Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.447
Filtrar
1.
Poult Sci ; 103(6): 103712, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38603935

RESUMEN

The effects of the administration of the opioid agonist, morphine, on plasma and tissue concentrations of Met-enkephalin were determined in 14 wk old female chickens. In addition, effects of morphine on proenkephalin (PENK) expression were examined. Plasma concentrations of Met-enkephalin were reduced 10 minutes after morphine administration. Plasma concentrations of peptides that contain Met-enkephalin motifs were decreased 30 minutes after morphine administration. Tissue concentrations of Met-enkephalin tended to be depressed following morphine administration. Adrenal concentrations of PENK peptides containing Met-enkephalin motifs were decreased in chickens challenged with morphine. Expression of PENK in the anterior pituitary gland and adrenal glands were decreased in morphine treated compared to control pullets. In contrast, plasma concentrations of corticosterone were elevated 10 min after morphine treatment. Morphine also induced changes in mu (µ) opioid receptors and delta (δ) opioid receptors in both anterior pituitary tissue and adrenal tissues.


Asunto(s)
Pollos , Corticosterona , Encefalina Metionina , Encefalinas , Morfina , Precursores de Proteínas , Animales , Morfina/administración & dosificación , Morfina/farmacología , Pollos/metabolismo , Encefalina Metionina/metabolismo , Femenino , Corticosterona/sangre , Precursores de Proteínas/metabolismo , Encefalinas/metabolismo , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/metabolismo , Proteínas Aviares/metabolismo , Proteínas Aviares/genética
2.
Cells ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38334624

RESUMEN

The recent emphasis on circadian rhythmicity in critical skin cell functions related to homeostasis, regeneration and aging has shed light on the importance of the PER2 circadian clock gene as a vital antitumor gene. Furthermore, delta-opioid receptors (DOPrs) have been identified as playing a crucial role in skin differentiation, proliferation and migration, which are not only essential for wound healing but also contribute to cancer development. In this study, we propose a significant association between cutaneous opioid receptor (OPr) activity and circadian rhythmicity. To investigate this link, we conducted a 48 h circadian rhythm experiment, during which RNA samples were collected every 5 h. We discovered that the activation of DOPr by its endogenous agonist Met-Enkephalin in N/TERT-1 keratinocytes, synchronized by dexamethasone, resulted in a statistically significant 5.6 h delay in the expression of the core clock gene PER2. Confocal microscopy further confirmed the simultaneous nuclear localization of the DOPr-ß-arrestin-1 complex. Additionally, DOPr activation not only enhanced but also induced a phase shift in the rhythmic binding of ß-arrestin-1 to the PER2 promoter. Furthermore, we observed that ß-arrestin-1 regulates the transcription of its target genes, including PER2, by facilitating histone-4 acetylation. Through the ChIP assay, we determined that Met-Enkephalin enhances ß-arrestin-1 binding to acetylated H4 in the PER2 promoter. In summary, our findings suggest that DOPr activation leads to a phase shift in PER2 expression via ß-arrestin-1-facilitated chromatin remodeling. Consequently, these results indicate that DOPr, much like its role in wound healing, may also play a part in cancer development by influencing PER2.


Asunto(s)
Neoplasias , Receptores Opioides , Humanos , beta-Arrestinas , Receptores Opioides/genética , Queratinocitos , Ritmo Circadiano/fisiología , beta-Arrestina 1 , Encefalina Metionina
3.
Int Immunopharmacol ; 125(Pt B): 111226, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976597

RESUMEN

OBJECTIVE: This study aimed to investigate the underlying regulatory effects of methionine enkephalin (MENK) on osteosarcoma. METHODS: The Cell Counting Kit-8 assay, clone formation, wound healing, transwell assay, and flow cytometry were performed to measure the effects of MENK on the proliferation, migration, invasion, and apoptosis of MG-63 and Saos-2 cells. Opiate growth factor receptor expression (OGFr) in cells was stably knocked down using siRNA. A tumor model was established by inoculating MG-63 cells into mice. Flow cytometry was performed to identify alterations in mice bone marrow, spleen, and tumor tissue immune cells. The phenotype of tumor-associated macrophages was determined using immunohistochemistry. After OGFr knockdown or/and treatment with MENK, Bax, Bcl-2, caspase 3, caspase 9, and PARP expression levels were characterized using qRT-PCR, western blot, and WES, respectively. RESULTS: MENK could significantly inhibit the proliferation, invasion, and migration of MG-63 and Saos-2, arrest the cell cycle in the G0/G1 phase, upregulate Bax, caspase 3, caspase 9, and PARP expression, and downregulate Bcl-2 expression. Tumor size and weight were lower in the MENK group than those in the control group. MENK-treated mice exhibited a reduced ratio of CD11b + Gr-1 + myeloid-derived suppressor cells. MENK increased the ratio of M1-type macrophages and decreased the proportion of M2-type macrophages in tumor tissue. Furthermore, the level of TNF-α significantly increased while that of IL-10 decreased in MENK-treated mice. The effect of MENK could be partly reversed by OGFr knockdown. CONCLUSION: MENK reduces the abundance of myeloid-derived suppressor cells, induces M1 polarization of macrophages, and exhibits an inhibitory effect on osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Ratones , Caspasa 3 , Caspasa 9 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteína X Asociada a bcl-2 , Osteosarcoma/tratamiento farmacológico , Encefalina Metionina/farmacología , Encefalina Metionina/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico
4.
BMC Immunol ; 24(1): 38, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828468

RESUMEN

Novel prophylactic drugs and vaccination strategies for protection against influenza virus should induce specific effector T-cell immune responses in pulmonary airways and peripheral lymphoid organs. Designing approaches that promote T-cell-mediated responses and memory T-cell differentiation would strengthen host resistance to respiratory infectious diseases. The results of this study showed that pulmonary delivery of MENK via intranasal administration reduced viral titres, upregulated opioid receptor MOR and DOR, increased the proportions of T-cell subsets including CD8+ T cells, CD8+ TEM cells, NP/PA-effector CD8+ TEM cells in bronchoalveolar lavage fluid and lungs, and CD4+/CD8+ TCM cells in lymph nodes to protect mice against influenza viral challenge. Furthermore, we demonstrated that, on the 10th day of infection, the proportions of CD4+ TM and CD8+ TM cells were significantly increased, which meant that a stable TCM and TEM lineage was established in the early stage of influenza infection. Collectively, our data suggested that MENK administered intranasally, similar to the route of natural infection by influenza A virus, could exert antiviral activity through upregulating T-cell-mediated adaptive immune responses against influenza virus.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Ratones , Animales , Humanos , Linfocitos T CD8-positivos , Encefalina Metionina/farmacología , Células T de Memoria , Memoria Inmunológica , Ratones Endogámicos C57BL
5.
Int Immunopharmacol ; 124(Pt B): 110967, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37741126

RESUMEN

This study was to study the role of methionine enkephalin (menk) in cell invasion and migration as well as NK cells activation of tumor microenvironment in cervical cancer. The results showed that menk inhibited cervical cancer migration and invasion. In addition, we found menk affected epithelial to mesenchymal transition (EMT) related indicators, with increasing E-cadherin level, decreasing N-cadherin and vimentin level. Through in vivo mouse model, we found that menk IFNγ and NKP46 expression was upregulated in tumor tissues by menk compared with controls, while LAG3 expression was inhibited by menk, besides, there was an upregulation of CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer. Therefore, we concluded that menk inhibited cancer migration and invasion via affecting EMT related indicators and activated CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer, laying a theoretical foundation for the further clinical treatment of menk.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Femenino , Ratones , Animales , Neoplasias del Cuello Uterino/tratamiento farmacológico , Encefalina Metionina/farmacología , Transición Epitelial-Mesenquimal , Microambiente Tumoral , Receptor 1 Gatillante de la Citotoxidad Natural , Línea Celular Tumoral , Movimiento Celular
6.
Gen Comp Endocrinol ; 342: 114353, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536461

RESUMEN

Although methionine-enkephalin (M-ENK) is implicated in the regulation of reproductive functions in vertebrates, its function in reptiles is little understood. This study aims to elucidate the role of M-ENK on seasonal and follicle stimulating hormone (FSH)-induced ovarian recrudescence in the gecko Hemidactylus frenatus. In the first experiment, administration of 5 µg M-ENK did not affect germinal bed activity or follicular developmental stages I, II, and III (previtellogenic) and IV (vitellogenic), but there were no stage V (vitellogenic) follicles in the ovary. However, there was a significant decrease in the mean numbers of oogonia and primary oocytes in the germinal bed associated with the complete absence of stage IV and V follicles in 25 µg M-ENK-treated lizards in contrast to experimental controls. Furthermore, there was a significant decrease in gonadotropin-releasing hormone - immunoreactive (GnRH-ir) content in the median eminence (ME) and pars distalis (PD) of the pituitary gland and sparse labelling of hypothalamic GnRH-ir neurons in 25 µg M-ENK-treated lizards. In the second experiment, treatment with FSH during the regression phase of the ovarian cycle resulted in the appearance of stage IV and V follicles, in contrast to their absence in the initial controls and treatment controls. However, treatment with 25 µg M-ENK + FSH did not result in the appearance of these follicles, indicating the inhibitory effect of M-ENK on FSH-induced ovarian recrudescence. These findings suggest that M-ENK inhibits the germinal bed and vitellogenic follicular growth in a dose-dependent manner, possibly mediated through the suppression of GnRH release in the ME and PD. In addition, M-ENK may also act at the level of the ovary in the gecko.


Asunto(s)
Lagartos , Ovario , Femenino , Animales , Hormona Folículo Estimulante/farmacología , Analgésicos Opioides/farmacología , Folículo Ovárico , Encefalina Metionina/farmacología , Estaciones del Año , Hormona Liberadora de Gonadotropina/farmacología , Lagartos/fisiología , Metionina/farmacología
7.
Acta Neurobiol Exp (Wars) ; 83(1): 84-96, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37078817

RESUMEN

In the central nervous system, long­term effects of a vagotomy include disturbance of monoaminergic activity of the limbic system. Since low vagal activity is observed in major depression and autism spectrum disorder, the study aimed to determine whether animals fully recovered after subdiaphragmatic vagotomy demonstrates neurochemical indicators of altered well­being and social component of sickness behavior. Bilateral vagotomy or sham surgery was performed in adult rats. After one month of recovery, rats were challenged with lipopolysaccharide or vehicle to determine the role of central signaling upon sickness. Striatal monoamines and met­enkephalin concentrations were evaluated using HPLC and RIA methods. We also defined a concentration of immune­derived plasma met­enkephalin to establish a long­term effect of vagotomy on peripheral analgesic mechanisms. The data indicate that 30 days after vagotomy procedure, striatal dopaminergic, serotoninergic, and enkephalinergic neurochemistry was altered, both under physiological and inflammatory conditions. Vagotomy prevented inflammation­induced increases of plasma met­enkephalin - an opioid analgesic. Our data suggest that in a long perspective, vagotomized rats may be more sensitive to pain and social stimuli during peripheral inflammation.


Asunto(s)
Trastorno del Espectro Autista , Encefalina Metionina , Ratas , Animales , Encefalina Metionina/farmacología , Vagotomía , Nervio Vago/fisiología , Inflamación , Aminas
8.
Int Immunopharmacol ; 118: 110064, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36989897

RESUMEN

Metastasis is one of the most difficult challenges for clinical lung cancer treatment. Epithelial-mesenchymal transition (EMT) is the crucial step of tumor metastasis. Immune cells in the tumor microenvironment (TME), such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), promote cancer cell EMT. In this study, we explored the effect of methionine enkephalin (MENK) on the EMT process in vitro and in vivo, and its influence on TAMs, MDSCs, and associated cytokines in vivo. The results showed that MENK suppressed growth, migration, and invasion of lung cancer cells and inhibited the EMT process by interacting with opioid growth factor receptor. MENK reduced the number of M2 macrophages and MDSC infiltration, and downregulated the expression of interleukin-10 and transforming growth factor-ß1 in both primary and metastatic tumors of nude mice. The present findings suggest that MENK is a potential target for suppressing metastasis in lung cancer treatment.


Asunto(s)
Neoplasias Pulmonares , Células Supresoras de Origen Mieloide , Animales , Ratones , Transición Epitelial-Mesenquimal , Macrófagos Asociados a Tumores/metabolismo , Encefalina Metionina/farmacología , Encefalina Metionina/uso terapéutico , Encefalina Metionina/metabolismo , Microambiente Tumoral , Ratones Desnudos , Línea Celular Tumoral , Movimiento Celular
9.
Life Sci ; 312: 121189, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36396109

RESUMEN

AIMS: Obesity and its related metabolic disorders, including insulin resistance and fatty liver, have become a serious global public health problem. Previous studies have shown Methionine Enkephalin (MetEnk) has the potential on adipocyte browning, however, its effects on the potential mechanisms of its regulation in browning as well as its improvement in energy metabolic homeostasis remain to be deciphered. MAIN METHODS: C57BL/6J male mice were fed with high-fat diet (HFD) to induce obesity model, and MetEnk was injected subcutaneously to detect changes in the metabolic status of mice, adipocytes and HepG2 cells were also treated with MetEnk, and transcriptomic, metabolomic were used to detect the changes of lipid metabolism, mitochondrial function, inflammation and other related factors. KEY FINDINGS: We found that MetEnk effectively protected against obesity weight gain in HFD-induced C57BL/6J mice, significantly improved glucose tolerance and insulin sensitivity, reduced the expression levels of interleukin 6 (IL-6), promoted white fat browning, moreover, using a combination of transcriptomic, metabolomic and inhibitors, it was found that MetEnk improved mitochondrial function, promoted thermogenesis and lipolysis by activating cAMP/PKA pathway in adipocytes, further analysis found that MetEnk also promoted lipolysis and alleviated inflammation through AMP-activated protein kinase (AMPK) pathway in mice liver and HepG2 cells. SIGNIFICANCE: Our study provides profound evidence for the role of MetEnk in improving lipid metabolism disorders. This study provides a mechanical foundation for investigating the potential of MetEnk to improve obesity and its associated metabolic disorders.


Asunto(s)
Encefalina Metionina , Resistencia a la Insulina , Masculino , Ratones , Animales , Encefalina Metionina/farmacología , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo , Termogénesis , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Inflamación/metabolismo , Tejido Adiposo Pardo/metabolismo
10.
J Pain ; 24(5): 840-859, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36586660

RESUMEN

Venom-derived NaV1.7 channel blockers have promising prospects in pain management. The 34-residue tarantula peptide GpTx-1 is a potent NaV1.7 channel blocker. Its powerful analog [Ala5, Phe6, Leu26, Arg28]GpTx-1 (GpTx-1-71) displayed excellent NaV1.7 selectivity and analgesic properties in mice. The current study aimed to elucidate the anti-hyperalgesic activities of GpTx-1-71 in inflammatory pain and reveal the underlying mechanisms. Our results demonstrated that intrathecal and intraplantar injections of GpTx-1-71 dose-dependently attenuated CFA-induced inflammatory hypersensitivity in rats. Moreover, GpTx-1-71-induced anti-hyperalgesia was significantly reduced by opioid receptor antagonists and the enkephalin antibody and diminished in proenkephalin (Penk) gene knockout animals. Consistently, GpTx-1-71 treatment increased the enkephalin level in the spinal dorsal horn and promoted the Penk transcription and enkephalin release in primary dorsal root ganglion (DRG) neurons, wherein sodium played a crucial role in these processes. Mass spectrometry analysis revealed that GpTx-1-71 mainly promoted the secretion of Met-enkephalin but not Leu-enkephalin from DRG neurons. In addition, the combination of subtherapeutic Met-enkephalin and GpTx-1-71 produced synergistic anti-hyperalgesia in CFA-induced inflammatory hypersensitivity. These findings suggest that the endogenous enkephalin pathway is essential for GpTx-1-71-induced spinal and peripheral analgesia in inflammatory pain. PERSPECTIVE: This article presents a possible pharmacological mechanism underlying NaV1.7 blocker-induced analgesia in inflammatory pain, which helps us to better understand and develop venom-based painkillers for incurable pain.


Asunto(s)
Hiperalgesia , Dolor , Ratas , Ratones , Animales , Dolor/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Encefalinas/metabolismo , Encefalina Metionina/metabolismo , Encefalina Metionina/farmacología , Encefalina Metionina/uso terapéutico , Ganglios Espinales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo
11.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232883

RESUMEN

Pain is a worldwide public health problem and its treatment is still a challenge since clinically available drugs do not completely reverse chronic painful states or induce undesirable effects. Crotalphine is a 14 amino acids synthetic peptide that induces a potent and long-lasting analgesic effect on acute and chronic pain models, peripherally mediated by the endogenous release of dynorphin A and the desensitization of the transient receptor potential ankyrin 1 (TRPA1) receptor. However, the effects of crotalphine on the central nervous system (CNS) and the signaling pathway have not been investigated. Thus, the central effect of crotalphine was evaluated on the partial sciatic nerve ligation (PSNL)-induced chronic neuropathic pain model. Crotalphine (100 µg/kg, p.o.)-induced analgesia on the 14th day after surgery lasting up to 24 h after administration. This effect was prevented by intrathecal administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists. Besides that, crotalphine-induced analgesia was reversed by CTOP, nor-BNI, and naltrindole, antagonists of mu, kappa, and delta-opioid receptors, respectively, and also by the specific antibodies for ß-endorphin, dynorphin-A, and met-enkephalin. Likewise, the analgesic effect of crotalphine was blocked by the intrathecal administration of minocycline, an inhibitor of microglial activation and proliferation. Additionally, crotalphine decreased the PSNL-induced IL-6 release in the spinal cord. Importantly, in vitro, crotalphine inhibited LPS-induced CD86 expression and upregulated CD206 expression in BV-2 cells, demonstrating a polarization of microglial cells towards the M2 phenotype. These results demonstrated that crotalphine, besides activating opioid and cannabinoid analgesic systems, impairs central neuroinflammation, confirming the neuromodulatory mechanism involved in the crotalphine analgesic effect.


Asunto(s)
Analgesia , Cannabinoides , Neuralgia , Aminoácidos/metabolismo , Analgésicos/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/metabolismo , Ancirinas/metabolismo , Antagonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/uso terapéutico , Dinorfinas/metabolismo , Encefalina Metionina/metabolismo , Humanos , Interleucina-6/metabolismo , Lipopolisacáridos/metabolismo , Microglía/metabolismo , Minociclina/uso terapéutico , Neuralgia/metabolismo , Péptidos , Fenotipo , Receptores Opioides/metabolismo , Médula Espinal , betaendorfina/metabolismo
12.
J Neurosci ; 42(42): 7862-7874, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36096670

RESUMEN

Peripheral neuropathic pain induced by the chemotherapeutic cisplatin can persist for months to years after treatment. Histone deacetylase 6 (HDAC6) inhibitors have therapeutic potential for cisplatin-induced neuropathic pain since they persistently reverse mechanical hypersensitivity and spontaneous pain in rodent models. Here, we investigated the mechanisms underlying reversal of mechanical hypersensitivity in male and female mice by a 2 week treatment with an HDAC6 inhibitor, administered 3 d after the last dose of cisplatin. Mechanical hypersensitivity in animals of both sexes treated with the HDAC6 inhibitor was temporarily reinstated by a single injection of the neutral opioid receptor antagonist 6ß-naltrexol or the peripherally restricted opioid receptor antagonist naloxone methiodide. These results suggest that tonic peripheral opioid ligand-receptor signaling mediates reversal of cisplatin-induced mechanical hypersensitivity after treatment with an HDAC6 inhibitor. Pointing to a specific role for δ opioid receptors (DORs), Oprd1 expression was decreased in DRG neurons following cisplatin administration, but normalized after treatment with an HDAC6 inhibitor. Mechanical hypersensitivity was temporarily reinstated in both sexes by a single injection of the DOR antagonist naltrindole. Consistently, HDAC6 inhibition failed to reverse cisplatin-induced hypersensitivity when DORs were genetically deleted from advillin+ neurons. Mechanical hypersensitivity was also temporarily reinstated in both sexes by a single injection of a neutralizing antibody against the DOR ligand met-enkephalin. In conclusion, we reveal that treatment with an HDAC6 inhibitor induces tonic enkephalin-DOR signaling in peripheral sensory neurons to suppress mechanical hypersensitivity.SIGNIFICANCE STATEMENT Over one-fourth of cancer survivors suffer from intractable painful chemotherapy-induced peripheral neuropathy (CIPN), which can last for months to years after treatment ends. HDAC6 inhibition is a novel strategy to reverse CIPN without negatively interfering with tumor growth, but the mechanisms responsible for persistent reversal are not well understood. We built on evidence that the endogenous opioid system contributes to the spontaneous, apparent resolution of pain caused by nerve damage or inflammation, referred to as latent sensitization. We show that blocking the δ opioid receptor or its ligand enkephalin unmasks CIPN in mice treated with an HDAC6 inhibitor (latent sensitization). Our work provides insight into the mechanisms by which treatment with an HDAC6 inhibitor apparently reverses CIPN.


Asunto(s)
Antineoplásicos , Neuralgia , Ratones , Masculino , Femenino , Animales , Histona Desacetilasa 6/metabolismo , Cisplatino/toxicidad , Receptores Opioides delta , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Antagonistas de Narcóticos/farmacología , Ligandos , Analgésicos Opioides/efectos adversos , Ratones Endogámicos C57BL , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Inhibidores de Histona Desacetilasas , Niacinamida , Antineoplásicos/toxicidad , Encefalina Metionina , Encefalinas , Anticuerpos Neutralizantes
13.
Cell Rep ; 40(13): 111440, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36170833

RESUMEN

Low dopamine D2 receptor (D2R) availability in the striatum can predispose for cocaine abuse; though how low striatal D2Rs facilitate cocaine reward is unclear. Overexpression of D2Rs in striatal neurons or activation of D2Rs by acute cocaine suppresses striatal Penk mRNA. Conversely, low D2Rs in D2-striatal neurons increases striatal Penk mRNA and enkephalin peptide tone, an endogenous mu-opioid agonist. In brain slices, met-enkephalin and inhibition of enkephalin catabolism suppresses intra-striatal GABA transmission. Pairing cocaine with intra-accumbens met-enkephalin during place conditioning facilitates acquisition of preference, while mu-opioid receptor antagonist blocks preference in wild-type mice. We propose that heightened striatal enkephalin potentiates cocaine reward by suppressing intra-striatal GABA to enhance striatal output. Surprisingly, a mu-opioid receptor antagonist does not block cocaine preference in mice with low striatal D2Rs, implicating other opioid receptors. The bidirectional regulation of enkephalin by D2R activity and cocaine offers insights into mechanisms underlying the vulnerability for cocaine abuse.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Analgésicos Opioides/farmacología , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Cuerpo Estriado/metabolismo , Encefalina Metionina/metabolismo , Encefalina Metionina/farmacología , Encefalinas/metabolismo , Encefalinas/farmacología , Ratones , Antagonistas de Narcóticos/metabolismo , Antagonistas de Narcóticos/farmacología , ARN Mensajero/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Recompensa , Ácido gamma-Aminobutírico/metabolismo
14.
J Chem Inf Model ; 62(19): 4783-4798, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36122323

RESUMEN

Computer simulations of biomolecules such as molecular dynamics often suffer from insufficient sampling. Due to limited computational resources, insufficient sampling prevents obtaining proper equilibrium distributions of observed properties. To deal with this problem, we proposed a simulation protocol for efficient resampling of collected off-equilibrium trajectories. These trajectories are utilized for the initial mapping of the conformational space, which is later properly resampled by the introduced Iterative Landmark-Based Umbrella Sampling (ILBUS) method. Reconstruction of static equilibrium properties is achieved by the multistate Bennett acceptance ratio (MBAR) method, which enables efficient use of simulated data. The ILBUS protocol is geometry-based and does not demand any additional collective variable or a dimensional-reduction technique. The only requirement is a set of suitably spaced reference conformations, which serve as landmarks in the mapped conformational space. Additionally, the ILBUS protocol encompasses an iterative process that optimizes the force constant used in the umbrella sampling simulation. Such tuning is an inherent feature of the protocol and does not need to be performed by the user in advance. Furthermore, even the simulations with suboptimal force constants can be used in estimates by MBAR. We demonstrate the feasibility and the performance of this approach in the study of the conformational landscape of the alanine dipeptide, met-enkephalin, and adenylate kinase.


Asunto(s)
Adenilato Quinasa , Simulación de Dinámica Molecular , Alanina , Dipéptidos/química , Encefalina Metionina
15.
Int Immunopharmacol ; 111: 109125, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35988519

RESUMEN

There is evidence that methionine enkephalin (MENK), an opioid peptide, promotes anti-tumor immune responses. In this study, the effect of MENK on colorectal cancer (CRC) and its mechanisms of action were examined in vivo. The intraperitoneal administration of 20 mg/kg MENK effectively inhibited MC38 subcutaneous colorectal tumor growth in mice. MENK inhibited tumor progression by increasing the immunogenicity and recognition of MC38 cells. MENK down-regulated the oncogene Kras and anti-apoptotic Bclxl and Bcl2, suppressed Il1b, Il6, iNOS, and Arg1 (encoding inflammatory cytokines), and increased Il17a and Il10 levels. MENK promoted a tumor suppressive state by decreasing the immune checkpoints Pd-1, Pd-l1, Lag3, Flgl1, and 2b4 in CRC. MENK also altered the immune status of the tumor immune microenvironment (TIME). It increased the infiltration of M1-type macrophages, CD8+T cells, and CD4+T cells and decreased the proportions of G-MDSCs, M-MDSCs, and M2-type macrophages. MENK accelerated CD4+TEM and CD8+TEM cell activation in the TIME and up-regulated IFN-γ, TNF-α, and IL-17A in CD4+T cells and Granzyme B in CD8+T cells. In addition, analyses of PD-1 and PD-L1 expression indicated that MENK promoted the anti-tumor immune response mediated by effector T cells. Finally, OGFr was up-regulated at the protein and mRNA levels by MENK, and the inhibitory effects of MENK on tumor growth were blocked by NTX, a specific blocker of OGFr. These finding indicate that MENK remodels the TIME in CRC to inhibit tumor progression by binding to OGFr. MENK is a potential therapeutic agent for CRC, especially for improving the efficacy of immunotherapy.


Asunto(s)
Neoplasias Colorrectales , Encefalina Metionina , Animales , Antígeno B7-H1 , Neoplasias Colorrectales/tratamiento farmacológico , Encefalina Metionina/farmacología , Encefalina Metionina/uso terapéutico , Factores Inmunológicos , Ratones , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral
16.
Sci Rep ; 12(1): 12584, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869117

RESUMEN

With different countries facing multiple waves, with some SARS-CoV-2 variants more deadly and virulent, the COVID-19 pandemic is becoming more dangerous by the day and the world is facing an even more dreadful extended pandemic with exponential positive cases and increasing death rates. There is an urgent need for more efficient and faster methods of vaccine development against SARS-CoV-2. Compared to experimental protocols, the opportunities to innovate are very high in immunoinformatics/in silico approaches, especially with the recent adoption of structural bioinformatics in peptide vaccine design. In recent times, multi-epitope-based peptide vaccine candidates (MEBPVCs) have shown extraordinarily high humoral and cellular responses to immunization. Most of the publications claim that respective reported MEBPVC(s) assembled using a set of in silico predicted epitopes, to be the computationally validated potent vaccine candidate(s) ready for experimental validation. However, in this article, for a given set of predicted epitopes, it is shown that the published MEBPVC is one among the many possible variants and there is high likelihood of finding more potent MEBPVCs than the published candidates. To test the same, a methodology is developed where novel MEBP variants are derived by changing the epitope order of the published MEBPVC. Further, to overcome the limitations of current qualitative methods of assessment of MEBPVC, to enable quantitative comparison and ranking for the discovery of more potent MEBPVCs, novel predictors, Percent Epitope Accessibility (PEA), Receptor specific MEBP vaccine potency (RMVP), MEBP vaccine potency (MVP) are introduced. The MEBP variants indeed showed varied MVP scores indicating varied immunogenicity. Further, the MEBP variants with IDs, SPVC_446 and SPVC_537, had the highest MVP scores indicating these variants to be more potent MEBPVCs than the published MEBPVC and hence should be preferred candidates for immediate experimental testing and validation. The method enables quicker selection and high throughput experimental validation of vaccine candidates. This study also opens the opportunity to develop new software tools for designing more potent MEBPVCs in less time.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Encefalina Metionina/análogos & derivados , Epítopos , Epítopos de Linfocito B , Epítopos de Linfocito T , Humanos , Simulación del Acoplamiento Molecular , Pandemias/prevención & control , Péptidos , Vacunas de Subunidad
17.
Int Immunopharmacol ; 110: 108933, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35738090

RESUMEN

Immunotherapy for cervical carcinoma is becoming increasingly important recently. In these studies methionine enkephalin (menk) is shown to inhibit cervical tumor cell proliferation in vitro in association with an increase in the expression of apoptosis markers and mediators, including an increase in fas, caspase 8, and caspase 3 expression and intrinsic expression of the signaling pathway mediator bax. In vivo, tumor growth was restrained in mice xenotransplant model with typical pathological features of apoptosis. Furthermore, myeloid derived suppressor cells (MDSCs) had a significant decrease in circulation and in tumor site. In brief, these findings showed menk could inhibit tumor growth in vitro and in vivo, providing direction of further research and clinical application prospect.


Asunto(s)
Carcinoma , Células Supresoras de Origen Mieloide , Neoplasias del Cuello Uterino , Animales , Apoptosis , Línea Celular Tumoral , Encefalina Metionina/metabolismo , Encefalina Metionina/farmacología , Encefalina Metionina/uso terapéutico , Femenino , Humanos , Factores Inmunológicos/metabolismo , Ratones , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo
18.
Int J Biol Sci ; 18(7): 2882-2897, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35541895

RESUMEN

Cold-inducible RNA-binding protein (CIRBP) is documented to be required for maintaining cardiac function, however, its role in chemotherapy-induced cardiotoxicity remains obscured. Herein, we report that CIRBP decreases cardiomyocyte apoptosis and attenuates cardiotoxicity through disrupting OGF-OGFR signal. CIRBP deficiency is involved in diverse chemotherapeutic agents induced cardiomyocyte apoptosis. Delivery of exogenous CIRBP to the mouse myocardium significantly mitigated doxorubicin-induced cardiac apoptosis and dysfunction. Specifically, OGFR was identified as a downstream core effector responsible for chemotherapy-induced cardiomyocyte apoptosis. CIRBP was shown to interact with OGFR mRNA and to repress OGFR expression by reducing mRNA stability. CIRBP-mediated cytoprotection against doxorubicin-induced cardiac apoptosis was demonstrated to largely involve OGFR repression by CIRBP. NTX as a potent antagonist of OGFR successfully rescued CIRBP ablation-rendered susceptibility to cardiac dyshomeostasis upon exposure to doxorubicin, whereas another antagonist ALV acting only on opioid receptors did not. Taken together, our results demonstrate that CIRBP confers myocardium resistance to chemotherapy-induced cardiac apoptosis and dysfunction by dampening OGF/OGFR axis, shedding new light on the mechanisms of chemo-induced cardiotoxicity and providing insights into the development of an efficacious cardioprotective strategy for cancer patients.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Encefalina Metionina , Animales , Apoptosis/efectos de los fármacos , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Proliferación Celular , Doxorrubicina/toxicidad , Encefalina Metionina/metabolismo , Encefalina Metionina/farmacología , Humanos , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/genética
19.
Science ; 375(6585): 1177-1182, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35201898

RESUMEN

Angiotensin-converting enzyme (ACE) regulates blood pressure by cleaving angiotensin I to produce angiotensin II. In the brain, ACE is especially abundant in striatal tissue, but the function of ACE in striatal circuits remains poorly understood. We found that ACE degrades an unconventional enkephalin heptapeptide, Met-enkephalin-Arg-Phe, in the nucleus accumbens of mice. ACE inhibition enhanced µ-opioid receptor activation by Met-enkephalin-Arg-Phe, causing a cell type-specific long-term depression of glutamate release onto medium spiny projection neurons expressing the Drd1 dopamine receptor. Systemic ACE inhibition was not intrinsically rewarding, but it led to a decrease in conditioned place preference caused by fentanyl administration and an enhancement of reciprocal social interaction. Our results raise the enticing prospect that central ACE inhibition can boost endogenous opioid signaling for clinical benefit while mitigating the risk of addiction.


Asunto(s)
Encefalina Metionina/análogos & derivados , Plasticidad Neuronal , Núcleo Accumbens/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Captopril/farmacología , Encefalina Metionina/metabolismo , Femenino , Fentanilo/farmacología , Masculino , Ratones , Potenciales Postsinápticos Miniatura , Péptidos Opioides/metabolismo , Técnicas de Placa-Clamp
20.
J Neurosci Res ; 100(2): 551-563, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34821408

RESUMEN

Multiple sclerosis (MS) is a progressive disease of the central nervous system (CNS) that primarily affects women during the second or third decade of life. The mechanism is hypothesized to involve unregulated peripheral inflammation resulting in blood-brain barrier damage, and eventual axonal damage and demyelination. Based on this understanding, the animal model of MS, experimental autoimmune encephalomyelitis (EAE), often is utilized to study lymphocyte activation. Therapeutic paradigms of exogenous opioid growth factor (OGF) or low-dose naltrexone (LDN) treatment can modulate EAE, but little is reported regarding OGF or LDN effects on peripheral inflammation, microglia activation, and/or macrophage proliferation. Moreover, little is known about differential responses to LDN or OGF relative to the duration and timing of treatment. Utilizing a female mouse model of EAE, two treatment regimens were established to investigate differences between prophylactic treatment and traditional therapy initiated at the time of disease presentation. Prophylactic OGF or LDN treatment delayed the onset of behavior, suppressed neutrophil replication, and curtailed lymphocyte proliferation which ultimately improved behavioral outcome. Traditional therapy with OGF or LDN reversed behavioral deficits, restored OGF and IL-17 serum levels, and inhibited microglial activation within 8 days. Reduced serum OGF levels in untreated EAE mice correlated with increased microglia activation within lumbar spinal cords. Both treatment regimens of OGF or LDN reduced activated microglia, whereas only prophylactic treatment prevented CNS macrophage aggregation. These data demonstrate that the timing of LDN or OGF treatment initiation alters outcomes and can prevent or reverse behavioral deficits, cytokine activation, and spinal cord pathology.


Asunto(s)
Analgésicos Opioides , Encefalomielitis Autoinmune Experimental , Analgésicos Opioides/farmacología , Animales , Encefalomielitis Autoinmune Experimental/patología , Encefalina Metionina/farmacología , Femenino , Humanos , Inmunidad , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA