Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.970
Filtrar
1.
PLoS Biol ; 22(10): e3002823, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39401187

RESUMEN

Epithelial tissues undergo cell turnover both during development and for homeostatic maintenance. Removal of cells is coordinated with the increase in number of newly dividing cells to maintain barrier function of the tissue. In Drosophila metamorphosis, larval epidermal cells (LECs) are replaced by adult precursor cells called histoblasts. Removal of LECs must counterbalance the exponentially increasing adult histoblasts. Previous work showed that the LEC removal accelerates as endocytic activity decreases throughout all LECs. Here, we show that the acceleration is accompanied by a mode switching from isolated single-cell apoptosis to clustered ones induced by the endocytic activity reduction. We identify the epidermal growth factor receptor (EGFR) pathway via extracellular-signal regulated kinase (ERK) activity as the main components downstream of endocytic activity in LECs. The reduced ERK activity, caused by the decrease in endocytic activity, is responsible for the apoptotic mode switching. Initially, ERK is transiently activated in normal LECs surrounding a single apoptotic LEC in a ligand-dependent manner, preventing clustered cell death. Following the reduction of endocytic activity, LEC apoptosis events do not provoke these transient ERK up-regulations, resulting in the acceleration of the cell elimination rate by frequent clustered apoptosis. These findings contrasted with the common perspective that clustered apoptosis is disadvantageous. Instead, switching to clustered apoptosis is required to accommodate the growth of neighboring tissues.


Asunto(s)
Apoptosis , Proteínas de Drosophila , Drosophila melanogaster , Endocitosis , Receptores ErbB , Transducción de Señal , Animales , Endocitosis/fisiología , Receptores ErbB/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Larva/metabolismo , Metamorfosis Biológica/fisiología , Receptores de Péptidos de Invertebrados/metabolismo , Receptores de Péptidos de Invertebrados/genética , Epitelio/metabolismo , Células Epidérmicas/metabolismo , Drosophila/metabolismo
2.
J Phys Chem B ; 128(40): 9785-9797, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39352204

RESUMEN

The internalization of nanoparticles is of great significance for their biological applications. Clathrin-mediated endocytosis (CME) is one of the main endocytic pathways. However, there is still a lack of a fundamental understanding regarding the internalization of multiple nanoparticles via CME. Therefore, in this study, we conducted computational investigations to uncover detailed molecular mechanisms and kinetic pathways for differently shaped nanoparticles in the presence of clathrin. Particular focus is given to understanding the CME of multiple-nanoparticle systems. We found that unlike receptor-mediated endocytosis, multiple nanoparticles did not get cooperatively wrapped by the membrane but tended to undergo independent endocytosis in the presence of clathrin. To further investigate the endocytosis mechanism, we studied the effects of clathrins, nanoparticle shape, nanoparticle size, nanoparticle arrangement, and membrane surface tension. The self-assembly of clathrin prefers independent endocytosis for multiple nanoparticles. Besides, the cooperative behavior is weak with increasing nanoparticle-shape anisotropy. However, when the membrane tension is reduced, the endocytosis pathway for multiple nanoparticles is cooperative endocytosis. Moreover, we found that the self-assembly of clathrins reduces the critical size of nanoparticles to undergo cooperative wrapping by the cell membrane. Our results provide valuable insights into the molecular mechanisms of multiple nanoparticles through CME and offer useful guidance for the design of nanoparticles as drug/gene delivery carriers.


Asunto(s)
Clatrina , Endocitosis , Nanopartículas , Endocitosis/fisiología , Clatrina/metabolismo , Clatrina/química , Nanopartículas/química , Membrana Celular/metabolismo , Membrana Celular/química , Cinética
3.
Proc Natl Acad Sci U S A ; 121(43): e2407838121, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39405356

RESUMEN

The high turgor pressure across the plasma membrane of yeasts creates a requirement for substantial force production by actin polymerization and myosin motor activity for clathrin-mediated endocytosis (CME). Endocytic internalization is severely impeded in the absence of fimbrin, an actin filament crosslinking protein called Sac6 in budding yeast. Here, we combine live-cell imaging and mathematical modeling to gain insights into the role of actin filament crosslinking proteins in force generation. Genetic manipulation showed that CME sites with more crosslinking proteins are more effective at internalization under high load. Simulations of an experimentally constrained, agent-based mathematical model recapitulate the result that endocytic networks with more double-bound fimbrin molecules internalize the plasma membrane against elevated turgor pressure more effectively. Networks with large numbers of crosslinks also have more growing actin filament barbed ends at the plasma membrane, where the addition of new actin monomers contributes to force generation and vesicle internalization. Our results provide a richer understanding of the crucial role played by actin filament crosslinking proteins during actin network force generation, highlighting the contribution of these proteins to the self-organization of the actin filament network and force generation under increased load.


Asunto(s)
Citoesqueleto de Actina , Endocitosis , Proteínas de Microfilamentos , Citoesqueleto de Actina/metabolismo , Endocitosis/fisiología , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Saccharomyces cerevisiae/metabolismo , Clatrina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Actinas/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Glicoproteínas de Membrana
4.
Nat Comput Sci ; 4(10): 761-772, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39394501

RESUMEN

Anomalous diffusion plays a crucial rule in understanding molecular-level dynamics by offering valuable insights into molecular interactions, mobility states and the physical properties of systems across both biological and materials sciences. Deep-learning techniques have recently outperformed conventional statistical methods in anomalous diffusion recognition. However, deep-learning networks are typically trained by data with limited distribution, which inevitably fail to recognize unknown diffusion models and misinterpret dynamics when confronted with out-of-distribution (OOD) scenarios. In this work, we present a general framework for evaluating deep-learning-based OOD dynamics-detection methods. We further develop a baseline approach that achieves robust OOD dynamics detection as well as accurate recognition of in-distribution anomalous diffusion. We demonstrate that this method enables a reliable characterization of complex behaviors across a wide range of experimentally diverse systems, including nicotinic acetylcholine receptors in membranes, fluorescent beads in dextran solutions and silver nanoparticles undergoing active endocytosis.


Asunto(s)
Aprendizaje Profundo , Difusión , Endocitosis/fisiología , Receptores Nicotínicos/metabolismo , Nanopartículas del Metal/química , Dextranos/química , Humanos
5.
PLoS Biol ; 22(9): e3002833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39316607

RESUMEN

Clathrin-mediated endocytosis (CME) is a critical trafficking process that begins when an elaborate endocytic protein network is established at the plasma membrane. Interaction of early endocytic proteins with anionic phospholipids and/or cargo has been suggested to trigger CME initiation. However, the exact mechanism by which CME sites are initiated has not been fully elucidated. In the budding yeast Saccharomyces cerevisiae, higher levels of anionic phospholipids and cargo molecules exist in the newly formed daughter cell compared to the levels in the mother cell during polarized growth. Taking advantage of this asymmetry, we quantitatively compared CME proteins in S. cerevisiae mother versus daughter cells, observing differences in the dynamics and composition of key endocytic proteins. Our results show that CME site initiation occurs preferentially on regions of the plasma membrane with a relatively higher density of endocytic cargo and/or acidic phospholipids. Furthermore, our combined live cell-imaging and yeast genetics analysis provided evidence for a molecular mechanism in which CME sites are initiated when Yap1801 and Yap1802 (yeast CALM/AP180) and Syp1 (yeast FCHo1/2) coordinate with anionic phospholipids and cargo molecules to trigger Ede1 (yeast Eps15)-centric CME initiation complex assembly at the plasma membrane.


Asunto(s)
Clatrina , Endocitosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Cell Rep ; 43(9): 114725, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39276354

RESUMEN

Mechanical forces are transmitted from the actin cytoskeleton to the membrane during clathrin-mediated endocytosis (CME) in the fission yeast Schizosaccharomyces pombe. End4p directly transmits force in CME by binding to both the membrane (through the AP180 N-terminal homology [ANTH] domain) and F-actin (through the talin-HIP1/R/Sla2p actin-tethering C-terminal homology [THATCH] domain). We show that 7 pN force is required for stable binding between THATCH and F-actin. We also characterized a domain in End4p, Rend (rod domain in End4p), that resembles R12 of talin. Membrane localization of Rend primes the binding of THATCH to F-actin, and force-induced unfolding of Rend at 15 pN terminates the transmission of force. We show that the mechanical properties (mechanical stability, unfolding extension, hysteresis) of Rend and THATCH are tuned to form a circuit for the initiation, transmission, and termination of force between the actin cytoskeleton and membrane. The mechanical circuit by Rend and THATCH may be conserved and coopted evolutionarily in cell adhesion complexes.


Asunto(s)
Actinas , Clatrina , Endocitosis , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Endocitosis/fisiología , Schizosaccharomyces/metabolismo , Clatrina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Actinas/metabolismo , Dominios Proteicos , Citoesqueleto de Actina/metabolismo , Unión Proteica , Membrana Celular/metabolismo
8.
Bull Exp Biol Med ; 177(4): 449-453, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39264557

RESUMEN

In experiments on the motor nerve endings of the diaphragm of transgenic FUS mice with a model of amyotrophic lateral sclerosis at the pre-symptomatic stage of the disease, the processes of transmitter release and endocytosis of synaptic vesicles were studied. In FUS mice, the intensity of transmitter release during high-frequency stimulation of the motor nerve (50 imp/sec) was lowered. At the same duration of stimulation, the loading of fluorescent dye FM1-43 was lower in FUS mice. However, at the time of stimulation, during which an equal number of quanta are released in wild-type and FUS mice, no differences in the intensity of dye loading were found. Thus, endocytosis is not the key factor in the mechanism of synaptic dysfunction in FUS mice at the pre-symptomatic stage.


Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Endocitosis , Neuronas Motoras , Vesículas Sinápticas , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Diafragma/inervación , Diafragma/metabolismo , Diafragma/fisiopatología , Endocitosis/fisiología , Colorantes Fluorescentes/metabolismo , Imidazoles/farmacología , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Terminaciones Nerviosas/metabolismo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Transmisión Sináptica/fisiología , Transmisión Sináptica/genética , Vesículas Sinápticas/metabolismo
9.
Traffic ; 25(9): e12955, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39313313

RESUMEN

Signaling pathways activated by secreted Wnt ligands play an essential role in tissue development and the progression of diseases, like cancer. Secretion of the lipid-modified Wnt proteins is tightly regulated by a repertoire of intracellular factors. For instance, a membrane protein, Evi, interacts with the Wnt ligand in the ER, and it is essential for its further trafficking and release in the extracellular space. After dissociating from the Wnt, the Wnt-unbound Evi is recycled back to the ER via Golgi. However, where in this trafficking path Wnt proteins dissociate from Evi remains unclear. Here, we have used the Drosophila wing epithelium to trace the route of the Evi-Wg (Wnt homolog) complex leading up to their separation. In these polarized cells, Wg is first trafficked to the apical surface; however, the secretion of Wg is believed to occurs post-internalization via recycling. Our results show that the Evi-Wg complex is internalized from the apical surface and transported to the retromer-positive endosomes. Furthermore, using antibodies that specifically label the Wnt-unbound Evi, we show that Evi and Wg separation occurs post-internalization in the acidic endosomes. These results refine our understanding of the polarized trafficking of Wg and highlight the importance of Wg endocytosis in its secondary secretion.


Asunto(s)
Proteínas de Drosophila , Endosomas , Transporte de Proteínas , Proteína Wnt1 , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Endocitosis/fisiología , Endosomas/metabolismo , Proteínas de la Membrana/metabolismo , Alas de Animales/metabolismo , Proteína Wnt1/metabolismo , Proteína Wnt1/genética
10.
Traffic ; 25(9): e12951, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39238078

RESUMEN

Mitochondria, the dynamic organelles responsible for energy production and cellular metabolism, have the metabolic function of extracting energy from nutrients and synthesizing crucial metabolites. Nevertheless, recent research unveils that intercellular mitochondrial transfer by tunneling nanotubes, tumor microtubes, gap junction intercellular communication, extracellular vesicles, endocytosis and cell fusion may regulate mitochondrial function within recipient cells, potentially contributing to disease treatment, such as nonalcoholic steatohepatitis, glioblastoma, ischemic stroke, bladder cancer and neurodegenerative diseases. This review introduces the principal approaches to intercellular mitochondrial transfer and examines its role in various diseases. Furthermore, we provide a comprehensive overview of the inhibitors and activators of intercellular mitochondrial transfer, offering a unique perspective to illustrate the relationship between intercellular mitochondrial transfer and diseases.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/metabolismo , Animales , Comunicación Celular , Vesículas Extracelulares/metabolismo , Transporte Biológico , Endocitosis/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia
11.
Mol Biol Cell ; 35(11): ar138, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39292879

RESUMEN

Cellular communication is regulated at the plasma membrane by the interactions of receptor, adhesion, signaling, exocytic, and endocytic proteins. Yet, the composition and control of these complexes in response to external cues remain unclear. We use high-resolution and high-throughput fluorescence imaging to map the localization of growth factor receptors and related proteins at single clathrin-coated structures in human squamous HSC3 cells. We find distinct protein signatures between control cells and cells stimulated with growth factors. Clathrin sites at the plasma membrane are preloaded with some receptors but not others. Stimulation with epidermal growth factor induces capture and concentration of epidermal growth factor, fibroblast growth factor 1, and low-density lipoprotein receptor (EGFR, FGFR1, and LDLR). Regulatory proteins including ubiquitin ligase Cbl, the scaffold Grb2, and the mechanoenzyme dynamin2 are also recruited. Disrupting FGFR1 or EGFR activity with drugs prevents the recruitment of both EGFR and FGFR1. EGF was able to activate FGFR1 phosphorylation. Our data reveal novel coclustering and activation of receptors and regulatory factors at clathrin-coated sites in response to stimulation by a single growth factor, EGF or FGF. This behavior integrates growth factor signaling and allows for complex responses to extracellular cues and drugs at the plasma membrane of human cells.


Asunto(s)
Membrana Celular , Clatrina , Receptores ErbB , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Transducción de Señal , Humanos , Clatrina/metabolismo , Receptores ErbB/metabolismo , Membrana Celular/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Fosforilación , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Proteína Adaptadora GRB2/metabolismo , Endocitosis/fisiología , Dinamina II/metabolismo , Receptores de Factores de Crecimiento/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Receptores de LDL/metabolismo
12.
Int J Nanomedicine ; 19: 9091-9107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258003

RESUMEN

Purpose: Castration Resistant Prostate Cancer (CRPC) is characterized by poor prognosis and limited therapeutic options. AgNPs functionalized with glucose (G-AgNPs) were observed cytotoxic to CRPC cell lines (PC-3 and Du-145) and not LNCaP. This study aims to evaluate AgNPs and G-AgNPs' uptake mechanisms in these cells and understand their role in the selective effect against CRPC cells. Methods: Uptake of AgNPs and G-AgNPs was assessed through transmission electron microscopy (TEM). A microRNA (miRNAs) analysis approach was used to uncover the main molecular differences responsible for the endocytic mechanisms' regulation. Caveolin (Cav) 1 and 2 mRNA and protein levels were assessed in the three cell lines. Caveolae-dependent endocytosis was inhibited with genistein or siCav1- and siCav2- in PC-3 and Du-145 and resazurin assay was used to evaluate viability after AgNPs and G-AgNPs administration. Caveolae-dependent endocytosis was induced with Cav1+ and Cav2+ plasmids in LNCaP, resazurin assay was used to evaluate viability after AgNPs and G-AgNPs administration and TEM to assess their location. Results: AgNPs and G-AgNPs were not uptaked by LNCaP. miRNA analysis revealed 37 upregulated and 90 downregulated miRNAs. Functional enrichment analysis of miRNAs' targets resulted in enrichment of terms related to endocytosis and caveolae. We observed that Cav1 and Cav2 are not expressed in LNCaP. Inhibiting caveolae-dependent endocytosis in Du-145 and PC-3 led to a significative reduction of cytotoxic capacity of AgNPs and G-AgNPs and induction of caveolae-dependent endocytosis in LNCaP lead to a significative increase as well as their uptake by cells. Conclusion: This study shows the potential of these AgNPs as a new therapeutic approach directed to CRPC patients, uncovers caveolae-dependent endocytosis as the uptake mechanism of these AgNPs and highlights deregulation of Cav1 and Cav2 expression as a key difference in hormone sensitive and resistant PCa cells which may be responsible for drug resistance.


Asunto(s)
Caveolas , Caveolina 1 , Endocitosis , Nanopartículas del Metal , MicroARNs , Neoplasias de la Próstata Resistentes a la Castración , Plata , Masculino , Humanos , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Caveolas/metabolismo , Caveolas/efectos de los fármacos , Plata/química , Plata/farmacología , Plata/farmacocinética , Caveolina 1/metabolismo , Caveolina 1/genética , Nanopartículas del Metal/química , Línea Celular Tumoral , MicroARNs/metabolismo , MicroARNs/genética , Supervivencia Celular/efectos de los fármacos , Caveolina 2/metabolismo , Caveolina 2/genética , Antineoplásicos/farmacología , Células PC-3
13.
Eur J Pharm Biopharm ; 204: 114500, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39303949

RESUMEN

Extracellular vesicles (EVs) are an emerging class of drug carriers and are primarily reported to be internalized into recipient cells via a combination of endocytic routes such as clathrin-mediated, caveolae-mediated and macropinocytosis pathways. In this work, (1) we investigated potential effects of homotypic vs. heterotypic interactions by studying the cellular uptake of homologous EVs (EV donor cells and recipient cells of the same type) vs. heterologous EVs (EV donor cells and recipient cells of different types) and (2) determined the route of EV internalization into low pinocytic/hard-to-deliver cell models such as brain endothelial cells (BECs). Homotypic interactions led to a greater extent of uptake into the recipient BECs compared to heterotypic interactions. However, we did not see a complete reduction in EV uptake into recipient BECs when endocytic pathways were blocked using pharmacological inhibitors and our findings from a R18-based fusion assay suggest that EVs primarily use membrane fusion to enter low-pinocytic recipient BECs instead of relying on endocytosis. Lipophilic PKH67 dye-labeled EVs but not intravesicular esterase-activated calcein ester-labeled EVs severely reduced particle uptake into BECs while phagocytic macrophages internalized EVs labeled with both dyes to comparable extents. Our results also highlight the importance of carefully choosing labeling dye chemistry to study EV uptake, especially in the case of low pinocytic cells such as BECs.


Asunto(s)
Encéfalo , Células Endoteliales , Vesículas Extracelulares , Fusión de Membrana , Pinocitosis , Vesículas Extracelulares/metabolismo , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Pinocitosis/fisiología , Fusión de Membrana/fisiología , Humanos , Animales , Endocitosis/fisiología , Línea Celular
14.
Proc Natl Acad Sci U S A ; 121(34): e2409341121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145939

RESUMEN

Vesicular transport relies on multimeric trafficking complexes to capture cargo and drive vesicle budding and fusion. Faithful assembly of the trafficking complexes is essential to their functions but remains largely unexplored. Assembly of AP2 adaptor, a heterotetrameric protein complex regulating clathrin-mediated endocytosis, is assisted by the chaperone AAGAB. Here, we found that AAGAB initiates AP2 assembly by stabilizing its α and σ2 subunits, but the AAGAB:α:σ2 complex cannot recruit additional AP2 subunits. We identified CCDC32 as another chaperone regulating AP2 assembly. CCDC32 recognizes the AAGAB:α:σ2 complex, and its binding leads to the formation of an α:σ2:CCDC32 ternary complex. The α:σ2:CCDC32 complex serves as a template that sequentially recruits the µ2 and ß2 subunits of AP2 to complete AP2 assembly, accompanied by CCDC32 release. The AP2-regulating function of CCDC32 is disrupted by a disease-causing mutation. These findings demonstrate that AP2 is assembled by a handover mechanism switching from AAGAB-based initiation complexes to CCDC32-based template complexes. A similar mechanism may govern the assembly of other trafficking complexes exhibiting the same configuration as AP2.


Asunto(s)
Complejo 2 de Proteína Adaptadora , Chaperonas Moleculares , Complejo 2 de Proteína Adaptadora/metabolismo , Complejo 2 de Proteína Adaptadora/genética , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Unión Proteica , Endocitosis/fisiología , Transporte de Proteínas
15.
J Neurochem ; 168(9): 3268-3283, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126680

RESUMEN

Dynamins are large GTPases whose primary function is not only to catalyze membrane scission during endocytosis but also to modulate other cellular processes, such as actin polymerization and vesicle trafficking. Recently, we reported that centronuclear myopathy associated dynamin-2 mutations, p.A618T, and p.S619L, impair Ca2+-induced exocytosis of the glucose transporter GLUT4 containing vesicles in immortalized human myoblasts. As exocytosis and endocytosis occur within rapid timescales, here we applied high-temporal resolution techniques, such as patch-clamp capacitance measurements and carbon-fiber amperometry to assess the effects of these mutations on these two cellular processes, using bovine chromaffin cells as a study model. We found that the expression of any of these dynamin-2 mutants inhibits a dynamin and F-actin-dependent form of fast endocytosis triggered by single action potential stimulus, as well as inhibits a slow compensatory endocytosis induced by 500 ms square depolarization. Both dynamin-2 mutants further reduced the exocytosis induced by 500 ms depolarizations, and the frequency of release events and the recruitment of neuropeptide Y (NPY)-labeled vesicles to the cell cortex after stimulation of nicotinic acetylcholine receptors with 1,1-dimethyl-4-phenyl piperazine iodide (DMPP). They also provoked a significant decrease in the Ca2+-induced formation of new actin filaments in permeabilized chromaffin cells. In summary, our results indicate that the centronuclear myopathy (CNM)-linked p.A618T and p.S619L mutations in dynamin-2 affect exocytosis and endocytosis, being the disruption of F-actin dynamics a possible explanation for these results. These impaired cellular processes might underlie the pathogenic mechanisms associated with these mutations.


Asunto(s)
Células Cromafines , Dinamina II , Endocitosis , Exocitosis , Mutación , Miopatías Estructurales Congénitas , Células Cromafines/metabolismo , Endocitosis/fisiología , Endocitosis/genética , Dinamina II/genética , Dinamina II/metabolismo , Animales , Exocitosis/fisiología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/metabolismo , Mutación/genética , Bovinos , Humanos , Actinas/metabolismo , Actinas/genética , Células Cultivadas , Técnicas de Placa-Clamp , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/patología
16.
J Neurochem ; 168(9): 3188-3208, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39091022

RESUMEN

Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a 'pre-assembly' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A's cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.


Asunto(s)
Endocitosis , Hipocampo , Glicoproteínas de Membrana , Proteínas del Tejido Nervioso , Vesículas Sinápticas , Sinaptotagmina I , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Endocitosis/fisiología , Animales , Ratas , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Hipocampo/metabolismo , Neuronas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas
17.
J Neurosci ; 44(38)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39147590

RESUMEN

Ribbon synapses of inner hair cells (IHCs) are uniquely designed for ultrafast and indefatigable neurotransmission of the sound. The molecular machinery ensuring the efficient, compensatory recycling of the synaptic vesicles (SVs), however, remains elusive. This study showed that hair cell knock-out of murine Dmxl2, whose human homolog is responsible for nonsyndromic sensorineural hearing loss DFNA71, resulted in auditory synaptopathy by impairing synaptic endocytosis and recycling. The mutant mice in the C57BL/6J background of either sex had mild hearing loss with severely diminished wave I amplitude of the auditory brainstem response. Membrane capacitance measurements of the IHCs revealed deficiency in sustained synaptic exocytosis and endocytic membrane retrieval. Consistent with the electrophysiological findings, 3D electron microscopy reconstruction showed reduced reserve pool of SVs and endocytic compartments, while the membrane-proximal and ribbon-associated vesicles remain intact. Our results propose an important role of DMXL2 in hair cell endocytosis and recycling of the SVs.


Asunto(s)
Endocitosis , Células Ciliadas Auditivas Internas , Proteínas del Tejido Nervioso , Vesículas Sinápticas , Animales , Femenino , Masculino , Ratones , Endocitosis/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Exocitosis/fisiología , Células Ciliadas Auditivas Internas/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Vesículas Sinápticas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
18.
CNS Neurosci Ther ; 30(8): e14925, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39161089

RESUMEN

AIMS: Hypoperfusion induces significant white matter injury in cerebral vascular disorders, including arteriosclerotic cerebral small vessel disease (aCSVD), which is prevalent among the elderly. Iron transport by blood vessel endothelial cells (BVECs) from the periphery supports oligodendrocyte maturation and white matter repair. This study aims to elucidate the association between iron homeostasis changes and white matter injury severity, and explore the crosstalk between BVECs and oligodendroglial lineage cells. METHODS: In vivo: C57BL/6 mice were subjected to unilateral common carotid artery occlusion (UCCAO). In vitro: BVECs with myelin pretreatment were co-cultured with oligodendrocyte progenitor cells (OPCs) or organotypic cerebellar slices subjected to oxygen and glucose deprivation. RESULTS: Circulatory iron tends to be stored in aCSVD patients with white matter injury. Myelin debris endocytosis by BVECs impairs iron transport, trapping iron in the blood and away from the brain, worsening oligodendrocyte iron deficiency in hypoperfusion-induced white matter injury. Iron accumulation in BVECs triggers ferroptosis, suppressing iron transport and hindering white matter regeneration. Intranasal holo-transferrin (hTF) administration bypassing the BBB alleviates oligodendrocyte iron deficiency and promotes myelin regeneration in hypoperfusion-induced white matter injury. CONCLUSION: The iron imbalance between BVECs and oligodendroglial lineage cells is a potential therapeutic target in hypoperfusion-induced white matter injury.


Asunto(s)
Endocitosis , Células Endoteliales , Hierro , Ratones Endogámicos C57BL , Vaina de Mielina , Oligodendroglía , Sustancia Blanca , Animales , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratones , Oligodendroglía/metabolismo , Oligodendroglía/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Hierro/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Endocitosis/fisiología , Endocitosis/efectos de los fármacos , Masculino , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Encéfalo/metabolismo , Encéfalo/patología , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/patología
19.
J Physiol ; 602(17): 4291-4307, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39106251

RESUMEN

ClC-K/barttin channels are involved in the transepithelial transport of chloride in the kidney and inner ear. Their physiological role is crucial in humans because mutations in CLCNKB or BSND, encoding ClC-Kb and barttin, cause Bartter's syndrome types III and IV, respectively. In vitro experiments have shown that an amino acid change in a proline-tyrosine motif in the C-terminus of barttin stimulates ClC-K currents. The molecular mechanism of this enhancement and whether this potentiation has any in vivo relevance remains unknown. We performed electrophysiological and biochemical experiments in Xenopus oocytes and kidney cells co-expressing ClC-K and barttin constructs. We demonstrated that barttin possesses a YxxØ motif and, when mutated, increases ClC-K plasma membrane stability, resulting in larger currents. To address the impact of mutating this motif in kidney physiology, we generated a knock-in mouse. Comparing wild-type (WT) and knock-in mice under a standard diet, we could not observe any difference in ClC-K and barttin protein levels or localization, either in urinary or plasma parameters. However, under a high-sodium low-potassium diet, known to induce hyperplasia of distal convoluted tubules, knock-in mice exhibit reduced hyperplasia compared to WT mice. In summary, our in vitro and in vivo studies demonstrate that the previously identified PY motif is indeed an endocytic YxxØ motif in which mutations cause a gain of function of the channel. KEY POINTS: It is revealed by mutagenesis and functional experiments that a previously identified proline-tyrosine motif regulating ClC-K plasma membrane levels is indeed an endocytic YxxØ motif. Biochemical characterization of mutants in the YxxØ motif in Xenopus oocytes and human embryonic kidney cells indicates that mutants showed increased plasma membrane levels as a result of an increased stability, resulting in higher function of ClC-K channels. Mutation of this motif does not affect barttin protein expression and subcellular localization in vivo. Knock-in mice with a mutation in this motif, under conditions of a high-sodium low-potassium diet, exhibit less hyperplasia in the distal convoluted tubule than wild-type animals, indicating a gain of function of the channel in vivo.


Asunto(s)
Canales de Cloruro , Endocitosis , Xenopus laevis , Animales , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Endocitosis/fisiología , Ratones , Túbulos Renales Distales/metabolismo , Hiperplasia , Humanos , Femenino , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Ratones Endogámicos C57BL , Células HEK293 , Oocitos/metabolismo , Proteínas de Transporte de Anión
20.
FASEB J ; 38(17): e70018, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39212304

RESUMEN

Albuminuria is characterized by a disruption of the glomerular filtration barrier, which is composed of the fenestrated endothelium, the glomerular basement membrane, and the slit diaphragm. Nephrin is a major component of the slit diaphragm. Apart from hemodynamic effects, Ang II enhances albuminuria by ß-Arrestin2-mediated nephrin endocytosis. Blocking the AT1 receptor with candesartan and irbesartan reduces the Ang II-mediated nephrin-ß-Arrestin2 interaction. The inhibition of MAPK ERK 1/2 blocks Ang II-enhanced nephrin-ß-Arrestin2 binding. ERK 1/2 signaling, which follows AT1 receptor activation, is mediated by G-protein signaling, EGFR transactivation, and ß-Arrestin2 recruitment. A mutant AT1 receptor defective in EGFR transactivation and ß-Arrestin2 recruitment reduces the Ang II-mediated increase in nephrin ß-Arrestin2 binding. The mutation of ß-Arrestin2K11,K12, critical for AT1 receptor binding, completely abrogates the interaction with nephrin, independent of Ang II stimulation. ß-Arrestin2K11R,K12R does not influence nephrin cell surface expression. The data presented here deepen our molecular understanding of a blood-pressure-independent molecular mechanism of AT-1 receptor blockers (ARBs) in reducing albuminuria.


Asunto(s)
Angiotensina II , Endocitosis , Proteínas de la Membrana , Receptor de Angiotensina Tipo 1 , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Angiotensina II/farmacología , Angiotensina II/metabolismo , Humanos , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 1/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Ratones , Albuminuria/metabolismo , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Compuestos de Bifenilo/farmacología , Irbesartán/farmacología , Células HEK293 , Arrestina beta 2/metabolismo , Arrestina beta 2/genética , Bencimidazoles , Tetrazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...