were evaluated for their effect on efferocytosis using flow cytometry. The expression of various efferocytosis-related molecules, such as MERTK and LRP1 involved in recognition, and LXRα and ABCA1 that function in metabolism, were measured in RAW264.7 cells with or without ingredient treatment. Rac1 activity, which is related to the uptake of dead cells, was measured using the G-LISA kit. RESULTS: Dead cells elicited IL-6 secretion in HGF cells. Among the six ingredients, GK2 and hinokitiol enhanced efferocytosis activity. GK2 and hinokitiol significantly increased the expression of MERTK and LRP1, and also enhanced LXRα and ABCA1 expression after efferocytosis. Furthermore, they increased Rac1 activity in the presence of dead cells. CONCLUSION: Among the six ingredients tested, GK2 and hinokitiol promoted efferocytosis by regulating apoptotic cell recognition, uptake, and metabolism-related molecules. Efferocytosis upregulation may be one of the mechanisms of GK2 and hinokitiol in the treatment of inflammatory diseases, such as periodontitis.


Asunto(s)
Apoptosis , Encía , Ácido Glicirrínico , Macrófagos , Monoterpenos , Fagocitosis , Tropolona , Apoptosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Humanos , Tropolona/análogos & derivados , Tropolona/farmacología , Fagocitosis/efectos de los fármacos , Encía/citología , Encía/metabolismo , Encía/efectos de los fármacos , Ácido Glicirrínico/farmacología , Monoterpenos/farmacología , Ratones , Animales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células RAW 264.7 , Antiinflamatorios/farmacología , Interleucina-6/metabolismo , Células Cultivadas , Eferocitosis
16.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37511053

RESUMEN

Gingival-derived mesenchymal stem cells (GMSCs) have strong self-renewal, multilineage differentiation, and immunomodulatory properties and are expected to be applied in anti-inflammatory and tissue regeneration. However, achieving the goal of using endogenous stem cells to treat diseases and even regenerate tissues remains a challenge. Resveratrol is a natural compound with multiple biological activities that can regulate stem cell immunomodulation when acting on them. This study found that resveratrol can reduce inflammation in human gingival tissue and upregulate the stemness of GMSCs in human gingiva. In cell experiments, it was found that resveratrol can reduce the expression of TLR4, TNFα, and NFκB and activate ERK/Wnt crosstalk, thereby alleviating inflammation, promoting the proliferation and osteogenic differentiation ability of GMSCs, and enhancing their immunomodulation. These results provide a new theoretical basis for the application of resveratrol to activate endogenous stem cells in the treatment of diseases in the future.


Asunto(s)
Encía , Periodontitis , Resveratrol , Humanos , Diferenciación Celular , Células Cultivadas , Encía/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , Osteogénesis , Periodontitis/tratamiento farmacológico , Resveratrol/farmacología , Resveratrol/uso terapéutico
17.
F1000Res ; 12: 1342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38826571

RESUMEN

Background: To investigate and compare the effect of four commercially used dental cement at 24 hours, 48 hours,72 hours (h) and 6 days on the cellular response of human gingival fibroblast (HGF). Methods: 3 cement pellet samples were made for each 4-test cement (n=12). The cement used for this study were zinc phosphate (ZP), zinc oxide non-eugenol (ZOE), RelyX U200 (RU200), and glass ionomer cement (GIC). The cytotoxicity of peri-implant tissues was investigated using one commercial cell line. All processing was done following International Organization for Standardization (ISO) methods 10993-5 and 10993-12 (MTT assay Test). Cell cultures without dental cement were considered as control. Standard laboratory procedures were followed to permit cell growth and confluence over 48 hrs after sub-cultivation. Before being subjected to analysis, the cells were kept in direct contact with the cement samples for the suggested time period. To validate the results the specimens were tested three times each. Cell death and inhibition of cell growth were measured quantitatively. Results were analyzed using 1-way ANOVA (a=0.05) followed by Tukey B post hoc test. Results: The study showed the dental cement test material was cytotoxic. ZOE, ZP, GIC, and RU200 were cytotoxic in decreasing order, respectively, significantly reducing cell viability after exposure to HGF (p <0.001). Conclusions: Within the limitations of this in-vitro cellular study, results indicated that HGF were vulnerable to the test the dental cement. The highest cytotoxicity was observed in ZOE, followed by ZP, GIC, and RU200.


Asunto(s)
Cementos Dentales , Implantes Dentales , Fibroblastos , Encía , Humanos , Cementos Dentales/toxicidad , Fibroblastos/efectos de los fármacos , Encía/efectos de los fármacos , Encía/citología , Implantes Dentales/efectos adversos , Factores de Tiempo , Proliferación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ensayo de Materiales
18.
Hum Exp Toxicol ; 41: 9603271221080236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35099326

RESUMEN

BACKGROUND: Periodontal dressing is used to cover the gum surface and protect the wound after periodontal surgery. Nanomaterials have been widely applied in dentistry in recent years. Zinc oxide (ZnO) is one of the main components of periodontal dressing. AIM: This study aims to explore the toxicity ZnO nanoparticles (ZnO NPs) causes to human gingival fibroblast cells (HGF-1) and its effect on cell proliferation. METHODS: First, we identified and analyzed HGF-1, including cell morphology, growth curve, and immunohistochemistry staining. Then, we treated HGF-1 with ZnO NP. Cell viability, the integrity of the cell membrane, oxidative damage, and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, fluorescent probe, and flow cytometry. Furthermore, the expression of murine double minute 2 (MDM2) and p53 was determined by quantitative real-time polymerase chain reaction (qPCR) and Western blotting. We finally overexpressed MDM2 in HGF-1 to verify the relationship between MDM2 and cell proliferation. RESULTS: Our research indicated ZnO NPs did not affect cell proliferation at low concentrations. However, high-concentration ZnO NP inhibited cell proliferation, destroyed the integrity of cell membranes, and induced oxidative stress and apoptosis. In addition, high concentration of ZnO NPs inhibited the proliferation of HGF-1 by regulating the expression of MDM2 and p53. CONCLUSION: High concentration of ZnO NP caused toxicity to HGF-1 cells and inhibited cell proliferation by regulating MDM2 and p53 expression.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Encía/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Óxido de Zinc/toxicidad , Animales , Células Cultivadas/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Ratones
19.
Comput Math Methods Med ; 2022: 6537676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35035523

RESUMEN

OBJECTIVES: In this study, a new type of dental implant by covering the surface of the titanium (Ti) implant with zinc-magnesium (Zn-Mg) alloy was designed, to study the antibacterial and antioxidant effects of Mg alloy on titanium (Ti) implants in oral implant restoration. METHODS: Human gingival fibroblasts (HGFs), S. sanguinis, and F. nucleatum bacteria were used to detect the bioactivity and antibacterial properties of Mg alloy-coated Ti implants. In addition, B6/J mice implanted with different materials were used to further detect their antibacterial and antioxidant properties. RESULTS: The results showed that Mg alloy could better promote the adhesion and proliferation and improve the alkaline phosphatase (ALP) activity of HGFs, which contributed to better improved stability of implant osseointegration. In addition, Mg alloy could better inhibit the proliferation of S. sanguinis, while no significant difference was found in the proliferation of F. nucleatum between the two implants. In the mouse model, the peripheral inflammatory reaction and oxidative stress of the Mg alloy implant were significantly lower than those of the Ti alloy implant. CONCLUSIONS: Zn-Mg alloy-coated Ti implants could better inhibit the growth of Gram-positive bacteria in the oral cavity, inhibit oxidative stress, and facilitate the proliferation activity of HGFs and the potential of osteoblast differentiation, thus, better increasing the stability of implant osseointegration.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Implantes Dentales , Magnesio/farmacología , Titanio , Aleaciones/química , Aleaciones/farmacología , Animales , Antibacterianos/química , Antioxidantes/química , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Biología Computacional , Implantes Dentales/efectos adversos , Implantes Dentales/microbiología , Diseño de Prótesis Dental , Encía/citología , Encía/efectos de los fármacos , Encía/metabolismo , Humanos , Magnesio/química , Masculino , Ratones , Ratones Endogámicos C57BL , Oseointegración/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Propiedades de Superficie , Titanio/química , Zinc/farmacología
20.
Biomed Pharmacother ; 146: 112525, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34906776

RESUMEN

The therapeutic armamentarium for the treatment of oral mucositis is very poor. Catechin and baicalin are two natural flavonoids that have been individually reported to have a curative potential. Flavocoxid is a mixed extract containing baicalin and catechin showing antioxidant effects and anti-inflammatory activity mainly due to a dual inhibition of inducible cyclooxygenase (COX-2), 5-lipoxygenase (5-LOX) and NLRP3 pathway. The aim of this study was to evaluate the anti-inflammatory and anti-oxidant effects of flavocoxid in an "in vitro" model of oral mucositis induced by triggering an inflammatory phenotype in human gingival fibroblasts (GF) and human oral mucosal epithelial cells (EC). GF and EC were challenged with lipopolysaccharide (LPS 2 µg/ml) alone or in combination with flavocoxid (32 µg/ml). Flavocoxid increased Nrf2, prompted a marked reduction in malondialdehyde levels and reduced the expression of COX-2 and 5-LOX together with PGE2, and LTB4 levels. Flavocoxid caused also a great decrease in the expression of NF-κB and turned off NLRP3 inflammasome and its downstream effectors signal, as caspase-1, IL-1ß and IL-18 in both GF and EC cells stimulated with LPS. These results suggest a correlation between oxidative stress and NLRP3 activation and indicate that flavocoxid suppresses the inflammatory storm that accompanies oral mucositis. This preclinical evidence deserves to be confirmed in a clinical setting.


Asunto(s)
Catequina , Mucositis , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Catequina/uso terapéutico , Combinación de Medicamentos , Células Epiteliales , Fibroblastos/metabolismo , Encía/efectos de los fármacos , Encía/metabolismo , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Lipopolisacáridos/farmacología , Mucosa Bucal/efectos de los fármacos , Mucosa Bucal/metabolismo , Mucositis/tratamiento farmacológico , Mucositis/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...