Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Neurochem ; 168(6): 1143-1156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38372436

RESUMEN

Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system (CNS) generating neuropathic pain and anxiety. Primary progressive MS (PPMS) is the most disabling clinical form, and the patients present an intense neurodegenerative process. In this context, the advanced oxidation protein products (AOPPs) are oxidized compounds and their accumulation in plasma has been related to clinical disability in MS patients. However, the involvement of AOPPs in neuropathic pain- and anxiety-like symptoms was not previously evaluated. To assess this, female mice C57BL/6J were used to induce progressive experimental autoimmune encephalomyelitis (PMS-EAE). Clinical score, weight, strength of plantar pressure, rotarod test, mechanical allodynia, and cold hypersensitivity were evaluated before induction (baseline) and on days 7th, 10th, and 14th post-immunization. We assessed nest building, open field, and elevated plus-maze tests 13 days post-immunization. Animals were killed at 14 days post-immunization; then, AOPPs levels, NADPH oxidase, and myeloperoxidase (MPO) activity were measured in the prefrontal cortex, hippocampus, and spinal cord samples. The clinical score increased 14th post-immunization without changes in weight and mobility. Reduced paw strength, mechanical allodynia, and cold allodynia increased in the PMS-EAE animals. PMS-EAE mice showed spontaneous nociception and anxiety-like behavior. AOPPs concentration, NADPH oxidase, and MPO activity increase in CNS structures. Multivariate analyses indicated that the rise of AOPPs levels, NADPH oxidase, and MPO activity influenced the clinical score and cold allodynia. Thus, we indicated the association between non-stimuli painful perception, anxiety-like, and CNS oxidative damage in the PMS-EAE model.


Asunto(s)
Productos Avanzados de Oxidación de Proteínas , Encefalomielitis Autoinmune Experimental , Ratones Endogámicos C57BL , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Ratones , Productos Avanzados de Oxidación de Proteínas/metabolismo , Nocicepción/fisiología , Hiperalgesia/metabolismo , Médula Espinal/metabolismo , Ansiedad/etiología , Ansiedad/psicología
2.
Cell Rep ; 37(10): 110094, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879272

RESUMEN

Cognitive impairment (CI) is a disabling concomitant of multiple sclerosis (MS) with a complex and controversial pathogenesis. The cytokine interleukin-17A (IL-17A) is involved in the immune pathogenesis of MS, but its possible effects on synaptic function and cognition are still largely unexplored. In this study, we show that the IL-17A receptor (IL-17RA) is highly expressed by hippocampal neurons in the CA1 area and that exposure to IL-17A dose-dependently disrupts hippocampal long-term potentiation (LTP) through the activation of its receptor and p38 mitogen-activated protein kinase (MAPK). During experimental autoimmune encephalomyelitis (EAE), IL-17A overexpression is paralleled by hippocampal LTP dysfunction. An in vivo behavioral analysis shows that visuo-spatial learning abilities are preserved when EAE is induced in mice lacking IL-17A. Overall, this study suggests a key role for the IL-17 axis in the neuro-immune cross-talk occurring in the hippocampal CA1 area and its potential involvement in synaptic dysfunction and MS-related CI.


Asunto(s)
Conducta Animal , Región CA1 Hipocampal/metabolismo , Cognición , Encefalomielitis Autoinmune Experimental/metabolismo , Interleucina-17/metabolismo , Plasticidad Neuronal , Receptores de Interleucina-17/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Encefalomielitis Autoinmune Experimental/psicología , Interleucina-17/genética , Potenciación a Largo Plazo , Masculino , Ratones Biozzi , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-17/genética , Transducción de Señal , Aprendizaje Espacial , Sinapsis/patología , Proteínas Quinasas p38 Activadas por Mitógenos
3.
Mol Neurobiol ; 58(11): 5971-5985, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34432265

RESUMEN

The dopaminergic system plays an essential role in maintaining homeostasis between the central nervous system (CNS) and the immune system. Previous studies have associated imbalances in the dopaminergic system to the pathogenesis of multiple sclerosis (MS). Here, we examined the protein levels of dopaminergic receptors (D1R and D2R) in different phases of the experimental autoimmune encephalomyelitis (EAE) model. We also investigated if the treatment with pramipexole (PPX)-a dopamine D2/D3 receptor-preferring agonist-would be able to prevent EAE-induced motor and mood dysfunction, as well as its underlying mechanisms of action. We report that D2R immunocontent is upregulated in the spinal cord of EAE mice 14 days post-induction. Moreover, D1R and D2R immunocontents in lymph nodes and the oxidative damage in the spinal cord and striatum of EAE animals were significantly increased during the chronic phase. Also, during the pre-symptomatic phase, axonal damage in the spinal cord of EAE mice could already be found. Surprisingly, therapeutic treatment with PPX failed to inhibit the progression of EAE. Of note, PPX treatment inhibited EAE-induced depressive-like while failed to inhibit anhedonic-like behaviors. We observed that PPX treatment downregulated IL-1ß levels and increased BNDF content in the spinal cord after EAE induction. Herein, we show that a D2/D3 receptor-preferred agonist mitigated EAE-induced depressive-like behavior, which could serve as a new possibility for further clinical trials on treating depressive symptoms in MS patients. Thus, we infer that D2R participates in the crosstalk between CNS and immune system during autoimmune and neuroinflammatory response induced by EAE, mainly in the acute and chronic phase of the disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Anhedonia/efectos de los fármacos , Anhedonia/fisiología , Animales , Axones/patología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Cuerpo Estriado/metabolismo , Depresión/etiología , Depresión/prevención & control , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Estrés Oxidativo , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/genética , Pramipexol/farmacología , Pramipexol/uso terapéutico , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , Método Simple Ciego , Médula Espinal/metabolismo , Médula Espinal/patología
4.
Brain Res Bull ; 175: 1-15, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34280479

RESUMEN

Progressive multiple sclerosis (PMS) is a neurological disease associated with the development of depression and anxiety, but treatments available are unsatisfactory. The transient receptor potential ankyrin 1 (TRPA1) is a cationic channel activated by reactive compounds, and the blockage of this receptor can reduce depression- and anxiety-like behaviors in naive mice. Thus, we investigated the role of TRPA1 in depression- and anxiety-like behaviors in a PMS model in mice. PMS model was induced in C57BL/6 female mice by the experimental autoimmune encephalomyelitis (EAE). Nine days after the PMS-EAE induction, behavioral tests (tail suspension and elevated plus maze tests) were performed to verify the effects of sertraline (positive control), selective TRPA1 antagonist (A-967,079), and antioxidants (α-lipoic acid and apocynin). The prefrontal cortex and hippocampus were collected to evaluate biochemical and inflammatory markers. PMS-EAE induction did not cause locomotor changes but triggered depression- and anxiety-like behaviors, which were reversed by sertraline, A-967,079, α-lipoic acid, or apocynin treatments. The neuroinflammatory markers (AIF1, GFAP, IL-1ß, IL-17, and TNF-α) were increased in mice's hippocampus. Moreover, this model did not alter TRPA1 RNA expression levels in the hippocampus but decrease TRPA1 levels in the prefrontal cortex. Moreover, PMS-EAE induced an increase in NADPH oxidase and superoxide dismutase activities and TRPA1 endogenous agonist levels (hydrogen peroxide and 4-hydroxynonenal). TRPA1 plays a fundamental role in depression- and anxiety-like behaviors in a PMS-EAE model; thus, it could be a possible pharmacological target for treating these symptoms in PMS.


Asunto(s)
Ansiedad/genética , Ansiedad/psicología , Conducta Animal , Depresión/genética , Depresión/psicología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/psicología , Esclerosis Múltiple Crónica Progresiva/genética , Esclerosis Múltiple Crónica Progresiva/psicología , Canal Catiónico TRPA1/genética , Animales , Antioxidantes/farmacología , Femenino , Suspensión Trasera , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Oximas/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sertralina/farmacología , Canal Catiónico TRPA1/antagonistas & inhibidores
5.
Exp Neurol ; 335: 113497, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33058888

RESUMEN

Mounting evidence points to immune-mediated synaptopathy and impaired plasticity as early pathogenic events underlying cognitive decline (CD) in Multiple sclerosis (MS) and in the experimental autoimmune encephalomyelitis (EAE) mouse model of the disease. However, knowledge of the neurobiology of synaptic dysfunction is still incomplete. Splicing regulation represents a flexible and powerful mechanism involved in dynamic remodeling of the synapse, which allows the expression of synaptic protein variants that dynamically control the specificity of contacts between neurons. The pre-synaptic adhesion molecules neurexins (NRXNs) 1-3 play a relevant role in cognition and are alternatively spliced to yield variants that differentially cluster specific ligands in the postsynaptic compartment and modulate functional properties of the synaptic contact. Notably, mutations in these genes or disruption of their splicing program are associated with neuropsychiatric disorders. Herein, we have investigated how inflammatory changes imposed by EAE impact on alternative splicing of the Nrxn 1-3 mouse genes in the acute phase of disease. Due to its relevance in cognition, we focused on the prefrontal cortex (PFC) of SJL/J mice, in which EAE-induced inflammatory lesions extend to the rostral forebrain. We found that inclusion of the Nrxn 1-3 AS4 exon is significantly increased in the PFC of EAE mice and that splicing changes are correlated with local Il1ß-expression levels. This correlation is sustained by the concomitant downregulation of SLM2, the main splicing factor involved in skipping of the AS4 exon, in EAE mice displaying high levels of Il1ß- expression. We also observed that Il1ß-expression levels correlate with changes in parvalbumin (PV)-positive interneuron connectivity. Moreover, exposure to environmental enrichment (EE), a condition known to stimulate neuronal connectivity and to improve cognitive functions in mice and humans, modified PFC phenotypes of EAE mice with respect to Il1ß-, Slm2-expression, Nrxn AS4 splicing and PV-expression, by limiting changes associated with high levels of inflammation. Our results reveal that local inflammation results in early splicing modulation of key synaptic proteins and in remodeling of GABAergic circuitry in the PFC of SJL/J mice. We also suggest EE as a tool to counteract these inflammation-associated events, thus highlighting potential therapeutic targets for limiting the progressive CD occurring in MS.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Unión al Calcio/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/psicología , Encefalitis/genética , Encefalitis/psicología , Esclerosis Múltiple/genética , Esclerosis Múltiple/psicología , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Corteza Prefrontal/patología , Animales , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/psicología , Exones/genética , Femenino , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Interneuronas , Ratones , Vías Nerviosas , Reconocimiento en Psicología , Ácido gamma-Aminobutírico
6.
Neurochem Int ; 141: 104892, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33127393

RESUMEN

Although substantial evidence supports smoking as a risk factor for the development of multiple sclerosis (MS) in adulthood, it remains controversial whether early-life exposure to environmental tobacco smoke (ETS) increases the risk of MS later in life. Here, using experimental autoimmune encephalomyelitis (EAE) as an animal model for MS, we show that exposing neonatal rats during the first week (ETS1-EAE), but not the second week (ETS2-EAE) and the third week (ETS3-EAE) after birth, increased the severity of EAE in adulthood in comparison to pups exposed to filtered compressed air (AIR-EAE). The ETS1-EAE rats showed a worse neurological deficit score and a significant increase in CD4+ cell infiltration, demyelination, and axonal injury in the spinal cord compared to AIR-EAE, ETS2-EAE, and ETS3-EAE groups. Flow cytometry analysis showed that the ETS1 group had decreased numbers of regulatory T (Treg) cells and increased effector T (Teff) cells in the brain and spinal cord. The expressions of Treg upstream regulator Foxp3 and downstream cytokines such as IL-10 were also altered accordingly. Together, these findings demonstrate that neonatal ETS exposure suppresses Treg functions and aggravates the severity of EAE, confirming early-life exposure to ETS as a potential risk factor for multiple sclerosis in adulthood.


Asunto(s)
Encefalomielitis Autoinmune Experimental/fisiopatología , Contaminación por Humo de Tabaco/efectos adversos , Animales , Animales Recién Nacidos , Axones/patología , Linfocitos T CD4-Positivos/efectos de los fármacos , Citocinas/biosíntesis , Enfermedades Desmielinizantes/patología , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/genética , Recuento de Linfocitos , Masculino , Embarazo , Desempeño Psicomotor , Ratas , Ratas Sprague-Dawley , Factores de Riesgo , Médula Espinal/patología
7.
Artículo en Inglés | MEDLINE | ID: mdl-30849414

RESUMEN

Multiple Sclerosis (MS) is a chronic autoimmune disease characterized by neuroinflammation, demyelination and neuroaxonal degeneration affecting >2 million people around the world. MS is often accompanied by psychiatric comorbidities such as major depressive disorder (MDD), which presents a lifetime prevalence of around 50% in MS patients. Experimental Autoimmune Encephalomyelitis (EAE) is an animal model extensively used to study MS. EAE mimics the autoimmune nature of MS, as well as its inflammatory and demyelinating mechanisms also presenting predictive validity. There are important similarities between EAE and MS-associated depression (MSD). The mechanisms shared by these disorders include peripheral inflammation, neuroinflammation, mitochondrial dysfunctions, oxidative stress, nitrosative stress, lowered antioxidant defenses, increased bacterial translocation into the systemic circulation, and microglial pathology. Although the role of the immune-inflammatory system in MDD has been established in the 1990's, only few studies addressed immune pathways as a major determinant of depressive-like behavior in EAE. Therefore, in the present study we aimed at revising the current literature on EAE as an animal model to investigate the comorbidity between MS and MDD. In this regard, we revised the current literature on behavioral alterations in EAE, the possible mechanisms involved in this comorbidity and the potential and limitations of using this animal model to study depressive-like behavior.


Asunto(s)
Depresión/etiología , Encefalomielitis Autoinmune Experimental/complicaciones , Animales , Encefalomielitis Autoinmune Experimental/psicología , Ratones , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/psicología
8.
J Immunol Res ; 2018: 9034695, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30648122

RESUMEN

OBJECTIVE: To reduce immune-mediated damage in a rat model of neuromyelitis optica (NMO) by blocking neutrophil migration using SCH527123, a drug that inhibits CXCR2. BACKGROUND: Neuromyelitis optica is a relapsing autoimmune disease that preferentially targets the optic nerves and spinal cord leading to blindness and paralysis. Part of the immunopathogenesis of this disease is thought to involve neutrophils, which are present within NMO lesions. We tested the effect of blocking neutrophil migration in an NMO rat model. METHODS: The Lewis rat model of NMO uses a myelin-reactive experimental autoimmune encephalomyelitis (EAE) background with passive transfer of pooled human antibody from patients with aquaporin-4 (AQP4) seropositive NMO at onset of EAE symptoms. We treated rats early in the course of EAE with CXCR2 inhibitor and assessed the extent of neutrophil infiltration into the spinal cord and the extent of AQP4 depletion. RESULTS: CXCR2 inhibitor decreased neutrophil migration into the spinal cord of AQP4 IgG-treated EAE rats. However, there was no difference in the acute behavioral signs of EAE or the extent and distribution of AQP4 lesions. This suggests that neutrophils are not centrally involved in the immunopathogenesis of the Lewis rat NMO disease model. CONCLUSIONS: CXCR2 inhibitor blocks neutrophil migration into the spinal cord during EAE but does not significantly reduce inflammation or AQP4 lesions in the Lewis rat model of NMO.


Asunto(s)
Benzamidas/uso terapéutico , Ciclobutanos/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Neuromielitis Óptica/tratamiento farmacológico , Neutrófilos/inmunología , Animales , Anticuerpos/metabolismo , Acuaporina 4/inmunología , Conducta Animal/efectos de los fármacos , Benzamidas/farmacología , Movimiento Celular/efectos de los fármacos , Ciclobutanos/farmacología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Humanos , Proteína Básica de Mielina/inmunología , Neuromielitis Óptica/psicología , Neutrófilos/efectos de los fármacos , Ratas , Ratas Endogámicas Lew , Receptores de Interleucina-8B/antagonistas & inhibidores , Porcinos
9.
Neurol Res ; 39(12): 1056-1065, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28934025

RESUMEN

Objectives There is a significant prevalence of affective disorders including depression and anxiety in people with multiple sclerosis (MS), resulting in reduced quality of life. Since the current treatments are not generally effective, further studies are needed to find appropriate drugs to alleviate anxiety and depression symptoms in these patients. Methods The effects of a new analog of cyclomyrsinol diterpenes (TAMEC) isolated from Euphorbia sogdiana on the anxiety (open field and elevated plus maze test) and depressive-like behaviors (sucrose preference test and forced swim test) in EAE-induced C57BL/6 mice (EAE; a mouse model of MS) were investigated. Hippocampal tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß and IL-10 levels were also measured by ELISA. Results The results indicated that TAMEC treatment reduced anxiety and depression-like behavior. This drug also decreased the levels of TNF-α and IL1ß and increased IL-10 level in the hippocampus. Discussion Taken together, our findings demonstrate that the drug we used here can reduce anxiety and depression-like symptoms in EAE-induced mice. However, more studies are still needed to validate, expand, and generalize these data.


Asunto(s)
Ansiedad/tratamiento farmacológico , Depresión/tratamiento farmacológico , Diterpenos/farmacología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/psicología , Psicotrópicos/farmacología , Animales , Ansiedad/fisiopatología , Depresión/fisiopatología , Modelos Animales de Enfermedad , Diterpenos/química , Diterpenos/aislamiento & purificación , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Estructura Molecular , Psicotrópicos/química , Psicotrópicos/aislamiento & purificación , Factor de Necrosis Tumoral alfa/metabolismo
10.
Neurobiol Dis ; 108: 45-53, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28757328

RESUMEN

Interferon-γ (IFN-γ) has been implicated in the pathogenesis of multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). The type-1 cannabinoid receptors (CB1Rs) are heavily involved in MS pathophysiology, and a growing body of evidence suggests that mood disturbances reflect specific effects of proinflammatory cytokines on neuronal activity. Here, we investigated whether IFN-γ could exert a role in the anxiety- and depressive-like behavior observed in mice with EAE, and in the modulation of CB1Rs. Anxiety and depression in fact are often diagnosed in MS, and have already been shown to depend on cannabinoid system. We performed biochemical, behavioral and electrophysiological experiments to assess the role of IFN-γ on mood control and on synaptic transmission in mice. Intracerebroventricular delivery of IFN-γ caused a depressive- and anxiety-like behavior in mice, associated with the selective dysfunction of CB1Rs controlling GABA transmission in the striatum. EAE induction was associated with increased striatal expression of IFN-γ, and with CB1R transmission deficits, which were rescued by pharmacological blockade of IFN-γ. IFN-γ was unable to replicate the effects of EAE on excitatory and inhibitory transmission in the striatum, but mimicked the effects of EAE on CB1R function in this brain area. Overall these results indicate that IFN-γ exerts a relevant control on mood, through the modulation of CB1R function. A better understanding of the biological pathways underling the psychological disorders during neuroinflammatory conditions is crucial for developing effective therapeutic strategies.


Asunto(s)
Ansiedad/inducido químicamente , Cuerpo Estriado/efectos de los fármacos , Depresión/inducido químicamente , Interferón gamma/farmacología , Nootrópicos/farmacología , Receptor Cannabinoide CB1/metabolismo , Afecto/efectos de los fármacos , Afecto/fisiología , Animales , Ansiedad/metabolismo , Cuerpo Estriado/metabolismo , Depresión/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Factores Inmunológicos/farmacología , Infusiones Intraventriculares , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Péptidos , Distribución Aleatoria , Técnicas de Cultivo de Tejidos
11.
Neuroscience ; 346: 173-181, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28108255

RESUMEN

Multiple sclerosis (MS) is a progressive condition affecting the central nervous system (CNS), and is characterized by the development of demyelinated lesions and plaques in the brain and spinal cord. Exercise is beneficial against dementia in elderly patients, so we investigated the effects of exercise on memory in relation to hippocampal demyelination and neuroplasticity in a mouse model of MS (experimental autoimmune encephalomyelitis [EAE]). Mice were randomly divided into three groups: Sham, EAE, and EAE and exercise (EAE+EX). EAE+EX mice exercised five times a week for 4weeks, and all mice performed step-down avoidance tasks in order to verify memory ability. We analyzed changes in myelin basic protein (MBP), 2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNPase), 5-bromo-2'-deoxyuridine (brdU), doublecortin (DCX), bcl-2, bax, TUNEL, caspase-3, and brain derived neurotrophic factor (BDNF) via immunoassay or histological staining. We found decreased memory ability in EAE mice, accompanied by impaired myelination, increased apoptosis and cell proliferation, and decreased BDNF in the hippocampus. The memory decline and changes in demyelination, apoptosis, BDNF, and cell proliferation were partially reversed in EAE+EX mice. Our findings suggest that in patients with MS, regular exercise may benefit cognitive function by rescuing some hippocampal cellular and molecular impairments.


Asunto(s)
Encefalomielitis Autoinmune Experimental/fisiopatología , Encefalomielitis Autoinmune Experimental/psicología , Hipocampo/fisiopatología , Memoria , Plasticidad Neuronal , Condicionamiento Físico Animal , Animales , Reacción de Prevención , Diferenciación Celular , Proliferación Celular , Proteína Doblecortina , Encefalomielitis Autoinmune Experimental/prevención & control , Terapia por Ejercicio , Femenino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/prevención & control , Esclerosis Múltiple/psicología , Vaina de Mielina/metabolismo
12.
Brain Behav Immun ; 59: 49-54, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27189037

RESUMEN

Relapsing-remitting multiple sclerosis is commonly associated with motor impairments, neuropathic pain, fatigue, mood disorders, and decreased life expectancy. However, preclinical pharmacological studies predominantly rely on clinical scoring of motor deficit as the sole behavioral endpoint. Thus, the translational potential of these studies is limited. Here, we have assessed the therapeutic potential of a novel anti-inflammatory interleukin-10 (IL-10) non-viral gene therapy formulation (XT-101-R) in a rat relapsing remitting experimental autoimmune encephalomyelitis (EAE) model. EAE induced motor deficits and neuropathic pain as reflected by induction of low-threshold mechanical allodynia, suppressed voluntary wheel running, decreased social exploration, and was associated with markedly enhanced mortality. We also noted that voluntary wheel running was depressed prior to the onset of motor deficit, and may therefore serve as a predictor of clinical symptoms onset. XT-101-R was intrathecally dosed only once at the onset of motor deficits, and attenuated each of the EAE-induced symptoms and improved survival, relative to vehicle control. This is the first pharmacological assessment of such a broad range of EAE symptoms, and provides support for IL-10 gene therapy as a clinical strategy for the treatment of multiple sclerosis.


Asunto(s)
Ansiedad/psicología , Ansiedad/terapia , Conducta Animal/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/psicología , Encefalomielitis Autoinmune Experimental/terapia , Fatiga/psicología , Fatiga/terapia , Interleucina-10/genética , Neuralgia/psicología , Neuralgia/terapia , Animales , Conducta Exploratoria , Terapia Genética , Hiperalgesia/psicología , Hiperalgesia/terapia , Inyecciones Espinales , Relaciones Interpersonales , Esperanza de Vida , Masculino , Actividad Motora , Ratas
13.
J Neurosci ; 36(18): 5128-43, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27147664

RESUMEN

UNLABELLED: Tumor necrosis factor (TNF) is associated with the pathophysiology of various neurological disorders, including multiple sclerosis. It exists as a transmembrane form tmTNF, signaling via TNF receptor 2 (TNFR2) and TNFR1, and a soluble form, solTNF, signaling via TNFR1. Multiple sclerosis is associated with the detrimental effects of solTNF acting through TNFR1, while tmTNF promotes repair and remyelination. Here we demonstrate that oligodendroglial TNFR2 is a key mediator of tmTNF-dependent protection in experimental autoimmune encephalomyelitis (EAE). CNP-cre:TNFR2(fl/fl) mice with TNFR2 ablation in oligodendrocytes show exacerbation of the disease with increased axon and myelin pathology, reduced remyelination, and increased loss of oligodendrocyte precursor cells and mature oligodendrocytes. The clinical course of EAE is not improved by the solTNF inhibitor XPro1595 in CNP-cre:TNFR2(fl/fl) mice, indicating that for tmTNF to promote recovery TNFR2 in oligodendrocytes is required. We show that TNFR2 drives differentiation of oligodendrocyte precursor cells, but not proliferation or survival. TNFR2 ablation leads to dysregulated expression of microRNAs, among which are regulators of oligodendrocyte differentiation and inflammation, including miR-7a. Our data provide the first direct in vivo evidence that TNFR2 in oligodendrocytes is important for oligodendrocyte differentiation, thereby sustaining tmTNF-dependent repair in neuroimmune disease. Our studies identify TNFR2 in the CNS as a molecular target for the development of remyelinating agents, addressing the most pressing need in multiple sclerosis therapy nowadays. SIGNIFICANCE STATEMENT: Our study, using novel TNF receptor 2 (TNFR2) conditional KO mice with selective TNFR2 ablation in oligodendrocytes, provides the first direct evidence that TNFR2 is an important signal for oligodendrocyte differentiation. Following activation by transmembrane TNF, TNFR2 initiates pathways that drive oligodendrocytes into a reparative mode contributing to remyelination following disease. This identifies TNFR2 as a new molecular target for the development of therapeutic agents in multiple sclerosis.


Asunto(s)
Diferenciación Celular/genética , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Vaina de Mielina , Neuroglía/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Animales , Axones/patología , Conducta Animal , Supervivencia Celular/genética , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Regulación de la Expresión Génica/genética , Masculino , Ratones , Ratones Noqueados , Regeneración Nerviosa/genética , Células-Madre Neurales , Factor de Necrosis Tumoral alfa/metabolismo
14.
Iran J Allergy Asthma Immunol ; 15(1): 20-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26996108

RESUMEN

Orexin A and B are hypothalamic peptides with a wide variety of effects such as anti-inflammation and neuroprotection. Impaired function of orexin system has been reported in some neurodegenerative diseases like Parkinson, Huntington and Alzheimer. In this study, the mRNA expression levels of some hypothalamic peptides were investigated in C57BL/6 female mice with experimental autoimmune encephalomyelitis (EAE). Animals were randomly divided into two control and EAE groups. EAE was induced by administration of myelin oligodendrocyte glycoprotein (MOG) with complete Ferund's adjuvant and pertussis toxin. Twenty-first days following immunization, mice were decapitated to remove the brains. Then, the expression profiles of prepro-orexin, orexin 1 receptors (OX1R) and orexin 2 receptors (OX2R) in hypothalamic region were assessed using real-time PCR method. In this study, we found a considerable increase in the mRNA expression of OX1R and OX2R following EAE induction in C57BL/6 mice. Elevation levels of OX1R and OX2R following EAE induction suggest that alteration in orexinergic system may involve in pathogenesis of multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental/genética , Receptores de Orexina/genética , ARN Mensajero/genética , Animales , Conducta Animal , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Adyuvante de Freund , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito , Receptores de Orexina/metabolismo , Toxina del Pertussis , ARN Mensajero/metabolismo , Regulación hacia Arriba
15.
Behav Brain Res ; 300: 160-74, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26692368

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a widely-used rodent model for multiple sclerosis (MS), but a single model can hardly capture all features of MS. We investigated whether behavioral parameters in addition to clinical motor function scores could be used to assess treatment efficacy during score-free intervals in the relapsing-remitting EAE model in SJL/J mice. We studied the effects of the clinical reference compounds FTY720 (fingolimod, 0.5mg/kg/day) and dimethyl fumarate (DMF, 20-30 mg/kg/day) on clinical scores in several rodent EAE models in order to generate efficacy profiles. SJL/J mice with relapsing-remitting EAE were studied using behavioral tests, including rotarod, gait analysis, locomotor activity and grip strength. SJL/J mice were also examined according to Crawley's sociability and preference for social novelty test. Prophylactic treatment with FTY720 prevented clinical scores in three of the four EAE rodent models: Dark Agouti (DA) and Lewis rats and C57BL/6J mice. Neither prophylactic nor late-therapeutic treatment with FTY720 reduced clinical scores or reversed deficits in the rotarod test in SJL/J mice, but we observed effects on motor functions and sociability in the absence of clinical scores. Prophylactic treatment with FTY720 improved the gait of SJL/J mice whereas late-therapeutic treatment improved manifestations of reduced social (re)cognition or preference for social novelty. DMF was tested in three EAE models and did not improve clinical scores at the dose used. These data indicate that improvements in behavioral deficits can occur in absence of clinical scores, which indicate subtle drug effects and may have translational value for human MS.


Asunto(s)
Dimetilfumarato/farmacología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Clorhidrato de Fingolimod/farmacología , Inmunosupresores/farmacología , Actividad Motora/efectos de los fármacos , Conducta Social , Animales , Encefalomielitis Autoinmune Experimental/fisiopatología , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Marcha/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratas Endogámicas Lew , Reconocimiento en Psicología/efectos de los fármacos , Índice de Severidad de la Enfermedad , Tiempo
16.
Neuroscience ; 309: 100-12, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25795599

RESUMEN

Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease that is characterized by demyelination and axonal damage in the nervous system. One obvious consequence is a cumulative loss of muscle control. However, cognitive dysfunction affects roughly half of MS sufferers, sometimes already early in the disease course. Although long-term (remote) memory is typically unaffected, the ability to form new declarative memories becomes compromised. A major structure for the encoding of new declarative memories is the hippocampus. Encoding is believed to be mediated by synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength. Here, in an animal model of MS we explored whether disease symptoms are accompanied by a loss of functional neuronal integrity, synaptic plasticity, or hippocampus-dependent learning ability. In mice that developed MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), passive properties of CA1 pyramidal neurons were unaffected, although the ability to fire action potentials became reduced in the late phase of EAE. LTP remained normal in the early phase of MOG35-55-induced EAE. However, in the late phase, LTP was impaired and LTP-related spatial memory was impaired. In contrast, LTD and hippocampus-dependent object recognition memory were unaffected. These data suggest that in an animal model of MS hippocampal function becomes compromised as the disease progresses.


Asunto(s)
Potenciales de Acción/fisiología , Región CA1 Hipocampal/fisiopatología , Encefalomielitis Autoinmune Experimental/fisiopatología , Encefalomielitis Autoinmune Experimental/psicología , Potenciación a Largo Plazo/fisiología , Memoria Espacial/fisiología , Animales , Progresión de la Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Depresión Sináptica a Largo Plazo/fisiología , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito , Técnicas de Placa-Clamp , Fragmentos de Péptidos , Células Piramidales/fisiología , Reconocimiento en Psicología/fisiología , Técnicas de Cultivo de Tejidos
17.
Neurobiol Dis ; 74: 347-58, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25511803

RESUMEN

Mood disturbances are frequent in patients with multiple sclerosis (MS), even in non-disabled patients and in the remitting stages of the disease. It is still largely unknown how the pathophysiological process on MS causes anxiety and depression, but the dopaminergic system is likely involved. Aim of the present study was to investigate depressive-like behavior in mice with experimental autoimmune encephalomyelitis (EAE), a model of MS, and its possible link to dopaminergic neurotransmission. Behavioral, amperometric and biochemical experiments were performed to determine the role of inflammation in mood control in EAE. First, we assessed the independence of mood alterations from motor disability during the acute phase of the disease, by showing a depressive-like behavior in EAE mice with mild clinical score and preserved motor skills (mild-EAE). Second, we linked such behavioral changes to the selective increased striatal expression of interleukin-1beta (IL-1ß) in a context of mild inflammation and to dopaminergic system alterations. Indeed, in the striatum of EAE mice, we observed an impairment of dopamine (DA) neurotransmission, since DA release was reduced and signaling through DA D1- and D2-like receptors was unbalanced. In conclusion, the present study provides first evidence of the link between the depressive-like behavior and the alteration of dopaminergic system in EAE mice, raising the possibility that IL-1ß driven dysfunction of dopaminergic signaling might play a role in mood disturbances also in MS patients.


Asunto(s)
Cuerpo Estriado/inmunología , Depresión/metabolismo , Dopamina/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/psicología , Interleucina-1beta/metabolismo , Enfermedad Aguda , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/inmunología , Amígdala del Cerebelo/patología , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Depresión/tratamiento farmacológico , Depresión/patología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Hipocampo/patología , Interleucina-1beta/antagonistas & inhibidores , Ratones Endogámicos C57BL , Destreza Motora , ARN Mensajero/metabolismo , Distribución Aleatoria , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Índice de Severidad de la Enfermedad , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
18.
Autoimmunity ; 47(5): 334-40, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24625014

RESUMEN

Thermoregulation in patients, who suffer from multiple sclerosis (MS) is impaired and may result in either increases or decreases in body temperature. Disturbances in body temperature correlate with acute relapses, and for this reason, it is an important issue in everyday life of those who suffer from MS. Although rat experimental autoimmune encephalitis (EAE) appeared useful for the examination of current therapies against MS, it has not been thoroughly investigated in terms of body temperature. The purpose of this study was to examine the effect of EAE induction on thermal and motor behavior in the rats. Subcutaneous injection of encephalitogenic emulsion into both pads of hind feet of the Lewis rats provoked symptoms of EAE. Body temperature (T(b)) and motor activity of rats were measured using biotelemetry system. We report a significant increase in body temperature within 24 h prior to the EAE manifestation (12 h average of T(b) for EAE induced animals was higher by 1.07 ± 0.06 °C during day-time and by 0.5 ± 0.05 °C during night time in comparison to the control rats). On the other hand, the onset of EAE symptoms was associated with gradual decrease of body temperature, and during the first night-time T(b) was lower by 1.03 ± 0.08 °C in comparison to the control rats. The inhibition of the motor activity started from the night time, 2 days before EAE onset. On the basis of our data, we concluded that the pattern of body temperature changes after EAE induction may be considered as useful symptom (prodrom) to predict precisely the time of EAE onset. Furthermore, we suggest that EAE in rats may be a suitable model to study mechanism of body temperature alternations observed in MS patients.


Asunto(s)
Regulación de la Temperatura Corporal , Temperatura Corporal , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/psicología , Actividad Motora , Animales , Autoinmunidad , Regulación de la Temperatura Corporal/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/fisiopatología , Humanos , Actividad Motora/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/fisiopatología , Ratas , Ratas Endogámicas Lew
19.
Brain Behav Immun ; 33: 164-72, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23886782

RESUMEN

Multiple sclerosis (MS) is often associated with co-morbid behavioural and cognitive impairments; however the presence of these symptoms does not necessarily correlate with neurological damage. This suggests that an alternate mechanism may subserve these impairments relative to motor deficits. We investigated whether these abnormalities could be studied in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In myelin oligodendrocyte glycoprotein peptide (MOG35-55)-induced EAE mice, no motor deficits were observed until d9 after immunization. This enabled us to carry out a series of neurobehavioral tests during the presymptomatic stage, between d6 and d8 post-immunization. EAE mice spent more time in the outer zone in an open field test and in the closed arms of an elevated plus maze and, showed decreased latency for immobility in the tail suspension and forced swim tests and reduced social interaction compared with controls. These results are indicative of anxiety- and depression- like behavior. In addition, EAE mice appeared to exhibit memory impairment compared to controls based on their reduced time spent in the target quadrant in the Morris water maze and their faster memory extinction in the fear conditioning test. No demyelination, microglial activation or astrogliosis was observed in the brain at this early stage. Transcript analysis by RT-PCR from d6 to d8 brain revealed elevated interleukin (IL)-1ß and TNF-α in the hypothalamus but not in the amygdala or hippocampus of EAE mice. Lastly, plasma corticosterone levels increased in EAE mice compared to controls. In conclusion, emotional and cognitive deficits are observed in EAE prior to demyelination and are associated with elevated IL-1ß and TNF-α in the hypothalamus and changes in the hypothalamic-pituitary-adrenal axis.


Asunto(s)
Conducta Animal/fisiología , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/fisiopatología , Corticosterona/sangre , Citocinas/fisiología , Emociones/fisiología , Encefalomielitis Autoinmune Experimental/diagnóstico , Encefalomielitis Autoinmune Experimental/fisiopatología , Glicoproteína Mielina-Oligodendrócito/administración & dosificación , Animales , Trastornos del Conocimiento/psicología , Diagnóstico Precoz , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Relaciones Interpersonales , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/inmunología , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Psicológico/inmunología , Natación
20.
Pharmacol Biochem Behav ; 103(4): 860-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23201649

RESUMEN

Multiple sclerosis (MS) is an inflammatory demyelinating disease characterized by sensory, motor, and cognitive impairments. Apolipoprotein E (apoE) plays an important role in cholesterol and lipid metabolism in the brain and in susceptibility to cognitive impairment and pathology following brain injury. Studies in mice with a mild form of experimental autoimmune encephalomyelitis (EAE), an MS animal model, support only protective roles for apoE in MS. We examined behavioral and cognitive changes prior to onset of clinical disease and the onset and progression of a more severe form of EAE in female Apoe(-/-) and C57Bl/6 wild-type mice. Apoe(-/-) mice had a later day of onset, a later day of peak symptoms and disease severity, and a lower cumulative disease index compared to wild type mice. Apoe(-/-) mice also showed decreased CD4+ cell invasion following EAE induction compared to wild type mice, and less spinal cord demyelination at 17 but not 30 days following EAE induction. In contrast, EAE-challenged Apoe(-/-) mice showed reduced exploratory activity, rotorod performance, and impaired contextual fear conditioning compared to wild type animals. These data indicate paradoxical effects of apoE on EAE-induced behavioral and cognitive changes and the onset and progression of clinical disease.


Asunto(s)
Apolipoproteínas E/deficiencia , Apolipoproteínas E/fisiología , Cognición/fisiología , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/fisiopatología , Animales , Encefalomielitis Autoinmune Experimental/psicología , Conducta Exploratoria/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...