Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 942
Filtrar
1.
Biomolecules ; 14(9)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39334954

RESUMEN

This study identified a salt-tolerant GH11 xylanase, Xynst, which was isolated from a soil bacterium Bacillus sp. SC1 and can resist as high as 4 M NaCl. After rational design and high-throughput screening of site-directed mutant libraries, a double mutant W6F/Q7H with a 244% increase in catalytic activity and a 10 °C increment in optimal temperature was obtained. Both Xynst and W6F/Q7H xylanases were stimulated by high concentrations of salts. In particular, the activity of W6F/Q7H was more than eight times that of Xynst in the presence of 2 M NaCl at 65 °C. Kinetic parameters indicated they have the highest affinity for beechwood xylan (Km = 0.30 mg mL-1 for Xynst and 0.18 mg mL-1 for W6F/Q7H), and W6F/Q7H has very high catalytic efficiency (Kcat/Km = 15483.33 mL mg-1 s-1). Molecular dynamic simulation suggested that W6F/Q7H has a more compact overall structure, improved rigidity of the active pocket edge, and a flexible upper-end alpha helix. Hydrolysis of different xylans by W6F/Q7H released more xylooligosaccharides and yielded higher proportions of xylobiose and xylotriose than Xynst did. The conversion efficiencies of Xynst and W6F/Q7H on all tested xylans exceeded 20%, suggesting potential applications in the agricultural and food industries.


Asunto(s)
Bacillus , Endo-1,4-beta Xilanasas , Glucuronatos , Oligosacáridos , Ingeniería de Proteínas , Oligosacáridos/metabolismo , Oligosacáridos/química , Glucuronatos/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Bacillus/enzimología , Bacillus/genética , Ingeniería de Proteínas/métodos , Simulación de Dinámica Molecular , Cloruro de Sodio/farmacología , Cinética , Xilanos/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Hidrólisis , Disacáridos
2.
Int J Biol Macromol ; 278(Pt 4): 134983, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39209591

RESUMEN

Enzymatic treatment on lignocellulosic biomass has become a trend in preparing nanocellulose (NC), but the process must be optimized to guarantee high production yield and crystallinity. This study offers insights into an innovative protocol using cultivated fungal cellulase and xylanase to improve NC production from raw oil palm leaves (OPL) using five-factor-four-level Taguchi orthogonal design for optimizing parameters, namely substrate and enzyme loading, surfactant concentration, incubation temperature and time. Statistical results revealed the best condition for producing NC (66.06 % crystallinity, 43.59 % yield) required 10 % (w/v) substrate, 1 % (v/v) enzyme, 1.4 % (w/v) Tween-80, with 72-h incubation at 30 °C. Likewise, the highest sugar yield (47.07 %) was obtained using 2.5 % (w/v) substrate, 2.0 % (v/v) enzyme, 2.0 % (w/v) Tween-80, with 72-h incubation at 60 °C. The auxiliary enzymes used in this study, i.e., xylanase, produced higher crystallinity NC, showing widths between 8 and 12 nm and lengths >1 µm and sugars at 47.07 % yield. Thus, our findings proved that optimizing the single-step enzymatic hydrolysis of raw OPL could satisfactorily produce relatively crystalline NC and sugar yield for further transformation into bio-nanocomposites and biofuels. This study presented a simple, innovative protocol for NC synthesis showing characteristics comparable to the traditionally-prepared NC, which is vital for material's commercialization.


Asunto(s)
Celulasa , Celulosa , Hojas de la Planta , Celulosa/química , Celulosa/biosíntesis , Hojas de la Planta/química , Celulasa/química , Celulasa/metabolismo , Azúcares/química , Arecaceae/química , Aceite de Palma/química , Biomasa , Temperatura , Hidrólisis , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química
3.
Carbohydr Polym ; 343: 122434, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174079

RESUMEN

Xylan is a fundamental structural polysaccharide in plant secondary cell walls and a valuable resource for biorefinery applications. Deciphering the molecular motifs of xylans that mediate their interaction with cellulose and lignin is fundamental to understand the structural integrity of plant cell walls and to design lignocellulosic materials. In the present study, we investigated the pattern of acetylation and glucuronidation substitution in hardwood glucuronoxylan (GX) extracted from aspen wood using subcritical water and alkaline conditions. Enzymatic digestions of GX with ß-xylanases from glycosyl hydrolase (GH) families GH10, GH11 and GH30 generated xylo-oligosaccharides with controlled structures amenable for mass spectrometric glycan sequencing. We identified the occurrence of intramolecular motifs in aspen GX with block repeats of even glucuronidation (every 2 xylose units) and consecutive glucuronidation, which are unique features for hardwood xylans. The acetylation pattern of aspen GX shows major domains with evenly-spaced decorations, together with minor stretches of highly acetylated domains. These heterogenous patterns of GX can be correlated with its extractability and with its potential interaction with lignin and cellulose. Our study provides new insights into the molecular structure of xylan in hardwood species, which has fundamental implications for overcoming lignocellulose recalcitrance during biochemical conversion.


Asunto(s)
Populus , Madera , Xilanos , Xilanos/química , Xilanos/metabolismo , Madera/química , Populus/química , Acetilación , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/genética , Lignina/química , Celulosa/química , Celulosa/metabolismo
4.
Int J Biol Macromol ; 278(Pt 1): 134602, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127282

RESUMEN

This study evaluates the feasibility of using enzymatic technology to produce novel nanostructures of cellulose nanomaterials, specifically cellulose nanospheres (CNS), through enzymatic hydrolysis with endoglucanase and xylanase of pre-treated cellulose fibers. A statistical experimental design facilitated a comprehensive understanding of the process parameters, which enabled high yields of up to 82.7 %, while maintaining a uniform diameter of 54 nm and slightly improved crystallinity and thermal stability. Atomic force microscopy analyses revealed a distinct CNS formation mechanism, where initial fragmentation of rod-like nanoparticles and subsequent self-assembly of shorter rod-shaped nanoparticles led to CNS formation. Additionally, adjustments in process parameters allowed precise control over the CNS diameter, ranging from 20 to 100 nm, highlighting the potential for customization in high-performance applications. Furthermore, this study demonstrates how the process framework, originally developed for cellulose nanocrystals (CNC) production, was successfully adapted and optimized for CNS production, ensuring scalability and efficiency. In conclusion, this study emphasizes the versatility and efficiency of the enzyme-based platform for producing high-quality CNS, providing valuable insights into energy consumption for large-scale economic and environmental assessments.


Asunto(s)
Celulasa , Celulosa , Nanosferas , Celulosa/química , Hidrólisis , Nanosferas/química , Celulasa/química , Celulasa/metabolismo , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo
5.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39201806

RESUMEN

A gene encoding a polysaccharide-degrading enzyme was cloned from the genome of the bacterium Nocardiopsis halotolerans. Analysis of the amino acid sequence of the protein showed the presence of the catalytic domain of the endo-1,4-ß-xylanases of the GH11 family. The gene was amplified by PCR and ligated into the pPic9m vector. A recombinant producer based on Pichia pastoria was obtained. The production of the enzyme, which we called NhX1, was carried out in a 10 L fermenter. Enzyme production was 10.4 g/L with an activity of 927 U/mL. Purification of NhX1 was carried out using Ni-NTA affinity chromatography. The purified enzyme catalyzed the hydrolysis of xylan but not other polysaccharides. Endo-1,4-ß-xylanase NhX1 showed maximum activity and stability at pH 6.0-7.0. The enzyme showed high thermal stability, remaining active at 90 °C for 20 min. With beechwood xylan, the enzyme showed Km 2.16 mg/mL and Vmax 96.3 U/mg. The products of xylan hydrolysis under the action of NhX1 were xylobiose, xylotriose, xylopentaose, and xylohexaose. Endo-1,4-ß-xylanase NhX1 effectively saccharified xylan-containing products used for the production of animal feed. The xylanase described herein is a thermostable enzyme with biotechnological potential produced in large quantities by P. pastoria.


Asunto(s)
Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Xilanos , Xilanos/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Hidrólisis , Actinobacteria/enzimología , Actinobacteria/genética , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Clonación Molecular/métodos , Especificidad por Sustrato , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Pichia/genética , Pichia/metabolismo , Actinomycetales/enzimología , Actinomycetales/genética , Secuencia de Aminoácidos , Saccharomycetales
6.
Protein Expr Purif ; 223: 106561, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39094812

RESUMEN

Xylanase plays the most important role in catalyzing xylan to xylose moieties. GH11 xylanases have been widely used in many fields, but most GH11 xylanases are mesophilic enzymes. To improve the catalytic activity and thermostability of Aspergillus niger xylanase (Xyn-WT), we predicted potential key mutation sites of Xyn-WT through multiple computer-aided enzyme engineering strategies. We introduce a simple and economical Ni affinity chromatography purification method to obtain high-purity xylanase and its mutants. Ten mutants (Xyn-A, Xyn-B, Xyn-C, E45T, Q93R, E45T/Q93R, A161P, Xyn-D, Xyn-E, Xyn-F) were identified. Among the ten mutants, four (Xyn-A, Xyn-C, A161P, Xyn-F) presented improved thermal stability and activity, with Xyn-F(A161P/E45T/Q93R) being the most thermally stable and active. Compared with Xyn-WT, after heat treatment at 55 °C and 60 °C for 10 min, the remaining enzyme activity of Xyn-F was 12 and 6 times greater than that of Xyn-WT, respectively, and Xyn-F was approximately 1.5 times greater than Xyn-WT when not heat treated. The pH adaptation of Xyn-F was also significantly enhanced. In summary, an improved catalytic activity and thermostability of the design variant Xyn-F has been reported.


Asunto(s)
Aspergillus niger , Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Aspergillus niger/enzimología , Aspergillus niger/genética , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/aislamiento & purificación , Ingeniería de Proteínas/métodos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Calor , Diseño Asistido por Computadora
7.
Int J Biol Macromol ; 277(Pt 3): 134014, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047995

RESUMEN

Over the last decade, xylooligosaccharides (XOS) have attracted great attentions because of their unique chemical properties and excellent prebiotic effects. Among the current strategies for XOS production, enzymatic hydrolysis is preferred due to its green and safe process, simplicity in equipment, and high control of the degrees of polymerization. This paper comprehensively summarizes various lignocellulosic biomass and marine biomass employed in enzymatic production of XOS. The importance and advantages of enzyme immobilization in XOS production are also discussed. Many novel immobilization techniques for xylanase are presented. In addition, bioinformatics techniques for the mining and designing of new xylanase are also described. Moreover, XOS has exhibited great potential applications in the food industry as diverse roles, such as a sugar replacer, a fat replacer, and cryoprotectant. This review systematically summarizes the current research progress on the applications of XOS in food sectors, including beverages, bakery products, dairy products, meat products, aquatic products, food packaging film, wall materials, and others. It is anticipated that this paper will act as a reference for the further development and application of XOS in food sectors and other fields.


Asunto(s)
Biomasa , Glucuronatos , Lignina , Oligosacáridos , Lignina/química , Lignina/metabolismo , Oligosacáridos/química , Glucuronatos/química , Glucuronatos/metabolismo , Hidrólisis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Organismos Acuáticos , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Industria de Alimentos
8.
Glycobiology ; 34(8)2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38982733

RESUMEN

Understanding the relation between enzyme domain structure and catalytic activity is crucial for optimal engineering of novel enzymes for lignocellulose bioconversion. Xylanases with varying specificities are commonly used to valorise the hemicellulose arabinoxylan (AX), yet characterization of specific arabinoxylanases remain limited. Two homologous GH5_34 arabinoxylanases, HhXyn5A and CtXyn5A, in which the two domains are connected by a 40-residue linker, exhibit distinct activity on AX, yielding different reaction product patterns, despite high sequence identity, conserved active sites and similar domain composition. In this study, the carbohydrate binding module 6 (CBM6), or the inter domain linker together with CBM6, were swapped to investigate their influence on hydrolytic activity and oligosaccharide product pattern on cereal AXs. The variants, with only CBM6 swapped, displayed reduced activity on commercial wheat and rye AX, as well as on extracted oat fibre, compared to the original enzymes. Additionally, exchange of both linker and CBM6 resulted in a reduced ratio of enzyme produced in soluble form in Escherichia coli cultivations, causing loss of activity of both HhXyn5A and CtXyn5A variants. Analysis of oligosaccharide product patterns applying HPAEC-PAD revealed a decreased number of reaction products for CtXyn5A with swapped CBM6, which resembled the product pattern of HhXyn5A. These findings emphasize the importance of the CBM6 interactions with the linker and the catalytic domain for enzyme activity and specificity, and underlines the role of the linker in enzyme structure organisation and product formation, where alterations in linker interactions with the catalytic and/or CBM6 domains, influence enzyme-substrate association and specificity.


Asunto(s)
Oligosacáridos , Xilanos , Oligosacáridos/química , Oligosacáridos/metabolismo , Xilanos/metabolismo , Xilanos/química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Dominio Catalítico , Dominios Proteicos , Especificidad por Sustrato , Hidrólisis , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/genética
9.
J Agric Food Chem ; 72(32): 18201-18213, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39082219

RESUMEN

The drive to enhance enzyme performance in industrial applications frequently clashes with the practical limitations of exhaustive experimental screening, underscoring the urgency for more refined and strategic methodologies in enzyme engineering. In this study, xylanase Xyl-1 was used as the model, coupling evolutionary insights with energy functions to obtain theoretical potential mutants, which were subsequently validated experimentally. We observed that mutations in the nonloop region primarily aimed at enhancing stability and also encountered selective pressure for activity. Notably, mutations in this region simultaneously boosted the Xyl-1 stability and activity, achieving a 65% success rate. Using a greedy strategy, mutant M4 was developed, achieving a 12 °C higher melting temperature and doubled activity. By integration of spectroscopy, crystallography, and quantum mechanics/molecular mechanics molecular dynamics, the mechanism behind the enhanced thermal stability of M4 was elucidated. It was determined that the activity differences between M4 and the wild type were primarily driven by dynamic factors influenced by distal mutations. In conclusion, the study emphasizes the pivotal role of evolution-based approaches in augmenting the stability and activity of the enzymes. It sheds light on the unique adaptive mechanisms employed by various structural regions of proteins and expands our understanding of the intricate relationship between distant mutations and enzyme dynamics.


Asunto(s)
Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Mutación , Ingeniería de Proteínas , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Simulación de Dinámica Molecular , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cinética , Evolución Molecular Dirigida
10.
J Mol Model ; 30(8): 242, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955857

RESUMEN

CONTEXT: Xylanases derived from Bacillus species hold significant importance in various large-scale production sectors, with increasing demand driven by biofuel production. However, despite their potential, the extreme environmental conditions often encountered in production settings have led to their underutilisation. To address this issue and enhance their efficacy under adverse conditions, we conducted a theoretical investigation on a group of five Bacillus species xylanases belonging to the glycoside hydrolase GH11 family. Bacillus sp. NCL 87-6-10 (sp_NCL 87-6-10) emerged as a potent candidate among the selected biocatalysts; this Bacillus strain exhibited high thermal stability and achieved a transition state with minimal energy requirements, thereby accelerating the biocatalytic reaction process. Our approach aims to provide support for experimentalists in the industrial sector, encouraging them to employ structural-based reaction modelling scrutinisation to predict the ability of targeted xylanases. METHODS: Utilising crystal structure data available in the Carbohydrate-Active enzymes database, we aimed to analyse their structural capabilities in terms of thermal-stability and activity. Our investigation into identifying the most prominent Bacillus species xylanases unfolds with the help of the semi-empirical quantum mechanics MOPAC method integrated with the DRIVER program is used in calculations of reaction pathways to understand the activation energy. Additionally, we scrutinised the selected xylanases using various analyses, including constrained network analyses, intermolecular interactions of the enzyme-substrate complex and molecular orbital assessments calculated using the AM1 method with the MO-G model (MO-G AM1) to validate their reactivity.


Asunto(s)
Bacillus , Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Bacillus/enzimología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Modelos Moleculares , Biocatálisis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Temperatura
11.
Curr Microbiol ; 81(9): 287, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075266

RESUMEN

Microbial xylanases are enzymes of great importance due to their wide industrial applications, especially in the degradation of lignocellulosic biomass into fermentable sugars. This study aimed to describe the production optimization and partial characterization of an ultra-thermostable, acidophilic, cellulase-free xylanase from an obligate thermophilic eubacterium Geobacillus thermoleovorans strain-AKNT10 (Ac.No. LT158229) isolated from a hot-spring of Puga Valley located at an altitude of 4419 m in Ladakh, India. The optimization of cultural conditions improved enzyme yield by 10.49-fold under submerged fermentation. The addition of 1% (w/v) xylose induced the enzyme synthesis by ~ 165 and 371% when supplemented in the fermentation medium containing wheat bran (WB) 1 and 3%, respectively. The supplementation of sucrose reduced the xylanase production by ~ 25%. Results of partial characterization exhibited that xylanase was optimally active at pH 6.0 and 100 °C. Enzyme retained > 75%, > 83%, and > 84% of activity at 4 °C for 28 days, 100 °C for 60 min, and pHs 3-8 for 60 min, respectively. An outstanding property of AKNT10-xylanase, was the retention of > 71% residual activity at extreme conditions (121 °C and 15 psi pressure) for 15 min. Enzymatic saccharification showed that enzyme was also capable to liberate maximum reducing sugars within 4-8 h under optimized conditions thus it could be a potential candidate for the bioconversion of lignocellulosic biomass as well as other industrial purposes. To the best of our knowledge, this is the first report on such an ultra-thermo-pressure-tolerant xylanase optimally active at pH 6 and 100 °C from the genus Geobacillus.


Asunto(s)
Fibras de la Dieta , Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Fermentación , Geobacillus , Geobacillus/enzimología , Geobacillus/genética , Fibras de la Dieta/metabolismo , Concentración de Iones de Hidrógeno , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Manantiales de Aguas Termales/microbiología , Temperatura , India , Xilosa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Medios de Cultivo/química
12.
Arch Microbiol ; 206(7): 307, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884653

RESUMEN

Xylanase is the most important hydrolase in the xylan hydrolase system, the main function of which is ß-1,4-endo-xylanase, which randomly cleaves xylans to xylo-oligosaccharides and xylose. Xylanase has wide ranging of applications, but there remains little research on the cold-adapted enzymes required in some low-temperature industries. Glycoside hydrolase family 8 (GH8) xylanases have been reported to have cold-adapted enzyme activity. In this study, the xylanase gene dgeoxyn was excavated from Deinococcus geothermalis through sequence alignment. The recombinant xylanase DgeoXyn encodes 403 amino acids with a theoretical molecular weight of 45.39 kDa. Structural analysis showed that DgeoXyn has a (α/α)6-barrel fold structure typical of GH8 xylanase. At the same time, it has strict substrate specificity, is only active against xylan, and its hydrolysis products include xylobiose, xylotrinose, xytetranose, xylenanose, and a small amount of xylose. DgeoXyn is most active at 70 â„ƒ and pH 6.0. It is very stable at 10, 20, and 30 â„ƒ, retaining more than 80% of its maximum enzyme activity. The enzyme activity of DgeoXyn increased by 10% after the addition of Mn2+ and decreased by 80% after the addition of Cu2+. The Km and Vmax of dgeox were 42 mg/ml and 20,000 U/mg, respectively, at a temperature of 70 â„ƒ and pH of 6.0 using 10 mg/ml beechwood xylan as the substrate. This research on DgeoXyn will provide a theoretical basis for the development and application of low-temperature xylanase.


Asunto(s)
Deinococcus , Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Xilanos , Deinococcus/enzimología , Deinococcus/genética , Especificidad por Sustrato , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Xilanos/metabolismo , Frío , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Concentración de Iones de Hidrógeno , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Secuencia de Aminoácidos , Hidrólisis , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Clonación Molecular , Cinética , Peso Molecular , Disacáridos
13.
Carbohydr Polym ; 339: 122248, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823916

RESUMEN

Arabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse. The enzyme synergistically enhanced XOS production by GH10 and GH11 xylanases, being particularly efficient in combination with the latter family of enzymes, with a degree of synergism of 1.7. We also demonstrated that the enzyme is capable of not only removing arabinose decorations from the arabinoxylan and from the non-reducing end of the oligomeric substrates, but also hydrolyzing the xylan backbone yielding mostly xylobiose and xylose in particular cases. Structural studies of BlAbf43 shed light on the molecular basis of the substrate recognition and allowed hypothesizing on the structural reasons of its multifunctionality.


Asunto(s)
Bifidobacterium longum , Celulosa , Endo-1,4-beta Xilanasas , Glucuronatos , Glicósido Hidrolasas , Oligosacáridos , Saccharum , Xilanos , Oligosacáridos/química , Oligosacáridos/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Glucuronatos/metabolismo , Glucuronatos/química , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Xilanos/metabolismo , Xilanos/química , Saccharum/química , Saccharum/metabolismo , Celulosa/química , Celulosa/metabolismo , Bifidobacterium longum/enzimología , Bifidobacterium longum/metabolismo , Hidrólisis , Especificidad por Sustrato , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Disacáridos
14.
Int J Biol Macromol ; 274(Pt 2): 133325, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908627

RESUMEN

Hemicellulose plays a key role in both the production of cellulose nanofibrils (CNF) and their properties as suspensions and films. While the use of enzymatic and chemical pre-treatments for tailoring hemicellulose levels is well-established, post-treatment methods using enzymes remain relatively underexplored and hold significant promise for modifying CNF film properties. This study aimed to investigate the effects of enzymatic xylan removal on the properties of CNF film for packaging applications. The enzymatic post-treatment was carried out using an enzymatic cocktail enriched with endoxylanase (EX). The EX post-treated-CNFs were characterized by LALLS, XRD, and FEG-SEM, while their films were characterized in terms of physical, morphological, optical, thermal, mechanical, and barrier properties. Employing varying levels of EX facilitated the hydrolysis of 8 to 35 % of xylan, yielding CNFs with different xylan contents. Xylan was found to be vital for the stability of CNF suspensions, as its removal led to the agglomeration of nanofibrils. Nanostructures with preserved crystalline structures and different morphologies, including nanofibers, nanorods, and their hybrids were observed. The EX post-treatment contributed to a smoother film surface, improved thermostability, and better moisture barrier properties. However, as the xylan content decreased, the films became lighter (lower grammage), less strong, and more brittle. Thus, the enzymatic removal of xylan enabled the customization of CNF films' performance without affecting the inherent crystalline structure, resulting in materials with diverse functionalities that could be explored for use in packaging films.


Asunto(s)
Celulosa , Nanofibras , Xilanos , Xilanos/química , Nanofibras/química , Celulosa/química , Hidrólisis , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo
15.
Carbohydr Res ; 541: 109173, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38833820

RESUMEN

Endo-ß-1,4-xylanases degrade heteroxylans that constitute the lignocellulosic plant cell wall. This enzyme is widely used in the food, paper, textile, and biorefinery industries. Temperature affects the optimum activity of xylanase and is an important factor in its application. Various structural analyses of xylanase have been performed, but its structural influence by temperature is not fully elucidated. To better understand the structural influence of xylanase due to temperature, the crystal structure of xylanase II from Trichoderma longibrachiatum (TloXynII) at room and cryogenic temperatures was determined at 2.1 and 1.9 Å resolution, respectively. The room-temperature structure of TloXynII (TloXynIIRT) showed a B-factor value 2.09 times higher than that of the cryogenic-temperature structure of TloXynII (TloXynIICryo). Subtle movement of the catalytic and substrate binding residues was observed between TloXynIIRT and TloXynIICryo. In TloXynIIRT, the thumb domain exhibited high flexibility, whereas in TloXynIICryo, the finger domain exhibited high flexibility. The substrate binding cleft of TloXynIIRT was narrower than that of TloXynIICryo, indicating a distinct finger domain conformation. Numerous water molecule networks were observed in the substrate binding cleft of TloXynIICryo, whereas only a few water molecules were observed in TloXynIIRT. These structural analyses expand our understanding of the temperature-dependent conformational changes in xylanase.


Asunto(s)
Endo-1,4-beta Xilanasas , Temperatura , Trichoderma , Trichoderma/enzimología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Modelos Moleculares , Conformación Proteica , Cristalografía por Rayos X
16.
Biomacromolecules ; 25(6): 3532-3541, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38750618

RESUMEN

Despite the potential of lignocellulose in manufacturing value-added chemicals and biofuels, its efficient biotechnological conversion by enzymatic hydrolysis still poses major challenges. The complex interplay between xylan, cellulose, and lignin in fibrous materials makes it difficult to assess underlying physico- and biochemical mechanisms. Here, we reduce the complexity of the system by creating matrices of cellulose, xylan, and lignin, which consists of a cellulose base layer and xylan/lignin domains. We follow enzymatic degradation using an endoxylanase by high-speed atomic force microscopy and surface plasmon resonance spectroscopy to obtain morphological and kinetic data. Fastest reaction kinetics were observed at low lignin contents, which were related to the different swelling capacities of xylan. We demonstrate that the complex processes taking place at the interfaces of lignin and xylan in the presence of enzymes can be monitored in real time, providing a future platform for observing phenomena relevant to fiber-based systems.


Asunto(s)
Lignina , Madera , Xilanos , Celulosa/química , Celulosa/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Hidrólisis , Cinética , Lignina/química , Lignina/metabolismo , Microscopía de Fuerza Atómica , Madera/química , Madera/metabolismo , Xilanos/química , Xilanos/metabolismo
17.
Carbohydr Polym ; 337: 122141, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710568

RESUMEN

Production of value-added compounds and sustainable materials from agro-industrial residues is essential for better waste management and building of circular economy. This includes valorization of hemicellulosic fraction of plant biomass, the second most abundant biopolymer from plant cell walls, aiming to produce prebiotic oligosaccharides, widely explored in food and feed industries. In this work, we conducted biochemical and biophysical characterization of a prokaryotic two-domain R. champanellensis xylanase from glycoside hydrolase (GH) family 30 (RcXyn30A), and evaluated its applicability for XOS production from glucuronoxylan in combination with two endo-xylanases from GH10 and GH11 families and a GH11 xylobiohydrolase. RcXyn30A liberates mainly long monoglucuronylated xylooligosaccharides and is inefficient in cleaving unbranched oligosaccharides. Crystallographic structure of RcXyn30A catalytic domain was solved and refined to 1.37 Å resolution. Structural analysis of the catalytic domain releveled that its high affinity for glucuronic acid substituted xylan is due to the coordination of the substrate decoration by several hydrogen bonds and ionic interactions in the subsite -2. Furthermore, the protein has a larger ß5-α5 loop as compared to other GH30 xylanases, which might be crucial for creating an additional aglycone subsite (+3) of the catalytic site. Finally, RcXyn30A activity is synergic to that of GH11 xylobiohydrolase.


Asunto(s)
Endo-1,4-beta Xilanasas , Microbioma Gastrointestinal , Glucuronatos , Oligosacáridos , Xilosidasas , Glucuronatos/metabolismo , Glucuronatos/química , Oligosacáridos/química , Oligosacáridos/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Xilosidasas/metabolismo , Xilosidasas/química , Humanos , Cristalografía por Rayos X , Xilanos/química , Xilanos/metabolismo , Dominio Catalítico , Modelos Moleculares , Especificidad por Sustrato
18.
Food Chem ; 453: 139637, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38781897

RESUMEN

Herein, a novel multifunctional enzyme ß-glucosidase/xylanase/feruloyl esterase (GXF) was constructed by fusion of ß-glucosidase and bifunctional xylanase/feruloyl esterase. The activities of ß-glucosidase, xylanase, feruloyl esterase and acetyl xylan esterase displayed by GXF were 67.18 %, 49.54 %, 38.92 % and 23.54 %, respectively, higher than that of the corresponding single functional enzymes. Moreover, the GXF performed better in enhancing aroma and quality of Longjing tea than the single functional enzymes and their mixtures. After treatment with GXF, the grassy and floral odors of tea infusion were significantly improved. Moreover, GXF treatment could improve concentrations of flavonoid aglycones of myricetin, kaempferol and quercetin by 68.1-, 81.42- and 77.39-fold, respectively. In addition, GXF could accelerate the release of reducing sugars, ferulic acid and xylo-oligosaccharides by 9.48-, 8.25- and 4.11-fold, respectively. This multifunctional enzyme may have potential applications in other fields such as food production and biomass degradation.


Asunto(s)
Camellia sinensis , Hidrolasas de Éster Carboxílico , , beta-Glucosidasa , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Camellia sinensis/química , Camellia sinensis/enzimología , Té/química , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Odorantes/análisis
19.
J Phys Chem B ; 128(24): 5814-5822, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38726956

RESUMEN

Enzymatic activity is heavily influenced by pH, but the rationale for the dynamical mechanism of pH-dependent enzymatic activity has not been fully understood. In this work, combined neutron scattering techniques, including quasielastic neutron scattering (QENS) and small angle neutron scattering (SANS), are used to study the structural and dynamic changes of a model enzyme, xylanase, under different pH and temperature environments. The QENS results reveal that xylanase at optimal pH exhibits faster relaxational dynamics and a lower energy barrier between conformational substates. The SANS results demonstrate that pH affects both xylanase's stability and monodispersity. Our findings indicate that enzymes have optimized stability and function under their optimal pH conditions, with both structure and dynamics being affected. The current study offers valuable insights into enzymatic functionality mechanisms, allowing for broad industrial applications.


Asunto(s)
Endo-1,4-beta Xilanasas , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Temperatura , Concentración de Iones de Hidrógeno , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Simulación de Dinámica Molecular , Estabilidad de Enzimas
20.
Int J Biol Macromol ; 272(Pt 2): 132722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821304

RESUMEN

Several fungal species produce diverse carbohydrate-active enzymes useful for the xylooligosaccharide biorefinery. These enzymes can be isolated by different purification methods, but fungi usually produce other several compounds which interfere in the purification process. So, the present work has three interconnected aims: (i) compare ß-xylosidase production by Fusarium pernambucanum MUM 18.62 with other crop pathogens; (ii) optimise F. pernambucanum xylanolytic enzymes expression focusing on the pre-inoculum media composition; and (iii) design a downstream strategy to eliminate interfering substances and sequentially isolate ß-xylosidases, arabinofuranosidases and endo-xylanases from the extracellular media. F. pernambucanum showed the highest ß-xylosidase activity among all the evaluated species. It also produced endo-xylanase and arabinofuranosidase. The growth and ß-xylosidase expression were not influenced by the pre-inoculum source, contrary to endo-xylanase activity, which was higher with xylan-enriched agar. Using a sequential strategy involving ammonium sulfate precipitation of the extracellular interferences, and several chromatographic steps of the supernatant (hydrophobic chromatography, size exclusion chromatography, and anion exchange chromatography), we were able to isolate different enzyme pools: four partially purified ß-xylosidase/arabinofuranoside; FpXylEAB trifunctional GH10 endo-xylanase/ß-xylosidase/arabinofuranoside enzyme (39.8 kDa) and FpXynE GH11 endo-xylanase with molecular mass (18.0 kDa). FpXylEAB and FpXynE enzymes were highly active at pH 5-6 and 60-50 °C.


Asunto(s)
Endo-1,4-beta Xilanasas , Fusarium , Glicósido Hidrolasas , Xilosidasas , Fusarium/enzimología , Xilosidasas/metabolismo , Xilosidasas/aislamiento & purificación , Xilosidasas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/aislamiento & purificación , Glicósido Hidrolasas/química , Endo-1,4-beta Xilanasas/aislamiento & purificación , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Xilanos/metabolismo , Espacio Extracelular/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...