Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.487
Filtrar
1.
Front Immunol ; 15: 1371564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774872

RESUMEN

OTULIN deficiency is a complex disease characterized by a wide range of clinical manifestations, including skin rash, joint welling, lipodystrophy to pulmonary abscess, and sepsis shock. This disease is mechanistically linked to mutations in the OTULIN gene, resulting in an immune disorder that compromises the body's ability to effectively combat pathogens and foreign stimuli. The OTULIN gene is responsible for encoding a deubiquitinating enzyme crucial for hydrolyzing Met1-poly Ub chains, and its dysfunction leads to dysregulated immune responses. Patients with OTULIN deficiency often exhibit an increase in monocytes, including neutrophils and macrophages, along with inflammatory clinical features. The onset of symptoms typically occurs at an early age. However, individuals with OTULIN haploinsufficiency are particularly susceptible to life-threatening staphylococcal infections. Currently, the most effective treatment for patients with OTULIN biallelic mutations involves the use of TNF-blocking agents, which target the dysregulated immune response. In conclusion, OTULIN deficiency presents a complex clinical picture with diverse manifestations, attributed to mutations in the OTULIN gene. Understanding the underlying mechanisms is crucial for developing targeted therapeutic interventions to address this challenging condition. Further research into the pathophysiology of OTULIN deficiency is essential for improving clinical management and outcomes for affected individuals.


Asunto(s)
Inmunidad Innata , Mutación , Humanos , Inmunidad Innata/genética , Animales , Endopeptidasas
2.
Life Sci ; 348: 122674, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692507

RESUMEN

AIMS: Ubiquitin specific peptidase 5 (USP5), a member of deubiquitinating enzymes, has garnered significant attention for its crucial role in cancer progression. This study aims to explore the role of USP5 and its potential molecular mechanisms in cholangiocarcinoma (CCA). MAIN METHODS: To explore the effect of USP5 on CCA, gain-of-function and loss-of-function assays were conducted in human CCA cell lines RBE and HCCC9810. The CCK8, colony-forming assay, EDU, flow cytometry, transwell assay and xenografts were used to assess cell proliferation, migration and tumorigenesis. Western blot and immunohistochemistry were performed to measure the expression of related proteins. Immunoprecipitation and immunofluorescence were applied to identify the interaction between USP5 and Y box-binding protein 1 (YBX1). Ubiquitination assays and cycloheximide chase assays were carried out to confirm the effect of USP5 on YBX1. KEY FINDINGS: We found USP5 is highly expressed in CCA tissues, and upregulated USP5 is required for the cancer progression. Knockdown of USP5 inhibited cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, along with suppressed xenograft tumor growth and metastasis in vivo. Mechanistically, USP5 could interact with YBX1 and stabilize YBX1 by deubiquitination in CCA cells. Additionally, silencing of USP5 hindered the phosphorylation of YBX1 at serine 102 and its subsequent translocation to the nucleus. Notably, the effect induced by USP5 overexpression in CCA cells was reversed by YBX1 silencing. SIGNIFICANCE: Our findings reveal that USP5 is required for cell proliferation, migration and EMT in CCA by stabilizing YBX1, suggesting USP5-YBX1 axis as a promising therapeutic target for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Movimiento Celular , Proliferación Celular , Colangiocarcinoma , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Ratones Desnudos , Proteína 1 de Unión a la Caja Y , Humanos , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Animales , Ratones , Línea Celular Tumoral , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Ubiquitinación , Ratones Endogámicos BALB C , Masculino , Endopeptidasas/metabolismo , Endopeptidasas/genética , Regulación Neoplásica de la Expresión Génica , Femenino
3.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739436

RESUMEN

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Asunto(s)
Antibacterianos , Endopeptidasas , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidasas/farmacología , Endopeptidasas/química , Endopeptidasas/metabolismo , Polimixina B/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiología , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/virología , Ratones , Salmonella typhimurium/virología , Salmonella typhimurium/efectos de los fármacos , Bacteriófagos/fisiología , Bacteriófagos/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/farmacología , Proteínas Virales/química
4.
J Nucl Med ; 65(Suppl 1): 4S-11S, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719234

RESUMEN

Quinoline-based fibroblast activation protein (FAP) inhibitors (FAPIs) have recently emerged as a focal point in global nuclear medicine, underscored by their promising applications in cancer theranostics and the diagnosis of various nononcological conditions. This review offers an in-depth summary of the existing literature on the evolution and use of FAPI tracers in China, tracing their journey from preclinical to clinical research. Moreover, this review also assesses the diagnostic accuracy of FAPI PET for the most common cancers in China, analyzes its impact on oncologic management paradigms, and investigates the potential of FAP-targeted radionuclide therapy in patients with advanced or metastatic cancer. This review also summarizes studies using FAPI PET for nononcologic disorders in China. Thus, this qualitative overview presents a snapshot of China's engagement with FAPI tracers, aiming to guide future research endeavors.


Asunto(s)
Endopeptidasas , Gelatinasas , Proteínas de la Membrana , Serina Endopeptidasas , Investigación Biomédica Traslacional , Humanos , China , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Gelatinasas/antagonistas & inhibidores , Gelatinasas/metabolismo , Serina Endopeptidasas/metabolismo , Trazadores Radiactivos , Animales , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Tomografía de Emisión de Positrones
5.
Ceska Gynekol ; 89(2): 95-101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38704220

RESUMEN

OBJECTIVE: To compare cervical stroma in advanced cervical cancer with the control group; to compare, in the pre-treatment period, hemogram parameters in patients with advanced cervical cancer with the same parameters as the control group; and to verify if there is an association of stromal markers with prognostic factors in cervical cancer. MATERIALS AND METHODS: We prospectively evaluated 16 patients diagnosed with advanced invasive cervical cancer. A control group of 22 patients was used (uterine leiomyoma). Immunohistochemistry was performed to verify the stromal immunostaining of alpha-smooth muscle actin (SMA) and fibroblast activation protein alpha (FAP). Immunostainings and hemogram parameters were compared using Fisher's exact and Mann-Whitney Test, respectively. RESULTS: Strong FAP immunostaining was more frequent in patients with cervical cancer when compared with patients with leiomyoma (P = 0.0002). Regarding SMA, strong immunostaining was also found more in the group of cancer patients compared to the control group (P < 0.00001). The neutrophil-lymphocyte ratio (NLR) values were higher in the cancer patient group compared to the control group (P = 0.0019). There was no association of the parameters studied with prognostic factors. CONCLUSIONS: Strong FAP and SMA immunostaining was found more in patients with cervical cancer when compared to the control group. NLR values were also higher in cervical cancer.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/patología , Persona de Mediana Edad , Adulto , Endopeptidasas , Actinas/análisis , Actinas/metabolismo , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Gelatinasas/análisis , Gelatinasas/metabolismo , Serina Endopeptidasas/análisis , Serina Endopeptidasas/metabolismo , Leiomioma/patología
6.
Protein Eng Des Sel ; 372024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38696722

RESUMEN

The yeast endoplasmic reticulum sequestration and screening (YESS) system is a broadly applicable platform to perform high-throughput biochemical studies of post-translational modification enzymes (PTM-enzymes). This system enables researchers to profile and engineer the activity and substrate specificity of PTM-enzymes and to discover inhibitor-resistant enzyme mutants. In this study, we expand the capabilities of YESS by transferring its functional components to integrative plasmids. The YESS integrative system yields uniform protein expression and protease activities in various configurations, allows one to integrate activity reporters at two independent loci and to split the system between integrative and centromeric plasmids. We characterize these integrative reporters with two viral proteases, Tobacco etch virus (TEVp) and 3-chymotrypsin like protease (3CLpro), in terms of coefficient of variance, signal-to-noise ratio and fold-activation. Overall, we provide a framework for chromosomal-based studies that is modular, enabling rigorous high-throughput assays of PTM-enzymes in yeast.


Asunto(s)
Retículo Endoplásmico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/genética , Procesamiento Proteico-Postraduccional , Genes Reporteros , Endopeptidasas/genética , Endopeptidasas/metabolismo , Plásmidos/genética , Plásmidos/metabolismo
7.
Acta Vet Scand ; 66(1): 20, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769566

RESUMEN

Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.


Asunto(s)
Bacteriófagos , Endopeptidasas , Mastitis Bovina , Staphylococcus , Animales , Mastitis Bovina/microbiología , Mastitis Bovina/tratamiento farmacológico , Bovinos , Endopeptidasas/farmacología , Endopeptidasas/metabolismo , Endopeptidasas/química , Endopeptidasas/genética , Staphylococcus/efectos de los fármacos , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/tratamiento farmacológico , Streptococcus/efectos de los fármacos , Femenino , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/tratamiento farmacológico , Antibacterianos/farmacología
8.
Arch Microbiol ; 206(6): 272, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772980

RESUMEN

Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Biopelículas , Sinergismo Farmacológico , Endopeptidasas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Endopeptidasas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Nisina/farmacología , Nisina/química , Polimixina B/farmacología , Bacteriófagos , Colistina/farmacología , Bacteriófago T4/efectos de los fármacos , Bacteriófago T4/fisiología , Bacteriófago T7/efectos de los fármacos , Bacteriófago T7/genética
9.
Food Funct ; 15(10): 5539-5553, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38712538

RESUMEN

A novel processing method combining short-time ozone pretreatment with hydrolysis has been developed to reduce whey protein allergenicity. The results showed that ozone treatment altered the whey protein spatial structure, initially increasing the surface hydrophobicity index, and then decreasing due to polymer formation as the time increased. Under the optimized conditions of alkaline protease-mediated hydrolysis, a 10-second pre-exposure to ozone significantly promoted the reduction in the IgE binding capacity of whey protein without compromising the hydrolysis efficiency. Compared with whey protein, the degranulation of KU812 cells stimulated by this hydrolysate decreased by 20.54%, 17.99%, and 22.80% for IL-6, ß-hexosaminidase, and histamine, respectively. In vitro simulated gastrointestinal digestion confirmed increased digestibility and reduced allergenicity. Peptidomics identification revealed that short-time ozonation exposed allergen epitopes, allowing alkaline protease to target these epitopes more effectively, particularly those associated with α-lactalbumin. These findings suggest the promising application of this processing method in mitigating the allergenicity of whey protein.


Asunto(s)
Alérgenos , Epítopos , Ozono , Proteína de Suero de Leche , Proteína de Suero de Leche/química , Proteína de Suero de Leche/farmacología , Ozono/química , Ozono/farmacología , Alérgenos/química , Alérgenos/inmunología , Humanos , Epítopos/química , Epítopos/inmunología , Inmunoglobulina E/inmunología , Hidrólisis , Endopeptidasas/metabolismo , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología
10.
Cancer J ; 30(3): 210-217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753756

RESUMEN

ABSTRACT: Fibroblast activation protein inhibitor positron emission tomography (PET) has gained interest for its ability to demonstrate uptake in a diverse range of tumors. Its molecular target, fibroblast activation protein, is expressed in cancer-associated fibroblasts, a major cell type in tumor microenvironment that surrounds various types of cancers. Although existing literature on FAPI PET is largely from single-center studies and case reports, initial findings show promise for some cancer types demonstrating improved imaging when compared with the widely used 18F-fludeoxyglucose PET for oncologic imaging. As we expand our knowledge of the utility of FAPI PET, accurate understanding of noncancerous uptake seen on FAPI PET is crucial for accurate evaluation. In this review, we summarize potential diagnostic and therapeutic applications of radiolabeled FAP inhibitors in oncological and nononcological disease processes.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico , Neoplasias/metabolismo , Tomografía de Emisión de Positrones/métodos , Endopeptidasas , Gelatinasas/antagonistas & inhibidores , Gelatinasas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Radiofármacos , Serina Endopeptidasas/metabolismo , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos
11.
Methods Mol Biol ; 2794: 341-351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630243

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has been widely applied in neuroscience research, enabling the investigation of cellular heterogeneity at the transcriptional level, the characterization of rare cell types, and the detailed analysis of the stochastic nature of gene expression. Isolation of single nerve cells in good health, especially from the adult rodent brain, is the most difficult and critical process for scRNA-seq. Here, we describe methods to optimize protease digestion of brain slices, which enable yield of millions of cells in good health from the adult brain.


Asunto(s)
Astrocitos , Neuronas , Animales , Ratones , RNA-Seq , Encéfalo , Endopeptidasas , Suspensiones
13.
Am J Physiol Cell Physiol ; 326(4): C1193-C1202, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581669

RESUMEN

Satellite cells (SCs) and fibroadipogenic progenitors (FAPs) are progenitor populations found in muscle that form new myofibers postinjury. Muscle development, regeneration, and tissue-engineering experiments require robust progenitor populations, yet their isolation and expansion are difficult given their scarcity in muscle, limited muscle biopsy sizes in humans, and lack of methodological detail in the literature. Here, we investigated whether a dispase and collagenase type 1 and 2 cocktail could allow dual isolation of SCs and FAPs, enabling significantly increased yield from human skeletal muscle. Postdissociation, we found that single cells could be sorted into CD56 + CD31-CD45- (SC) and CD56-CD31-CD45- (FAP) cell populations, expanded in culture, and characterized for lineage-specific marker expression and differentiation capacity; we obtained ∼10% SCs and ∼40% FAPs, with yields twofold better than what is reported in current literature. SCs were PAX7+ and retained CD56 expression and myogenic fusion potential after multiple passages, expanding up to 1012 cells. Conversely, FAPs expressed CD140a and differentiated into either fibroblasts or adipocytes upon induction. This study demonstrates robust isolation of both SCs and FAPs from the same muscle sample with SC recovery more than two times higher than previously reported, which could enable translational studies for muscle injuries.NEW & NOTEWORTHY We demonstrated that a dispase/collagenase cocktail allows for simultaneous isolation of SCs and FAPs with 2× higher SC yield compared with other studies. We provide a thorough characterization of SC and FAP in vitro expansion that other studies have not reported. Following our dissociation, SCs and FAPs were able to expand by up to 1012 cells before reaching senescence and maintained differentiation capacity in vitro demonstrating their efficacy for clinical translation for muscle injury.


Asunto(s)
Endopeptidasas , Músculo Esquelético , Células Satélite del Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Diferenciación Celular/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Fibroblastos/metabolismo
14.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611874

RESUMEN

Oral cancer is a common malignancy with a high mortality rate. Although surgery is the best treatment option for patients with cancer, this approach is ineffective for advanced metastases. Molecular agents are irreplaceable in preventing and treating distant metastases. This review aims to summarise the molecular agents used for the treatment of oral cancer in the last decade and describe their sources and curative effects. These agents are classified into phenols, isothiocyanates, anthraquinones, statins, flavonoids, terpenoids, and steroids. The mechanisms of action of these agents include regulating the expression of cell signalling pathways and related proteases to affect the proliferation, autophagy, migration, apoptosis, and other biological aspects of oral cancer cells. This paper may serve as a reference for subsequent studies on the treatment of oral cancer.


Asunto(s)
Neoplasias de la Boca , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Antraquinonas , Apoptosis , Autofagia , Endopeptidasas
15.
Nutrients ; 16(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612961

RESUMEN

Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.


Asunto(s)
Gelatinasas , Metaloproteinasa 9 de la Matriz , Humanos , Adolescente , Metaloproteinasa 2 de la Matriz , Cloruro de Sodio , Cloruro de Sodio Dietético , HDL-Colesterol , Endopeptidasas
16.
Nutrients ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38613010

RESUMEN

Immunoreactive gluten peptides that are not digested by peptidases produced by humans can trigger celiac disease, allergy and non-celiac gluten hypersensitivity. The aim of this study was to evaluate the ability of selected probiotic strains to hydrolyze immunoreactive gliadin peptides and to identify peptidase-encoding genes in the genomes of the most efficient strains. Residual gliadin immunoreactivity was measured after one- or two-step hydrolysis using commercial enzymes and bacterial peptidase preparations by G12 and R5 immunoenzymatic assays. Peptidase preparations from Lacticaseibacillus casei LC130, Lacticaseibacillus paracasei LPC100 and Streptococcus thermophilus ST250 strains significantly reduced the immunoreactivity of gliadin peptides, including 33-mer, and this effect was markedly higher when a mixture of these strains was used. In silico genome analyses of L. casei LC130 and L. paracasei LPC100 revealed the presence of genes encoding peptidases with the potential to hydrolyze bonds in proline-rich peptides. This suggests that L. casei LC130, L. paracasei LPC100 and S. thermophilus ST250, especially when used as a mixture, have the ability to hydrolyze immunoreactive gliadin peptides and could be administered to patients on a restricted gluten-free diet to help treat gluten-related diseases.


Asunto(s)
Hipersensibilidad , Lactobacillales , Probióticos , Humanos , Glútenes , Lactobacillales/genética , Gliadina , Péptidos , Péptido Hidrolasas , Endopeptidasas
17.
Microb Biotechnol ; 17(4): e14465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38593316

RESUMEN

Bacteriophage endolysin is a novel antibacterial agent that has attracted much attention in the prevention and control of drug-resistant bacteria due to its unique mechanism of hydrolysing peptidoglycans. Although endolysin exhibits excellent bactericidal effects on Gram-positive bacteria, the presence of the outer membrane of Gram-negative bacteria makes it difficult to lyse them extracellularly, thus limiting their application field. To enhance the extracellular activity of endolysin and facilitate its crossing through the outer membrane of Gram-negative bacteria, researchers have adopted physical, chemical, and molecular methods. This review summarizes the characterization of endolysin targeting Gram-negative bacteria, strategies for endolysin modification, and the challenges and future of engineering endolysin against Gram-negative bacteria in clinical applications, to promote the application of endolysin in the prevention and control of Gram-negative bacteria.


Asunto(s)
Antibacterianos , Bacteriófagos , Antibacterianos/farmacología , Antibacterianos/química , Endopeptidasas/genética , Endopeptidasas/farmacología , Bacteriófagos/genética , Bacterias Gramnegativas
18.
Elife ; 122024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619391

RESUMEN

Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Animales , Endopeptidasas , Mamíferos , Inhibidores de Proteasoma/farmacología
19.
J Biomed Sci ; 31(1): 36, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622637

RESUMEN

BACKGROUND: This study addresses the urgent need for infection control agents driven by the rise of drug-resistant pathogens such as Acinetobacter baumannii. Our primary aim was to develop and assess a novel endolysin, Tha-PA90, designed to combat these challenges. METHODS: Tha-PA90 incorporates an antimicrobial peptide (AMP) called thanatin at its N-terminus, enhancing bacterial outer membrane permeability and reducing host immune responses. PA90 was selected as the endolysin component. The antibacterial activity of the purified Tha-PA90 was evaluated using an in vitro colony-forming unit (CFU) reduction assay and a membrane permeability test. A549 cells were utilized to measure the penetration into the cytosol and the cytotoxicity of Tha-PA90. Finally, infection control was monitored in A. baumannii infected mice following the intraperitoneal administration of Tha-PA90. RESULTS: Tha-PA90 demonstrated remarkable in vitro efficacy, completely eradicating A. baumannii strains, even drug-resistant variants, at a low concentration of 0.5 µM. Notably, it outperformed thanatin, achieving only a < 3-log reduction at 4 µM. Tha-PA90 exhibited 2-3 times higher membrane permeability than a PA90 and thanatin mixture or PA90 alone. Tha-PA90 was found within A549 cells' cytosol with no discernible cytotoxic effects. Furthermore, Tha-PA90 administration extended the lifespan of A. baumannii-infected mice, reducing bacterial loads in major organs by up to 3 logs. Additionally, it decreased proinflammatory cytokine levels (TNF-α and IL-6), reducing the risk of sepsis from rapid bacterial lysis. Our findings indicate that Tha-PA90 is a promising solution for combating drug-resistant A. baumannii. Its enhanced efficacy, low cytotoxicity, and reduction of proinflammatory responses render it a potential candidate for infection control. CONCLUSIONS: This study underscores the significance of engineered endolysins in addressing the pressing challenge of drug-resistant pathogens and offers insights into improved infection management strategies.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Endopeptidasas , Animales , Ratones , Péptidos Antimicrobianos , Péptidos Catiónicos Antimicrobianos , Antibacterianos/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
20.
Biol Direct ; 19(1): 31, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658981

RESUMEN

BACKGROUND: Deubiquitinating enzymes (DUBs) cleave ubiquitin on substrate molecules to maintain protein stability. DUBs reportedly participate in the tumorigenesis and tumour progression of hepatocellular carcinoma (HCC). OTU deubiquitinase 5 (OTUD5), a DUB family member, has been recognized as a critical regulator in bladder cancer, breast cancer and HCC. However, the expression and biological function of OTUD5 in HCC are still controversial. RESULTS: We determined that the expression of OTUD5 was significantly upregulated in HCC tissues. High levels of OTUD5 were also detected in most HCC cell lines. TCGA data analysis demonstrated that high OTUD5 expression indicated poorer overall survival in HCC patients. OTUD5 silencing prominently suppressed HCC cell proliferation, while its overexpression markedly enhanced the proliferation of HCC cells. Mass spectrometry analysis revealed solute carrier family 38 member 1 (SLC38A1) as a candidate downstream target protein of OTUD5. Coimmunoprecipitation analysis confirmed the interaction between OTUD5 and SLC38A1. OTUD5 knockdown reduced and OTUD5 overexpression increased SLC38A1 protein levels in HCC cells. However, OTUD5 alteration had no effect on SLC38A1 mRNA expression. OTUD5 maintained SLC38A1 stability by preventing its ubiquitin-mediated proteasomal degradation. SLC38A1 silencing prominently attenuated the OTUD5-induced increase in HCC cell proliferation. Finally, OTUD5 knockdown markedly suppressed the growth of HCC cells in vivo. CONCLUSIONS: OTUD5 is an oncogene in HCC. OTUD5 contributes to HCC cell proliferation by deubiquitinating and stabilizing SLC38A1. These results may provide a theoretical basis for the development of new anti-HCC drugs.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA