Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.825
Filtrar
1.
J Invertebr Pathol ; 204: 108100, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561070

RESUMEN

It has long been known that while both the Bacillus thuringiensis pesticidal proteins Cry2Aa and Cry2Ab have wide-ranging activities against lepidopteran insects only the former has activity against the mosquito Aedes aegypti. We have previously shown that this differential specificity is influenced by the N-terminal region of these proteins and here demonstrate that this is due to these sections affecting proteolytic activation. Enzymes from the midgut of A. aegypti cleave Cry2Aa at the C-terminal side of amino acid 49 resulting in a 58 kDa fragment whereas these enzymes do not cleave Cry2Ab at this position. The 58 kDa, but not the protoxin, form of Cry2Aa is capable of interacting with brush border membrane vesicles from A. aegypti.


Asunto(s)
Aedes , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Proteolisis , Animales , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Control Biológico de Vectores , Bacillus thuringiensis
2.
J Agric Food Chem ; 72(14): 8180-8188, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38556749

RESUMEN

Juvenile hormone binding protein (JHBP) is a key regulator of JH signaling, and crosstalk between JH and 20-hydroxyecdysone (20E) can activate and fine-tune the mitogen-activated protein kinase cascade, leading to resistance to insecticidal proteins from Bacillis thuringiensis (Bt). However, the involvement of JHBP in the Bt Cry1Ac resistance of Plutella xylostella remains unclear. Here, we cloned a full-length cDNA encoding JHBP, and quantitative real-time PCR (qPCR) analysis showed that the expression of the PxJHBP gene in the midgut of the Cry1Ac-susceptible strain was significantly higher than that of the Cry1Ac-resistant strain. Furthermore, CRISPR/Cas9-mediated knockout of the PxJHBP gene significantly increased Cry1Ac susceptibility, resulting in a significantly shorter lifespan and reduced fertility. These results demonstrate that PxJHBP plays a critical role in the resistance to Cry1Ac protoxin and in the regulation of physiological metabolic processes associated with reproduction in adult females, providing valuable insights to improve management strategies of P. xylostella.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Femenino , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Larva/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Longevidad , Sistemas CRISPR-Cas , Endotoxinas/genética , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Resistencia a los Insecticidas/genética
3.
Plant Sci ; 344: 112079, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588981

RESUMEN

The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of ß-pore-forming toxins (ß-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Gossypium , Proteínas Hemolisinas , Larva , Plantas Modificadas Genéticamente , Gorgojos , Gossypium/genética , Gossypium/parasitología , Animales , Gorgojos/genética , Plantas Modificadas Genéticamente/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Larva/efectos de los fármacos , Bacillus thuringiensis/genética , Control Biológico de Vectores
4.
Biomolecules ; 14(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38672415

RESUMEN

The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins. These active transporters are involved in the export of different substances such as xenobiotics. ABC transporters from subfamily C (ABCC) have also been described as functional receptors for different insecticidal proteins from Bacillus thuringiensis (Bt) in several lepidopteran species. Numerous studies have characterized the relationship between the ABCC2 transporter and Bt Cry1 proteins. Although other ABCC transporters sharing structural and functional similarities have been described, little is known of their role in the mode of action of Bt proteins. For Heliothis virescens, only the ABCC2 transporter and its interaction with Cry1A proteins have been studied to date. Here, we have searched for paralogs to the ABCC2 gene in H. virescens, and identified two new ABC transporter genes: HvABCC3 and HvABCC4. Furthermore, we have characterized their gene expression in the midgut and their protein topology, and compared them with that of ABCC2. Finally, we discuss their possible interaction with Bt proteins by performing protein docking analysis.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Animales , Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Endotoxinas/genética , Endotoxinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Simulación del Acoplamiento Molecular , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/química
5.
Mol Neurodegener ; 19(1): 30, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561809

RESUMEN

Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aß expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Endotoxinas/toxicidad , Endotoxinas/metabolismo , Lipopolisacáridos , Microglía/metabolismo , Inflamación/metabolismo , Péptidos beta-Amiloides/metabolismo
6.
Biomolecules ; 14(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38672442

RESUMEN

By 2013, it had been shown that the genes cadherin-like receptor (Cad) and ATP-binding cassette transporter subfamily C2 (ABCC2) were responsible for insect resistance to several Cry1A toxins, acting as susceptibility-determining receptors, and many review articles have been published. Therefore, this review focuses on information about receptors and receptor-binding sites that have been revealed since 2014. Since 2014, studies have revealed that the receptors involved in determining susceptibility vary depending on the Cry toxin subfamily, and that binding affinity between Cry toxins and receptors plays a crucial role. Consequently, models have demonstrated that ABCC2, ABCC3, and Cad interact with Cry1Aa; ABCC2 and Cad with Cry1Ab and Cry1Ac; ABCC2 and ABCC3 with Cry1Fa; ABCB1 with Cry1Ba, Cry1Ia, Cry9Da, and Cry3Aa; and ABCA2 with Cry2Aa and Cry2Ba, primarily in the silkworm, Bombyx mori. Furthermore, since 2017, it has been suggested that the binding sites of BmCad and BmABCC2 on Cry1Aa toxin overlap in the loop region of domain II, indicating that Cry toxins use various molecules as receptors due to their ability to bind promiscuously in this region. Additionally, since 2017, several ABC transporters have been identified as low-efficiency receptors that poorly induce cell swelling in heterologously expressing cultured cells. In 2024, research suggested that multiple molecules from the ABC transporter subfamily, including ABCC1, ABCC2, ABCC3, ABCC4, ABCC10, and ABCC11, act as low-efficiency receptors for a single Cry toxin in the midgut of silkworm larvae. This observation led to the hypothesis that the presence of such low-efficiency receptors contributes to the evolution of Cry toxins towards the generation of highly functional receptors that determine the susceptibility of individual insects. Moreover, this evolutionary process is considered to offer valuable insights for the engineering of Cry toxins to overcome resistance and develop countermeasures against resistance.


Asunto(s)
Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Animales , Sitios de Unión , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/química , Humanos , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Endotoxinas/metabolismo , Endotoxinas/química , Bombyx/metabolismo , Bombyx/genética , Unión Proteica , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química
7.
Pestic Biochem Physiol ; 201: 105881, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685247

RESUMEN

Insect pests cause immense agronomic losses worldwide. One of the most destructive of major crops is the Fall Armyworm (Spodoptera frugiperda, FAW). The ability to migrate long distances, a prodigious appetite, and a demonstrated ability to develop resistance to insecticides, make it a difficult target to control. Insecticidal proteins, for example those produced by the bacterium Bacillus thuringiensis, are among the safest and most effective insect control agents. Genetically modified (GM) crops expressing such proteins are a key part of a successful integrated pest management (IPM) program for FAW. However, due to the development of populations resistant to commercialized GM products, new GM traits are desperately needed. Herein, we describe a further characterization of the newly engineered trait protein eCry1Gb.1Ig. Similar to other well characterized Cry proteins, eCry1Gb.1Ig is shown to bind FAW midgut cells and induce cell-death. Binding competition assays using trait proteins from other FAW-active events show a lack of competition when binding FAW brush border membrane vesicles (BBMVs) and when utilizing non-pore-forming versions as competitors in in vivo bioassays. Similarly, insect cell lines expressing SfABCC2 and SfABCC3 (well characterized receptors of existing commercial Cry proteins) are insensitive to eCry1Gb.1Ig. These findings are consistent with results from our previous work showing that eCry1Gb.1Ig is effective in controlling insects with resistance to existing traits. This underscores the value of eCry1Gb.1Ig as a new GM trait protein with a unique site-of-action and its potential positive impact to global food production.


Asunto(s)
Proteínas Bacterianas , Spodoptera , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Endotoxinas/farmacología , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/farmacología , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Insecticidas/farmacología , Plantas Modificadas Genéticamente , Control Biológico de Vectores/métodos
9.
PLoS One ; 19(3): e0299483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457466

RESUMEN

In Nebraska USA, many populations of western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, now exhibit some level of resistance to all corn rootworm-active Bacillus thuringiensis Berliner (Bt) proteins expressed in commercial hybrids. Therefore, a study was conducted in northeast Nebraska from 2020-2022 to reevaluate current corn rootworm management options in continuous maize (consecutive planting for ≥2 years). Results from on-farm experiments to evaluate a standard soil-applied insecticide (Aztec® 4.67G) in combination with non-rootworm Bt or rootworm-active Bt pyramided maize (Cry3Bb1 + Gpp34Ab1/Tpp35Ab1) are reported within the context of WCR Bt resistance levels present. Corrected survival from Bt pyramid single-plant bioassays (<0.3, 0.3-0.49, >0.5) was used to place populations into 3 resistance categories. Variables evaluated included root injury, adult emergence, proportion lodged maize, and grain yield. Key results: A composite analysis of all populations across resistance levels indicated that addition of soil insecticide to Bt pyramid significantly reduced adult emergence and lodging but did not significantly increase root protection or yield. Within and among resistance category analyses of root injury revealed that the Bt pyramid remained highly efficacious at any non-rootworm Bt root injury level when resistance was absent or low. When corrected survival was >0.3, mean Bt pyramid root injury tracked more closely in a positive linear fashion with mean non-rootworm Bt root injury (rootworm density x level of resistance interaction). Similar trends were obtained for adult emergence but not yield. Mean Bt pyramid root injury rating was <0.75 in most populations with Bt resistance, which contributed to no significant yield differences among categories. Results are discussed within the context of IPM:IRM tradeoffs and the need to reduce WCR densities in this system to decrease the impact of the density x resistance interaction to bridge use of current pyramids with new technologies introduced over the next decade.


Asunto(s)
Bacillus thuringiensis , Escarabajos , Insecticidas , Animales , Insecticidas/farmacología , Insecticidas/metabolismo , Escarabajos/genética , Zea mays/genética , Zea mays/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Resistencia a los Insecticidas , Endotoxinas/metabolismo , Bacillus thuringiensis/genética , Control Biológico de Vectores , Suelo , Larva/metabolismo
10.
Mol Immunol ; 168: 64-74, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428216

RESUMEN

Septic lung injury is characterized by uncontrollable inflammatory infiltrations and acute onset bilateral hypoxemia. Evidence has emerged of the beneficial effect of hydrogen in acute lung injury (ALI), but the underlying mechanism is unclear. In this research, the recovery action of hydrogen on lipopolysaccharide (LPS)-induced ALI in mice and A549 cells was investigated. The 7-day survival rate and body weight of mice were measured after intraperitoneal injection of LPS. Lung function was determined by a whole body plethysmography (WBP) system using the indicators respiratory rate and enhanced pause. Hematoxylin and eosin (HE) staining confirmed the signs of pulmonary edema and inflammatory ooze. Reverse transcription-polymerase chain reaction (RT-PCR) quantification was used to detect the expression of inflammatory factors. Western blotting analysis evaluated the expression levels of involved proteins in the AMP-activated protein kinase (AMPK) pathway. The experimental results confirmed that hydrogen provided an essential solution to the dissipative effects of LPS on survival rate, weight loss and lung function. The LPS-stimulated inflammatory factors, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were also suppressed by hydrogen in A549 cells. Western blot analysis showed that hydrogen significantly upregulated the levels of phosphorylated AMPK (p-AMPK) and lowered the LPS-induced increased expression of dynamin-related protein 1 (Drp1) and Caspase3. These findings prove that hydrogen attenuated LPS-treated ALI by activating the AMPK pathway, supporting the feasibility of hydrogen treatment for sepsis.


Asunto(s)
Lesión Pulmonar Aguda , Endotoxinas , Animales , Ratones , Endotoxinas/metabolismo , Lipopolisacáridos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Hidrógeno/efectos adversos , Hidrógeno/metabolismo , Transducción de Señal , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473721

RESUMEN

Our study highlighted the immune changes by pro-inflammatory biomarkers in the gut-liver-axis-linked ROS-cell death mechanisms in chronic and acute inflammations when gut cells are exposed to endotoxins in patients with hepatic cirrhosis or steatosis. In duodenal tissue samples, gut immune barrier dysfunction was analyzed by pro-inflammatory biomarker expressions, oxidative stress, and cell death by flow cytometry methods. A significant innate and adaptative immune system reaction was observed as result of persistent endotoxin action in gut cells in chronic inflammation tissue samples recovered from hepatic cirrhosis with the A-B child stage. Instead, in patients with C child stage of HC, the endotoxin tolerance was installed in cells, characterized by T lymphocyte silent activation and increased Th1 cytokines expression. Interesting mechanisms of ROS-cell death were observed in chronic and acute inflammation samples when gut cells were exposed to endotoxins and immune changes in the gut-liver axis. Late apoptosis represents the chronic response to injury induction by the gut immune barrier dysfunction, oxidative stress, and liver-dysregulated barrier. Meanwhile, necrosis represents an acute and severe reply to endotoxin action on gut cells when the immune system reacts to pro-inflammatory Th1 and Th2 cytokines releasing, offering protection against PAMPs/DAMPs by monocytes and T lymphocyte activation. Flow cytometric analysis of pro-inflammatory biomarkers linked to oxidative stress-cell death mechanisms shown in our study recommends laboratory techniques in diagnostic fields.


Asunto(s)
Endotoxinas , Inflamación , Niño , Humanos , Endotoxinas/metabolismo , Especies Reactivas de Oxígeno , Cirrosis Hepática , Apoptosis , Citocinas , Biomarcadores
12.
Proc Natl Acad Sci U S A ; 121(13): e2319838121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513093

RESUMEN

The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management. Here, we empirically examined the sensitivity of genomic monitoring for resistance management in transgenic Bt crops, a globally important agricultural innovation. Whole genome resequencing of wild North American Helicoverpa zea collected from non-expressing refuge and plants expressing Cry1Ab confirmed that resistance-associated signatures of selection were detectable after a single generation of exposure. Upon demonstrating its sensitivity, we applied genomic monitoring to wild H. zea that survived Vip3A exposure resulting from cross-pollination of refuge plants in seed-blended plots. Refuge seed interplanted with transgenic seed exposed H. zea to sublethal doses of Vip3A protein in corn ears and was associated with allele frequency divergence across the genome. Some of the greatest allele frequency divergence occurred in genomic regions adjacent to a previously described candidate gene for Vip3A resistance. Our work highlights the power of genomic monitoring to sensitively detect heritable changes associated with field exposure to Bt toxins and suggests that seed-blended refuge will likely hasten the evolution of resistance to Vip3A in lepidopteran pests.


Asunto(s)
Bacillus thuringiensis , Endotoxinas , Animales , Larva/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Bacillus thuringiensis/genética , Polinización , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Control Biológico de Vectores/métodos , Resistencia a los Insecticidas/genética , Genómica , Semillas/metabolismo , Zea mays/genética
13.
Nat Immunol ; 25(4): 693-702, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38486019

RESUMEN

The inflammasome components NLRP3 and ASC are cytosolic proteins, which upon sensing endotoxins or danger cues, form multimeric complexes to process interleukin (IL)-1ß for secretion. Here we found that antigen (Ag)-triggered degranulation of IgE-sensitized mast cells (MCs) was mediated by NLRP3 and ASC. IgE-Ag stimulated NEK7 and Pyk2 kinases in MCs to induce the deposition of NLRP3 and ASC on granules and form a distinct protein complex (granulosome) that chaperoned the granules to the cell surface. MCs deficient in NLRP3 or ASC did not form granulosomes, degranulated poorly in vitro and did not evoke systemic anaphylaxis in mice. IgE-Ag-triggered anaphylaxis was prevented by an NLRP3 inhibitor. In endotoxin-primed MCs, pro-IL-1ß was rapidly packaged into granules after IgE-Ag stimulation and processed within granule remnants by proteases after degranulation, causing lethal anaphylaxis in mice. During IgE-Ag-mediated degranulation of endotoxin-primed MCs, granulosomes promoted degranulation, combined with exteriorization and processing of IL-1ß, resulting in severe inflammation.


Asunto(s)
Anafilaxia , Inflamasomas , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mastocitos , Anafilaxia/metabolismo , Inmunoglobulina E/metabolismo , Endotoxinas/metabolismo , Degranulación de la Célula
14.
J Agric Food Chem ; 72(14): 7807-7817, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38514390

RESUMEN

Mg(OH)2 was used as the nanocarrier of the Bacillus thuringiensis (Bt) Cry1Ac protein, and the synthesized Cry1Ac-Mg(OH)2 composites were regular and uniform nanosheets. Nano-Mg(OH)2 could effectively improve the insecticidal effect of the Cry1Ac protein toward Ectropis obliqua. It could enhance the damage degree of the Cry1Ac protein to intestinal epithelial cells and microvilli, induce and enrich the production of reactive oxygen species (ROS) in the midgut, and enhance the degradation of the Cry1Ac protein into active fragments. Furthermore, an anti-rinsing assay showed that the Cry1Ac-Mg(OH)2 composites were bound to the notch structure of the tea leaf surface. The retention of the Cry1Ac protein increased by 11.45%, and sprayed nano-Mg(OH)2 was rapidly absorbed by different tissues of tea plants. Moreover, nano-Mg(OH)2 and composites did not significantly affect non-target organisms. These results show that nano-Mg(OH)2 can serve as a safe and effective biopesticide carrier, which provides a new approach for stable and efficient Bt preparation.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Animales , Proteínas Bacterianas/metabolismo , Endotoxinas/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Proteínas Hemolisinas/metabolismo , Té/metabolismo , Larva , Resistencia a los Insecticidas
15.
Int J Biol Macromol ; 263(Pt 1): 130271, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373570

RESUMEN

Overuse of insecticides has accelerated the evolution of insecticide resistance and created serious environmental concerns worldwide, thus incentivizing development of alternative methods. Bacillus thuringiensis (Bt) is an insecticidal bacterium that has been developed as a biopesticide to successfully control multiple species of pests. It operates by secreting several insect toxins such as Cry1Ac. However, metabolic resistance based on ATP-binding cassette (ABC) transporters may play a crucial role in the development of metabolic resistance to Bt. Here, we characterized an ABCG gene from the agricultural pest Plutella xylostella (PxABCG3) and found that it was highly expressed in a Cry1Ac-resistant strain, up-regulated after Cry1Ac protoxin treatment. Binding miR-8510a-3p to the coding sequence (CDS) of PxABCG3 was then confirmed by a luciferase reporter assay and RNA immunoprecipitation. miR-8510a-3p agomir delivery markedly reduced PxABCG3 expression in vivo and consequently decreased the tolerance of P. xylostella to Cry1Ac, while reduction of miR-8510a-3p significantly increased PxABCG3 expression, accompanied by an increased tolerance to Cry1Ac. Our results suggest that miR-8510a-3p could potentially be used as a novel molecular target against P. xylostella or other lepidopterans, providing novel insights into developing effective and environmentally friendly pesticides.


Asunto(s)
Bacillus thuringiensis , Insecticidas , MicroARNs , Mariposas Nocturnas , Animales , Mariposas Nocturnas/metabolismo , Larva/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/química , Insecticidas/farmacología , Insecticidas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
16.
Toxins (Basel) ; 16(2)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38393170

RESUMEN

Paralipsa gularis (Zeller) is a storage pest; however, in recent years it has evolved into a considerable maize pest during the late growth stage in the border region between China and other Southeast Asian countries. Bt transgenic insect-resistant maize is an effective measure in controlling a wide range of lepidopteran pests, but there is a lack of research on the toxic effects of storage pests. We tested the toxicity of Bt-Cry1Ab, Vip3Aa, and their complex proteins against P. gularis via bioassay and investigated the efficiency of Bt-(Cry1Ab+Vip3Aa) maize in controlling P. gularis during the late growth stage of maize in the period 2022-2023. The bioassay results show that the susceptibilities of P. gularis to the two Bt proteins and their complex proteins were significantly different. The LC50 values of DBNCry1Ab ("DBN9936" event), DBNVip3Aa ("DBN9501" event), DBN Cry1Ab+Vip3Aa ("DBN3601T" event), and Syngenta Cry1Ab+Vip3Aa ("Bt11" event × "MIR162" event) were 0.038 µg/g, 0.114 µg/g, 0.110 µg/g, and 0.147 µg/g, and the GIC50 values were 0.014 µg/g, 0.073 µg/g, 0.027 µg/g, and 0.026 µg/g, respectively. Determination of the expression content of the insecticidal protein in different tissues of Bt-(Cry1Ab+Vip3Aa) maize shows that the total Bt protein content in different tissues was in the following order: stalk > bract > cob > kernel. However, the bioassay results show that the mortalities of P. gularis feeding on Bt-(Cry1Ab+Vip3Aa) maize in different tissues at different growth stages were all above 93.00%. The field trial indicates that the occurrence density of larvae and plant damage rate for conventional maize were 422.10 individuals/100 plants and 94.40%, respectively, whereas no larvae were found on Bt-(Cry1Ab+Vip3Aa) maize. In summary, this study implies that Bt-(Cry1Ab+Vip3Aa) maize has a high potential for control of P. gularis, providing a new technical measure for the management of the pest.


Asunto(s)
Bacillus thuringiensis , Lepidópteros , Humanos , Animales , Zea mays/genética , Zea mays/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/toxicidad , Proteínas Bacterianas/genética , Proteínas Hemolisinas/toxicidad , Proteínas Hemolisinas/genética , Control Biológico de Vectores/métodos , Lepidópteros/metabolismo , Larva
17.
Toxins (Basel) ; 16(2)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38393166

RESUMEN

Bacillus thuringiensis Vip3 toxins form a tetrameric structure crucial for their insecticidal activity. Each Vip3Aa monomer comprises five domains. Interaction of the first four α-helices in domain I with the target cellular membrane was proposed to be a key step before pore formation. In this study, four N-terminal α-helix-deleted truncations of Vip3Aa were produced and, it was found that they lost both liposome permeability and insecticidal activity against Spodoptera litura. To further probe the role of domain I in membrane permeation, the full-length domain I and the fragments of N-terminal α-helix-truncated domain I were fused to green fluorescent protein (GFP), respectively. Only the fusion carrying the full-length domain I exhibited permeability against artificial liposomes. In addition, seven Vip3Aa-Cry1Ac fusions were also constructed by combination of α-helices from Vip3Aa domains I and II with the domains II and III of Cry1Ac. Five of the seven combinations were determined to show membrane permeability in artificial liposomes. However, none of the Vip3Aa-Cry1Ac combinations exhibited insecticidal activity due to the significant reduction in proteolytic stability. These results indicated that the N-terminal helix α1 in the Vip3Aa domain I is essential for both insecticidal activity and liposome permeability and that domain I of Vip3Aa preserved a high liposome permeability independently from domains II-V.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Animales , Bacillus thuringiensis/metabolismo , Liposomas/metabolismo , Conformación Proteica en Hélice alfa , Insecticidas/química , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/metabolismo , Larva/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo
18.
Reprod Biomed Online ; 48(4): 103625, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402675

RESUMEN

RESEARCH QUESTION: Can the addition of progesterone and neurotensin, molecular agents found in the female reproductive tract, after sperm washing increase the fertilization potential of human spermatozoa? DESIGN: (i) Cohort study of 24 men. Spermatozoa selected by swim-up were incubated in either progesterone or neurotensin (0.1-100 µM) for 1-4 h, and hyperactive motility and binding to hyaluronan (0.1-100 µM) were assessed. The effect of progesterone 10 µM on sperm function was assessed in a blinded manner, including: hyperactive motility, binding to hyaluronan, tyrosine phosphorylation, acrosome reaction and oxidative DNA damage. (i) Embryo safety testing [one-cell mouse embryo assay (MEA), endotoxin and sterility counts (n = 3)] in preclinical embryo models of IVF (murine and porcine, n = 7 each model) and a small preliminary human study (n = 4) of couples undergoing standard IVF with oocytes inseminated with spermatozoa ± 10 µM progesterone. RESULTS: Progesterone 10 µM increased sperm binding to hyaluronan, hyperactive motility and tyrosine phosphorylation (all P < 0.05). Neurotensin had no effect (P > 0.05). Progesterone 10 µM in human embryo culture media passed embryo safety testing (MEA, endotoxin concentration and sterility plate count). In preclinical models of IVF, the exposure of spermatozoa to progesterone 10 µM and oocytes to progesterone 1 µM was not detrimental, and increased the fertilization rate in mice and the blastocyst cell number in mice and pigs (all P ≤ 0.03). In humans, every transferred blastocyst that had been produced from spermatozoa exposed to progesterone resulted in a live birth. CONCLUSION: The addition of progesterone to sperm preparation media shows promise as an adjunct to current methods for increasing fertilization potential. Randomized controlled trials are required to determine the clinical utility of progesterone for improving IVF outcomes.


Asunto(s)
Infertilidad , Progesterona , Humanos , Masculino , Femenino , Animales , Ratones , Porcinos , Progesterona/farmacología , Progesterona/metabolismo , Fertilización In Vitro/métodos , Neurotensina/metabolismo , Neurotensina/farmacología , Ácido Hialurónico/farmacología , Estudios de Cohortes , Semen , Espermatozoides/metabolismo , Infertilidad/metabolismo , Tirosina/metabolismo , Endotoxinas/metabolismo , Endotoxinas/farmacología
19.
Microbiol Spectr ; 12(4): e0339323, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38411057

RESUMEN

Gut microbiota dysbiosis is a prominent determinant that significantly contributes to the disruption of lipid metabolism. Consequently, it is essential to the occurrence and development of non-alcoholic fatty liver disease (NAFLD). Nevertheless, the connection between diet and symbiotic gut microbiota in the progression of NAFLD remains uncertain. The purpose of this study was to explore the role of supplementing commensal Bacteroides fragilis (B. fragilis) on lipid metabolism, gut microbiota, and metabolites in high-fat diet (HFD)-fed mice, elucidating the impact of gut microbiota and metabolites on the development of NAFLD. Our study revealed that supplementation with B. fragilis exacerbated both weight gain and obesity in mice. B. fragilis exacerbated blood glucose levels and liver dysfunction in mice. Furthermore, an increase in liver lipid accumulation and the upregulation of genes correlated with lipid metabolism were observed in mice. Under an HFD, supplementation of commensal B. fragilis resulted in alterations in the gut microbiota, notably a significant increase in Desulfovibrionaceae, which led to elevated endotoxin levels and thereby influenced the progression of NAFLD. It was interesting that the simultaneous examination of gut microbiota metabolites revealed a more pronounced impact of diet on short-chain fatty acids. This study represented the pioneering investigation into the impact of B. fragilis on NAFLD. Our findings demonstrated that B. fragilis induced dysregulation in the intestinal microbiota, leading to elevated levels of lipopolysaccharide and dysfunction in glucose and lipid metabolism, thereby exacerbating NAFLD.IMPORTANCESome intestinal symbiotic microbes are involved in the occurrence of the metabolic disorders. Our study investigated the impact of supplementing commensal Bacteroides fragilis on host metabolism in high-fat diet-fed mice. Research results indicated that adding a specific bacterial strain to the complex intestinal microecology can worsen metabolic conditions. This effect mainly affects the structural diversity of intestinal microorganisms, the increase in harmful bacteria in the gut, and the elevation of endotoxin levels, blood glucose, and lipid metabolism, thereby impacting the progression of non-alcoholic fatty liver disease (NAFLD). Understanding the principles that govern the establishment of microbial communities comprising multiple species is crucial for preventing or repairing dysfunctions in these communities, thereby enhancing host health and facilitating disease treatment. This study demonstrated that gut microbiota dysbiosis could contribute to metabolic dysfunction and provides new insights into how to promote gut microbiota in the prevention and therapy of NAFLD.


Asunto(s)
Infecciones Bacterianas , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/microbiología , Hígado , Bacteroides fragilis , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Disbiosis , Glucemia , Bacterias/genética , Endotoxinas/metabolismo , Infecciones Bacterianas/metabolismo
20.
GM Crops Food ; 15(1): 15-31, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38238889

RESUMEN

Farmers in North America face significant pressure from insects in their maize fields, particularly from corn rootworm (Diabrotica spp.). Research into proteins capable of insecticidal activity has found several produced by ferns. One protein, IPD079Ea, was derived from Ophioglossum pendulum and has shown activity against corn rootworm. An environmental risk assessment was conducted for maize event DP-915635-4, which provides control of corn rootworms via expression of the IPD079Ea protein. This assessment focused on IPD079Ea and characterized potential exposure and hazard to non-target organisms (NTOs). For exposure, estimated environmental concentrations (EECs) were calculated. For hazard, laboratory dietary toxicity studies were conducted with IPD079Ea and surrogate non-target organisms. Environmental risk was characterized by comparing hazard and exposure to calculate the margin of exposure (MOE). Based on the MOE values for DP-915635-4 maize, the IPD079Ea protein is not expected to result in unreasonable adverse effects on beneficial NTO populations at environmentally relevant concentrations.


Asunto(s)
Escarabajos , Zea mays , Animales , Zea mays/genética , Zea mays/metabolismo , Endotoxinas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Escarabajos/genética , Escarabajos/metabolismo , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA