Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.261
Filtrar
1.
Clin Sci (Lond) ; 138(11): 635-644, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38785409

RESUMEN

The endothelin family of peptides has long been recognized as a physiological regulator of diverse biological functions and mechanistically involved in various disease states, encompassing, among others, the cardiovascular system, the kidney, and the nervous system. Pharmacological blockade of the endothelin system, however, has encountered strong obstacles in its entry into the clinical mainstream, having obtained only a few proven indications until recently. This translational gap has been attributable predominantly to the relevant side effects associated with endothelin receptor antagonism (ERA), particularly fluid retention. Of recent, however, an expanding understanding of the pathophysiological processes involving endothelin, in conjunction with the development of new antagonists of endothelin receptors or adjustment of their doses, has driven a flourish of new clinical trials. The favorable results of some of them have extended the proven indications for ET targeting to a variety of clinical conditions, including resistant arterial hypertension and glomerulopathies. In addition, on the ground of strong preclinical evidence, other studies are ongoing to test the potential benefits of ERA in combination with other treatments, such as sodium-glucose co-transporter 2 inhibition in fluid retentive states or anti-cancer therapies in solid tumors. Furthermore, antibodies providing long-term blockade of endothelin receptors are under testing to overcome the short half-life of most small molecule endothelin antagonists. These efforts may yet bring new life to the translation of endothelin targeting strategies in clinical practice.


Asunto(s)
Antagonistas de los Receptores de Endotelina , Endotelinas , Humanos , Antagonistas de los Receptores de Endotelina/uso terapéutico , Endotelinas/metabolismo , Animales , Receptores de Endotelina/metabolismo
2.
Clin Sci (Lond) ; 138(11): 617-634, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38785410

RESUMEN

The tumor microenvironment (TME) plays a central role in the development of cancer. Within this complex milieu, the endothelin (ET) system plays a key role by triggering epithelial-to-mesenchymal transition, causing degradation of the extracellular matrix and modulating hypoxia response, cell proliferation, composition, and activation. These multiple effects of the ET system on cancer progression have prompted numerous preclinical studies targeting the ET system with promising results, leading to considerable optimism for subsequent clinical trials. However, these clinical trials have not lived up to the high expectations; in fact, the clinical trials have failed to demonstrate any substantiated benefit of targeting the ET system in cancer patients. This review discusses the major and recent advances of the ET system with respect to TME and comments on past and ongoing clinical trials of the ET system.


Asunto(s)
Endotelinas , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Endotelinas/metabolismo , Endotelinas/fisiología , Animales , Transición Epitelial-Mesenquimal , Transducción de Señal
3.
Clin Sci (Lond) ; 138(S1): 1, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38803285

RESUMEN

The 18th International Conference on Endothelin, co-organized by the International Advisory Board (IAB) on Endothelin and the Fondazione Internazionale Menarini, was held in Rome, Italy, on October 11th-14th, 2023. More than 100 attendees from all over the world participated in the conference, including trainees, early-career and established investigators from several European countries (Italy, France, Switzerland, Sweden, the Netherlands, Belgium, the United Kingdom (UK), Germany, the Czech Republic), USA, Canada, Japan, Australia, Brazil, China, Taiwan, and Indonesia.


Asunto(s)
Endotelinas , Humanos , Endotelinas/metabolismo , Endotelinas/fisiología , Animales
4.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397097

RESUMEN

Systemic acid-base status is primarily determined by the interplay of net acid production (NEAP) arising from metabolism of ingested food stuffs, buffering of NEAP in tissues, generation of bicarbonate by the kidney, and capture of any bicarbonate filtered by the kidney. In chronic kidney disease (CKD), acid retention may occur when dietary acid production is not balanced by bicarbonate generation by the diseased kidney. Hormones including aldosterone, angiotensin II, endothelin, PTH, glucocorticoids, insulin, thyroid hormone, and growth hormone can affect acid-base balance in different ways. The levels of some hormones such as aldosterone, angiotensin II and endothelin are increased with acid accumulation and contribute to an adaptive increase in renal acid excretion and bicarbonate generation. However, the persistent elevated levels of these hormones can damage the kidney and accelerate progression of CKD. Measures to slow the progression of CKD have included administration of medications which inhibit the production or action of deleterious hormones. However, since metabolic acidosis accompanying CKD stimulates the secretion of several of these hormones, treatment of CKD should also include administration of base to correct the metabolic acidosis.


Asunto(s)
Acidosis , Insuficiencia Renal Crónica , Humanos , Equilibrio Ácido-Base/fisiología , Bicarbonatos/metabolismo , Aldosterona/metabolismo , Angiotensina II/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Acidosis/metabolismo , Endotelinas/metabolismo , Sistema Endocrino/metabolismo
5.
Biol Reprod ; 110(1): 185-197, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37823770

RESUMEN

Obstructive sleep apnea is a recognized risk factor for gestational hypertension, yet the exact mechanism behind this association remains unclear. Here, we tested the hypothesis that intermittent hypoxia, a hallmark of obstructive sleep apnea, induces gestational hypertension through perturbed endothelin-1 signaling. Pregnant Sprague-Dawley rats were subjected to normoxia (control), mild intermittent hypoxia (10.5% O2), or severe intermittent hypoxia (6.5% O2) from gestational days 10-21. Blood pressure was monitored. Plasma was collected and mesenteric arteries were isolated for myograph and protein analyses. The mild and severe intermittent hypoxia groups demonstrated elevated blood pressure, reduced plasma nitrate/nitrite, and unchanged endothelin-1 levels compared to the control group. Western blot analysis revealed decreased expression of endothelin type B receptor and phosphorylated endothelial nitric oxide synthase, while the levels of endothelin type A receptor and total endothelial nitric oxide synthase remained unchanged following intermittent hypoxia exposure. The contractile responses to potassium chloride, phenylephrine, and endothelin-1 were unaffected in endothelium-denuded arteries from mild and severe intermittent hypoxia rats. However, mild and severe intermittent hypoxia rats exhibited impaired endothelium-dependent vasorelaxation responses to endothelin type B receptor agonist IRL-1620 and acetylcholine compared to controls. Endothelium denudation abolished IRL-1620-induced vasorelaxation, supporting the involvement of endothelium in endothelin type B receptor-mediated relaxation. Treatment with IRL-1620 during intermittent hypoxia exposure significantly attenuated intermittent hypoxia-induced hypertension in pregnant rats. This was associated with elevated circulating nitrate/nitrite levels, enhanced endothelin type B receptor expression, increased endothelial nitric oxide synthase activation, and improved vasodilation responses. Our data suggested that intermittent hypoxia exposure during gestation increases blood pressure in pregnant rats by suppressing endothelin type B receptor-mediated signaling, providing a molecular mechanism linking intermittent hypoxia and gestational hypertension.


Asunto(s)
Hipertensión Inducida en el Embarazo , Apnea Obstructiva del Sueño , Humanos , Embarazo , Femenino , Ratas , Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas Sprague-Dawley , Endotelina-1/metabolismo , Endotelina-1/farmacología , Hipertensión Inducida en el Embarazo/etiología , Hipertensión Inducida en el Embarazo/metabolismo , Nitratos/metabolismo , Nitratos/farmacología , Nitritos/metabolismo , Nitritos/farmacología , Vasodilatación , Endotelinas/metabolismo , Endotelinas/farmacología , Hipoxia/metabolismo , Receptor de Endotelina A/metabolismo , Arterias Mesentéricas , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Endotelio Vascular
6.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078652

RESUMEN

Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.


Asunto(s)
Endotelina-1 , Endotelinas , Humanos , Endotelinas/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Transducción de Señal/fisiología , Cresta Neural/metabolismo
7.
Indian J Pharmacol ; 55(5): 307-314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929409

RESUMEN

BACKGROUND: The overexpression of P-glycoprotein (P-gp) contributes to drug resistance in patients with epilepsy, and the change of P-gp expression located at the blood-brain barrier alienates the anti-seizure effects of P-gp substrates. Thus, the present study explored the effect of fingolimod (FTY720) acting through an endothelin-sphingolipid pathway on P-gp-induced pentylenetetrazol (PTZ)-kindled phenobarbital (PB)-resistant rats. MATERIALS AND METHODS: PTZ kindling (30 mg/kg; i.p.) and PB (40 mg/kg; orally) were used to develop an animal model of refractory epilepsy. The effect of Fingolimod on seizure score (Racine scale), plasma and brain levels of PB (high-performance liquid chromatography), and blood-brain barrier permeability (Evans blue dye) was determined. Further, Fingolimod's neuroprotective effect was determined by measuring the levels of various inflammatory cytokines, oxidative stress parameters, and neurotrophic factors in rat brain homogenate. The Fingolimod's effect on P-gp expression was estimated by reverse transcriptase-polymerase chain reaction and immunohistochemistry in rat brain. The H and E staining was done to determine the neuronal injury. RESULTS: Fingolimod significantly (P < 0.001) reduced the seizure score in a dose-dependent manner and alleviated the blood-brain barrier permeability. It decreased the P-gp expression, which further increased the brain PB concentration. Fingolimod significantly (P < 0.01) reduced oxidative stress as well as inflammation. Moreover, it attenuated the raised neuronal injury score in a resistant model of epilepsy. CONCLUSION: The modulation of the P-gp expression by Fingolimod improved drug delivery to the brain in an animal model of refractory epilepsy. Therefore, S1P signaling could serve as an additional therapeutic target to overcome refractoriness.


Asunto(s)
Epilepsia Refractaria , Clorhidrato de Fingolimod , Animales , Humanos , Ratas , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Epilepsia Refractaria/tratamiento farmacológico , Endotelinas/metabolismo , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Modelos Animales , Óxido Nítrico/metabolismo , Pentilenotetrazol/uso terapéutico , Convulsiones/tratamiento farmacológico , Esfingolípidos/metabolismo
8.
J Virol ; 97(10): e0111223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796127

RESUMEN

IMPORTANCE: Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identify potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.


Asunto(s)
Endotelinas , Insulina , Fiebre del Nilo Occidental , Animales , Humanos , Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/virología , Insulina/metabolismo , Transducción de Señal , Fiebre del Nilo Occidental/inmunología , Fiebre del Nilo Occidental/metabolismo , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/fisiología , Endotelinas/inmunología , Endotelinas/metabolismo
9.
J Biochem ; 174(4): 317-325, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37491722

RESUMEN

Endothelins and their receptors, type A (ETA) and type B (ETB), modulate vital cellular processes, including growth, survival, invasion and angiogenesis, through multiple G proteins. This review highlights the structural determinations of these receptors by X-ray crystallography and cryo-electron microscopy, and their activation mechanisms by endothelins. Explorations of the conformational changes upon receptor activation have provided insights into the unique G-protein coupling feature of the endothelin receptors. The review further delves into the binding modes of the clinical antagonist and the inverse agonists. These findings significantly contribute to understanding the mechanism of G-protein activation and have potential implications for drug development, particularly in the context of vasodilatory antagonists and agonists targeting the endothelin receptors.


Asunto(s)
Agonismo Inverso de Drogas , Endotelinas , Microscopía por Crioelectrón , Endotelinas/metabolismo , Receptores de Endotelina/química , Receptores de Endotelina/metabolismo , Transducción de Señal
10.
Curr Vasc Pharmacol ; 21(4): 246-256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37349999

RESUMEN

BACKGROUND: We previously reported that endothelins (ETs) regulate tyrosine hydroxylase (TH) activity and expression in the olfactory bulb (OB) of normotensive and hypertensive animals. Applying an ET receptor type A (ETA) antagonist to the brain suggested that endogenous ETs bind to ET receptor type B (ETB) to elicit effects. OBJECTIVE: The aim of the present work was to evaluate the role of central ETB stimulation on the regulation of blood pressure (BP) and the catecholaminergic system in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. METHODS: DOCA-salt hypertensive rats were infused for 7 days with cerebrospinal fluid or IRL-1620 (ETB receptor agonist) through a cannula placed in the lateral brain ventricle. Systolic BP (SBP) and heart rate were recorded by plethysmography. The expression of TH and its phosphorylated forms in the OB were determined by immunoblotting, TH activity by a radioenzymatic assay, and TH mRNA by quantitative real-time polymerase chain reaction. RESULTS: Chronic administration of IRL-1620 decreased SBP in hypertensive rats but not in normotensive animals. Furthermore, the blockade of ETB receptors also decreased TH-mRNA in DOCA-salt rats, but it did not modify TH activity or protein expression. CONCLUSION: These findings suggest that brain ETs through the activation of ETB receptors contribute to SBP regulation in DOCA-salt hypertension. However, the catecholaminergic system in the OB does not appear to be conclusively involved although mRNA TH was reduced. Present and previous findings suggest that in this salt-sensitive animal model of hypertension, the OB contributes to chronic BP elevation.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Ratas , Animales , Acetato de Desoxicorticosterona/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/farmacología , Bulbo Olfatorio/metabolismo , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Presión Sanguínea , Endotelinas/metabolismo , Endotelinas/farmacología , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , ARN Mensajero/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Endotelina-1/farmacología , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo
11.
J Pathol ; 260(3): 353-364, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37256677

RESUMEN

Alport syndrome (AS), a type IV collagen disorder, leads to glomerular disease and, in some patients, hearing loss. AS is treated with inhibitors of the renin-angiotensin system; however, a need exists for novel therapies, especially those addressing both major pathologies. Sparsentan is a single-molecule dual endothelin type-A and angiotensin II type 1 receptor antagonist (DEARA) under clinical development for focal segmental glomerulosclerosis and IgA nephropathy. We report the ability of sparsentan to ameliorate both renal and inner ear pathologies in an autosomal-recessive Alport mouse model. Sparsentan significantly delayed onset of glomerulosclerosis, interstitial fibrosis, proteinuria, and glomerular filtration rate decline. Sparsentan attenuated glomerular basement membrane defects, blunted mesangial filopodial invasion into the glomerular capillaries, increased lifespan more than losartan, and lessened changes in profibrotic/pro-inflammatory gene pathways in both the glomerular and the renal cortical compartments. Notably, treatment with sparsentan, but not losartan, prevented accumulation of extracellular matrix in the strial capillary basement membranes in the inner ear and reduced susceptibility to hearing loss. Improvements in lifespan and in renal and strial pathology were observed even when sparsentan was initiated after development of renal pathologies. These findings suggest that sparsentan may address both renal and hearing pathologies in Alport syndrome patients. © 2023 Travere Therapeutics, Inc and The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Oído Interno , Nefritis Hereditaria , Animales , Ratones , Nefritis Hereditaria/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Angiotensina/uso terapéutico , Membrana Basal Glomerular/metabolismo , Colágeno Tipo IV/genética , Oído Interno/metabolismo , Oído Interno/patología , Endotelinas/metabolismo , Endotelinas/uso terapéutico
12.
Elife ; 122023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37096326

RESUMEN

The endothelin ETB receptor is a promiscuous G-protein coupled receptor that is activated by vasoactive peptide endothelins. ETB signaling induces reactive astrocytes in the brain and vasorelaxation in vascular smooth muscle. Consequently, ETB agonists are expected to be drugs for neuroprotection and improved anti-tumor drug delivery. Here, we report the cryo-electron microscopy structure of the endothelin-1-ETB-Gi complex at 2.8 Å resolution, with complex assembly stabilized by a newly established method. Comparisons with the inactive ETB receptor structures revealed how endothelin-1 activates the ETB receptor. The NPxxY motif, essential for G-protein activation, is not conserved in ETB, resulting in a unique structural change upon G-protein activation. Compared with other GPCR-G-protein complexes, ETB binds Gi in the shallowest position, further expanding the diversity of G-protein binding modes. This structural information will facilitate the elucidation of G-protein activation and the rational design of ETB agonists.


Asunto(s)
Endotelina-1 , Endotelinas , Endotelina-1/metabolismo , Microscopía por Crioelectrón , Receptor de Endotelina B/metabolismo , Endotelinas/metabolismo , Proteínas de Unión al GTP/metabolismo
13.
Cells ; 12(5)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899860

RESUMEN

Traumatic brain injury (TBI) is an intracranial injury caused by accidents, falls, or sports. The production of endothelins (ETs) is increased in the injured brain. ET receptors are classified into distinct types, including ETA receptor (ETA-R) and ETB receptor (ETB-R). ETB-R is highly expressed in reactive astrocytes and upregulated by TBI. Activation of astrocytic ETB-R promotes conversion to reactive astrocytes and the production of astrocyte-derived bioactive factors, including vascular permeability regulators and cytokines, which cause blood-brain barrier (BBB) disruption, brain edema, and neuroinflammation in the acute phase of TBI. ETB-R antagonists alleviate BBB disruption and brain edema in animal models of TBI. The activation of astrocytic ETB receptors also enhances the production of various neurotrophic factors. These astrocyte-derived neurotrophic factors promote the repair of the damaged nervous system in the recovery phase of patients with TBI. Thus, astrocytic ETB-R is expected to be a promising drug target for TBI in both the acute and recovery phases. This article reviews recent observations on the role of astrocytic ETB receptors in TBI.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/etiología , Lesiones Traumáticas del Encéfalo/complicaciones , Endotelinas/metabolismo , Humanos
14.
J Hypertens ; 41(3): 369-379, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36728915

RESUMEN

Endothelial cell function is mediated by different mechanisms in different vascular beds. Moreover, in humans, endothelial cell dysfunction triggers and accelerates the progression of cardiovascular and chronic kidney diseases. Progression of such diseases can be in part mitigated by the control of cardiovascular risk factors and drugs targeting different systems, including endothelin receptor antagonists (ERAs), renin-angiotensin aldosterone antagonists and agents affecting glucose metabolism, all of which were shown to improve endothelial cell function. In recent years, the microRNAs, which are endogenous regulators of gene expression, have been identified as transmitters of information from endothelial cells to vascular smooth muscle cells, suggesting that they can entail tools to assess the endothelial cell dysfunction in arterial hypertension and target for pharmacologic intervention. This article critically reviews current challenges and limitations of available techniques for the invasive and noninvasive assessment of endothelial cell function, and also discusses therapeutic aspects as well as directions for future research in the areas of endothelial cell biology and pathophysiology in humans.


Asunto(s)
Hipertensión , Insuficiencia Renal Crónica , Humanos , Células Endoteliales/metabolismo , Endotelinas/metabolismo , Endotelinas/uso terapéutico , Endotelio Vascular , Endotelina-1/metabolismo
15.
Nat Cell Biol ; 25(2): 222-234, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36717629

RESUMEN

Substantial follicle remodelling during the regression phase of the hair growth cycle is coordinated by the contraction of the dermal sheath smooth muscle, but how dermal-sheath-generated forces are regulated is unclear. Here, we identify spatiotemporally controlled endothelin signalling-a potent vasoconstriction-regulating pathway-as the key activating mechanism of dermal sheath contraction. Pharmacological blocking or genetic ablation of both endothelin receptors, ETA and ETB, impedes dermal sheath contraction and halts follicle regression. Epithelial progenitors at the club hair-epithelial strand bottleneck produce the endothelin ligand ET-1, which is required for follicle regression. ET signalling in dermal sheath cells and downstream contraction is dynamically regulated by cytoplasmic Ca2+ levels through cell membrane and sarcoplasmic reticulum calcium channels. Together, these findings illuminate an epithelial-mesenchymal interaction paradigm in which progenitors-destined to undergo programmed cell death-control the contraction of the surrounding sheath smooth muscle to orchestrate homeostatic tissue regression and reorganization for the next stem cell activation and regeneration cycle.


Asunto(s)
Endotelinas , Folículo Piloso , Folículo Piloso/metabolismo , Endotelinas/metabolismo , Endotelinas/farmacología , Receptores de Endotelina/metabolismo , Músculo Liso/metabolismo , Transducción de Señal , Contracción Muscular
16.
J Cancer Res Clin Oncol ; 149(9): 5687-5696, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36542159

RESUMEN

PURPOSE: Changes in the activity of endothelins and their receptors may promote neoplastic processes. They can be caused by epigenetic modifications and modulators, but little is known about endothelin-3 (EDN3), particularly in endometrial cancer. The aim of the study was to determine the expression profile of endothelin family and their interactions with miRNAs, and to assess the degree of EDN3 methylation. METHODS: The study enrolled 45 patients with endometrioid endometrial cancer and 30 patients without neoplastic changes. The expression profile of endothelins and their receptors was determined with mRNA microarrays and RT-qPCR. The miRNA prediction was based on the miRNA microarray experiment and the mirDB tool. The degree of EDN3 methylation was assessed by MSP. RESULTS: EDN1 and EDNRA were overexpressed regardless of endometrial cancer grade, which may be due to the lack of regulatory effect of miR-130a-3p and miR-485-3p, respectively. In addition, EDN3 and EDNRB were significantly downregulated. CONCLUSION: The endothelial axis is disturbed in endometrioid endometrial cancer. The observed silencing of EDN3 activity may be mainly due to DNA methylation.


Asunto(s)
Carcinoma Endometrioide , Neoplasias Endometriales , MicroARNs , Femenino , Humanos , Endotelina-3/genética , Endotelina-3/metabolismo , Endotelinas/genética , Endotelinas/metabolismo , MicroARNs/genética , Receptor de Endotelina A/genética , Neoplasias Endometriales/genética , Carcinoma Endometrioide/genética , Regulación Neoplásica de la Expresión Génica , Endotelina-1/genética , Endotelina-1/metabolismo
17.
Sci Transl Med ; 14(675): eabf5074, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36516266

RESUMEN

Acute kidney injury (AKI) is common and associated with increased risks of cardiovascular and chronic kidney disease. Causative molecular/physiological pathways are poorly defined. There are no therapies to improve long-term outcomes. An activated endothelin system promotes cardiovascular and kidney disease progression. We hypothesized a causal role for this in the transition of AKI to chronic disease. Plasma endothelin-1 was threefold higher; urine endothelin-1 was twofold higher; and kidney preproendothelin-1, endothelin-A, and endothelin-B receptor message up-regulated in patients with AKI. To show causality, AKI was induced in mice by prolonged ischemia with a 4-week follow-up. Ischemic injury resulted in hypertension, endothelium-dependent and endothelium-independent macrovascular and microvascular dysfunction, and an increase in circulating inflammatory Ly6Chigh monocytes. In the kidney, we observed fibrosis, microvascular rarefaction, and inflammation. Administration of endothelin-A antagonist, but not dual endothelin-A/B antagonist, normalized blood pressure, improved macrovascular and microvascular function, and prevented the transition of AKI to CKD. Endothelin-A blockade reduced circulating and renal proinflammatory Ly6Chigh monocytes and B cells, and promoted recruitment of anti-inflammatory Ly6Clow monocytes to the kidney. Blood pressure reduction alone provided no benefits; blood pressure reduction alongside blockade of the endothelin system was as effective as endothelin-A antagonism in mitigating the long-term sequelae of AKI in mice. Our studies suggest up-regulation of the endothelin system in patients with AKI and show in mice that existing drugs that block the endothelin system, particularly those coupling vascular support and anti-inflammatory action, can prevent the transition of AKI to chronic kidney and cardiovascular disease.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Ratones , Animales , Endotelina-1/metabolismo , Endotelina-1/farmacología , Endotelina-1/uso terapéutico , Riñón/metabolismo , Lesión Renal Aguda/complicaciones , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Progresión de la Enfermedad , Endotelinas/metabolismo , Endotelinas/farmacología , Endotelinas/uso terapéutico , Isquemia/complicaciones
18.
Biochem Pharmacol ; 205: 115263, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36174768

RESUMEN

The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.


Asunto(s)
Antihipertensivos , Hipertensión , Humanos , Antihipertensivos/farmacología , Músculo Liso Vascular/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Neprilisina/metabolismo , Óxido Nítrico/metabolismo , Hipertensión Esencial/tratamiento farmacológico , Hipertensión Esencial/metabolismo , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Receptor de Endotelina A/metabolismo , Hipertensión/metabolismo , Sistema Renina-Angiotensina , Endotelinas/metabolismo , Endotelinas/farmacología , Endotelinas/uso terapéutico , Antagonistas de los Receptores de Endotelina/farmacología , Receptores de Angiotensina/metabolismo , Receptores de Angiotensina/uso terapéutico , Glucosa/metabolismo , Sodio/metabolismo , Sodio/farmacología , Sodio/uso terapéutico
19.
Inflammopharmacology ; 30(5): 1555-1567, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36029362

RESUMEN

A chronic inflammatory disorder, rheumatoid arthritis (RA) is an autoimmune and systemic disease characterized by progressive and prolonged destruction of joints. This results in increased mortality, physical disability and destruction. Cardiovascular disorders are one of the primary causes of mortality in patients with RA. It is multifactorial in nature and includes genetic, environmental and demographic factors which contribute to the severity of disease. Endothelin-1 (ET-1) is a peptide which acts as a potent vasoconstrictor and is generated through vascular smooth muscle and endothelial cells. Endothelins may be responsible for RA, as under certain circumstances they produce reactive oxygen species which further promote the production of pro-inflammatory cytokines. This enhances the production of superoxide anion, which activates pro-inflammatory cytokines, resulting in RA. The aim of this review is to elucidate the role of endothelin in the progression of RA. This review also summarizes the natural and synthetic anti-inflammatory drugs which have provided remarkable insights in targeting endothelin.


Asunto(s)
Artritis Reumatoide , Endotelina-1 , Antiinflamatorios/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Citocinas , Células Endoteliales , Endotelina-1/metabolismo , Endotelinas/metabolismo , Humanos , Especies Reactivas de Oxígeno , Superóxidos , Vasoconstrictores/uso terapéutico
20.
Am J Physiol Endocrinol Metab ; 322(6): E508-E516, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35373585

RESUMEN

Increased adiposity is associated with dysregulation of the endothelin system, both of which increase the risk of cardiovascular disease (CVD). Preclinical data indicate that endothelin dysregulation also reduces resting energy expenditure (REE). The objective was to test the hypothesis that endothelin receptor antagonism will increase REE in people with obesity compared with healthy weight individuals. Using a double blind, placebo-controlled, crossover design, 32 participants [healthy weight (HW): n = 16, BMI: 21.3 ± 2.8 kg/m2, age: 26 ± 7 yr and overweight/obese (OB): n = 16, BMI: 33.5 ± 9.5 kg/m2, age: 31 ± 6 yr] were randomized to receive either 125 mg of bosentan (ETA/B antagonism) or placebo twice per day for 3 days. Breath-by-breath gas exchange data were collected and REE was assessed by indirect calorimetry. Venous blood samples were analyzed for concentrations of endothelin-1 (ET-1). Treatment with bosentan increased plasma ET-1 in both OB and HW groups. Within the OB group, the changes in absolute REE (PLA: -77.6 ± 127.6 vs. BOS: 72.2 ± 146.6 kcal/day; P = 0.046). The change in REE was not different following either treatment in the HW group. Overall, absolute plasma concentrations of ET-1 following treatment with bosentan were significantly associated with kcal/day of fat (r = 0.488, P = 0.005), percentage of fat utilization (r = 0.415, P = 0.020), and inversely associated with the percentage of carbohydrates (r = -0.419, P = 0.019), and respiratory exchange ratio (r = -0.407, P = 0.023). Taken together, these results suggest that modulation of the endothelin system may represent a novel therapeutic approach to increase both resting metabolism and caloric expenditure, and reduce CVD risk in people with increased adiposity.NEW & NOTEWORTHY Findings from our current translational investigation demonstrate that dual endothelin A/B receptor antagonism increases total REE in overweight/obese individuals. These results suggest that modulation of the endothelin system may represent a novel therapeutic target to increase both resting metabolism and caloric expenditure, enhance weight loss, and reduce CVD risk in seemingly healthy individuals with elevated adiposity.


Asunto(s)
Adiposidad , Enfermedades Cardiovasculares , Adulto , Metabolismo Basal , Bosentán , Calorimetría Indirecta , Endotelinas/metabolismo , Metabolismo Energético , Humanos , Obesidad/metabolismo , Sobrepeso/metabolismo , Receptores de Endotelina/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA