Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.578
Filtrar
1.
Immunol Rev ; 326(1): 173-190, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39295093

RESUMEN

The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.


Asunto(s)
Enfermedad Celíaca , Proteínas en la Dieta , Modelos Animales de Enfermedad , Hipersensibilidad a los Alimentos , Tolerancia Inmunológica , Animales , Humanos , Ratones , Hipersensibilidad a los Alimentos/inmunología , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/etiología , Enfermedad Celíaca/metabolismo , Proteínas en la Dieta/inmunología , Proteínas en la Dieta/metabolismo , Células Th2/inmunología , Autoinmunidad , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo
2.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273359

RESUMEN

Celiac disease (CD) is an immune-mediated enteropathy triggered by the ingestion of proline- and glutamine-rich proteins, widely termed "gluten", in genetically susceptible individuals. CD induces an altered immune response that leads to chronic inflammation and duodenal mucosal damage. Currently, there are no specific tests for the accurate diagnosis of CD, and no drugs are available to treat this condition. The only available treatment strategy is lifelong adherence to a gluten-free diet. However, some studies have investigated the involvement of microRNAs (miRNAs) in CD pathogenesis. miRNAs are small noncoding ribonucleic acid molecules that regulate gene expression. Despite the growing number of studies on the role of miRNAs in autoimmune disorders, data on miRNAs and CD are scarce. Therefore, this study aimed to perform a literature review to summarize CD, miRNAs, and the potential interactions between miRNAs and CD in adults. This review shows that miRNA expression can suppress or stimulate pathways related to CD pathogenesis by regulating cell proliferation and differentiation, regulatory T-cell development, innate immune response, activation of the inflammatory cascade, focal adhesion, T-cell commitment, tissue transglutaminase synthesis, and cell cycle. Thus, identifying miRNAs and their related effects on CD could open new possibilities for diagnosis, prognosis, and follow-up of biomarkers.


Asunto(s)
Enfermedad Celíaca , MicroARNs , Enfermedad Celíaca/genética , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/metabolismo , Humanos , MicroARNs/genética , Adulto , Regulación de la Expresión Génica , Biomarcadores
3.
Food Chem ; 461: 140924, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39181042

RESUMEN

High-sensitivity 4D label-free proteomic technology was used to identify protein components related to gluten quality and celiac disease (CD) in strong-gluten wheat cultivar KX 3302 and medium-gluten wheat cultivar BN 207. The highly expressed storage protein components in KX3302 were high-molecular-weight-glutenin-subunits (HMW-GSs), α-gliadin, and globulin, whereas those in BN207 were γ-gliadin, low-molecular-weight-glutenin-subunits (LMW-GSs) and avenin-like proteins. In addition, BN207 had more upregulated metabolic proteins than KX3302. The abundance of storage proteins increased during dough formation. After heat treatment, the upregulated proteins accounted for 57.53 % of the total proteins, but the downregulated storage proteins accounted for 79.34 % of the total storage proteins. In cultivar KX3302, CD proteins mainly included α-gliadin and HMW-GSs, whereas in BN207, they were mainly γ-gliadin and LMW-GSs. Thermal treatment significantly reduces the expression levels of CD-related proteins. These findings provide a new perspective on reducing the content of CD-related proteins in wheat products.


Asunto(s)
Pan , Enfermedad Celíaca , Harina , Glútenes , Calor , Proteómica , Triticum , Triticum/química , Triticum/metabolismo , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/metabolismo , Harina/análisis , Glútenes/análisis , Glútenes/metabolismo , Humanos , Pan/análisis , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Gliadina/análisis , Gliadina/metabolismo , Gliadina/química
4.
Immun Inflamm Dis ; 12(8): e1354, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39150219

RESUMEN

BACKGROUND: In mammals, amino acid metabolism has evolved to control immune responses. Tryptophan (Trp) is the rarest essential amino acid found in food and its metabolism has evolved to be a primary regulatory node in the control of immune responses. Celiac disease (CeD) is a developed immunological condition caused by gluten intolerance and is linked to chronic small intestine enteropathy in genetically predisposed individuals. Dendritic cells (DCs), serving as the bridge between innate and adaptive immunities, can influence immunological responses in CeD through phenotypic alterations. OBJECTIVE: This review aims to highlight the connection between Trp metabolism and tolerogenic DCs, and the significance of this interaction in the pathogenesis of CeD. RESULTS: It is been recognized that various DC subtypes contribute to the pathogenesis of CeD. Tolerogenic DCs, in particular, are instrumental in inducing immune tolerance, leading to T-reg differentiation that helps maintain intestinal immune tolerance against inflammatory responses in CeD patients and those with other autoimmune disorders. T-regs, a subset of T-cells, play a crucial role in maintaining intestinal immunological homeostasis by regulating the activities of other immune cells. Notably, Trp metabolism, essential for T-reg function, facilitates T-reg differentiation through microbiota-mediated degradation and the kynurenine pathway. CONCLUSION: Therefore, alterations in Trp metabolism could potentially influence the immune response in CeD, affecting both the development of the disease and the persistence of symptoms despite adherence to a gluten-free diet.


Asunto(s)
Enfermedad Celíaca , Células Dendríticas , Tolerancia Inmunológica , Triptófano , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Triptófano/metabolismo , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/metabolismo , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
5.
Nutrients ; 16(16)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39203879

RESUMEN

Sulforaphane is considered the bioactive metabolite of glucoraphanin after dietary consumption of broccoli sprouts. Although both molecules pass through the gut lumen to the large intestine in stable form, their biological impact on the first intestinal tract is poorly described. In celiac patients, the function of the small intestine is affected by celiac disease (CD), whose severe outcomes are controlled by gluten-free dietary protocols. Nevertheless, pathological signs of inflammation and oxidative stress may persist. The aim of this study was to compare the biological activity of sulforaphane with its precursor glucoraphanin in a cellular model of gliadin-induced inflammation. Human intestinal epithelial cells (CaCo-2) were stimulated with a pro-inflammatory combination of cytokines (IFN-γ, IL-1ß) and in-vitro-digested gliadin, while oxidative stress was induced by H2O2. LC-MS/MS analysis confirmed that sulforaphane from broccoli sprouts was stable after simulated gastrointestinal digestion. It inhibited the release of all chemokines selected as inflammatory read-outs, with a more potent effect against MCP-1 (IC50 = 7.81 µM). On the contrary, glucoraphanin (50 µM) was inactive. The molecules were unable to counteract the oxidative damage to DNA (γ-H2AX) and catalase levels; however, the activity of NF-κB and Nrf-2 was modulated by both molecules. The impact on epithelial permeability (TEER) was also evaluated in a Transwell® model. In the context of a pro-inflammatory combination including gliadin, TEER values were recovered by neither sulforaphane nor glucoraphanin. Conversely, in the context of co-culture with activated macrophages (THP-1), sulforaphane inhibited the release of MCP-1 (IC50 = 20.60 µM) and IL-1ß (IC50 = 1.50 µM) only, but both molecules restored epithelial integrity at 50 µM. Our work suggests that glucoraphanin should not merely be considered as just an inert precursor at the small intestine level, thus suggesting a potential interest in the framework of CD. Its biological activity might imply, at least in part, molecular mechanisms different from sulforaphane.


Asunto(s)
Brassica , Enfermedad Celíaca , Glucosinolatos , Imidoésteres , Isotiocianatos , Estrés Oxidativo , Oximas , Sulfóxidos , Humanos , Isotiocianatos/farmacología , Sulfóxidos/farmacología , Glucosinolatos/farmacología , Glucosinolatos/metabolismo , Enfermedad Celíaca/tratamiento farmacológico , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/metabolismo , Células CACO-2 , Oximas/farmacología , Estrés Oxidativo/efectos de los fármacos , Imidoésteres/farmacología , Brassica/química , Gliadina/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Interleucina-1beta/metabolismo , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Interferón gamma/metabolismo
6.
Gastroenterology ; 167(6): 1113-1128, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39128638

RESUMEN

BACKGROUND & AIMS: Intestinal epithelial cell (IEC) damage is a hallmark of celiac disease (CeD); however, its role in gluten-dependent T-cell activation is unknown. We investigated IEC-gluten-T-cell interactions in organoid monolayers expressing human major histocompatibility complex class II (HLA-DQ2.5), which facilitates gluten antigen recognition by CD4+ T cells in CeD. METHODS: Epithelial major histocompatibility complex class II (MHCII) was determined in active and treated CeD, and in nonimmunized and gluten-immunized DR3-DQ2.5 transgenic mice, lacking mouse MHCII molecules. Organoid monolayers from DR3-DQ2.5 mice were treated with or without interferon (IFN)-γ, and MHCII expression was evaluated by flow cytometry. Organoid monolayers and CD4+ T-cell co-cultures were incubated with gluten, predigested, or not by elastase-producing Pseudomonas aeruginosa or its lasB mutant. T-cell function was assessed based on proliferation, expression of activation markers, and cytokine release in the co-culture supernatants. RESULTS: Patients with active CeD and gluten-immunized DR3-DQ2.5 mice demonstrated epithelial MHCII expression. Organoid monolayers derived from gluten-immunized DR3-DQ2.5 mice expressed MHCII, which was upregulated by IFN-γ. In organoid monolayer T-cell co-cultures, gluten increased the proliferation of CD4+ T cells, expression of T-cell activation markers, and the release of interleukin-2, IFN-γ, and interleukin-15 in co-culture supernatants. Gluten metabolized by P aeruginosa, but not the lasB mutant, enhanced CD4+ T-cell proliferation and activation. CONCLUSIONS: Gluten antigens are efficiently presented by MHCII-expressing IECs, resulting in the activation of gluten-specific CD4+ T cells, which is enhanced by gluten predigestion with microbial elastase. Therapeutics directed at IECs may offer a novel approach for modulating both adaptive and innate immunity in patients with CeD.


Asunto(s)
Linfocitos T CD4-Positivos , Enfermedad Celíaca , Glútenes , Antígenos HLA-DQ , Mucosa Intestinal , Activación de Linfocitos , Ratones Transgénicos , Animales , Glútenes/inmunología , Glútenes/metabolismo , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Antígenos HLA-DQ/inmunología , Antígenos HLA-DQ/metabolismo , Antígenos HLA-DQ/genética , Ratones , Técnicas de Cocultivo , Interferón gamma/metabolismo , Organoides/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Femenino
7.
Nature ; 632(8024): 401-410, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048815

RESUMEN

In vitro models of autoimmunity are constrained by an inability to culture affected epithelium alongside the complex tissue-resident immune microenvironment. Coeliac disease (CeD) is an autoimmune disease in which dietary gluten-derived peptides bind to the major histocompatibility complex (MHC) class II human leukocyte antigen molecules (HLA)-DQ2 or HLA-DQ8 to initiate immune-mediated duodenal mucosal injury1-4. Here, we generated air-liquid interface (ALI) duodenal organoids from intact fragments of endoscopic biopsies that preserve epithelium alongside native mesenchyme and tissue-resident immune cells as a unit without requiring reconstitution. The immune diversity of ALI organoids spanned T cells, B and plasma cells, natural killer (NK) cells and myeloid cells, with extensive T-cell and B-cell receptor repertoires. HLA-DQ2.5-restricted gluten peptides selectively instigated epithelial destruction in HLA-DQ2.5-expressing organoids derived from CeD patients, and this was antagonized by blocking MHC-II or NKG2C/D. Gluten epitopes stimulated a CeD organoid immune network response in lymphoid and myeloid subsets alongside anti-transglutaminase 2 (TG2) autoantibody production. Functional studies in CeD organoids revealed that interleukin-7 (IL-7) is a gluten-inducible pathogenic modulator that regulates CD8+ T-cell NKG2C/D expression and is necessary and sufficient for epithelial destruction. Furthermore, endogenous IL-7 was markedly upregulated in patient biopsies from active CeD compared with remission disease from gluten-free diets, predominantly in lamina propria mesenchyme. By preserving the epithelium alongside diverse immune populations, this human in vitro CeD model recapitulates gluten-dependent pathology, enables mechanistic investigation and establishes a proof of principle for the organoid modelling of autoimmunity.


Asunto(s)
Enfermedad Celíaca , Duodeno , Interleucina-7 , Mucosa Intestinal , Modelos Biológicos , Organoides , Humanos , Autoanticuerpos/inmunología , Autoinmunidad , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biopsia , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/patología , Enfermedad Celíaca/metabolismo , Duodeno/inmunología , Duodeno/patología , Duodeno/metabolismo , Epítopos/inmunología , Glútenes/inmunología , Glútenes/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/inmunología , Antígenos HLA-DQ/inmunología , Antígenos HLA-DQ/metabolismo , Interleucina-7/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Células Asesinas Naturales/inmunología , Células Mieloides/inmunología , Organoides/inmunología , Organoides/metabolismo , Organoides/patología , Proteína Glutamina Gamma Glutamiltransferasa 2/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(28): e2407066121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959038

RESUMEN

Mammalian transglutaminases, a family of Ca2+-dependent proteins, are implicated in a variety of diseases. For example, celiac disease (CeD) is an autoimmune disorder whose pathogenesis requires transglutaminase 2 (TG2) to deamidate select glutamine residues in diet-derived gluten peptides. Deamidation involves the formation of transient γ-glutamyl thioester intermediates. Recent studies have revealed that in addition to the deamidated gluten peptides themselves, their corresponding thioester intermediates are also pathogenically relevant. A mechanistic understanding of this relevance is hindered by the absence of any structure of Ca2+-bound TG2. We report the X-ray crystallographic structure of human TG2 bound to an inhibitory gluten peptidomimetic and two Ca2+ ions in sites previously designated as S1 and S3. Together with additional structure-guided experiments, this structure provides a mechanistic explanation for how S1 regulates formation of an inhibitory disulfide bond in TG2, while also establishing that S3 is essential for γ-glutamyl thioester formation. Furthermore, our crystallographic findings and associated analyses have revealed that i) two interacting residues, H305 and E363, play a critical role in resolving the thioester intermediate into an isopeptide bond (transamidation) but not in thioester hydrolysis (deamidation); and ii) residues N333 and K176 stabilize preferred TG2 substrates and inhibitors via hydrogen bonding to nonreactive backbone atoms. Overall, the intermediate-state conformer of TG2 reported here represents a superior model to previously characterized conformers for both transition states of the TG2-catalyzed reaction.


Asunto(s)
Calcio , Proteínas de Unión al GTP , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Transglutaminasas/metabolismo , Transglutaminasas/química , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo , Humanos , Calcio/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/química , Cristalografía por Rayos X , Glútenes/metabolismo , Glútenes/química , Modelos Moleculares , Conformación Proteica , Enfermedad Celíaca/metabolismo , Unión Proteica
9.
Front Immunol ; 15: 1405344, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034995

RESUMEN

Background: Exposure to antigens is crucial for child immune system development, aiding disease prevention and promoting infant health. Some common food antigen proteins are found in human breast milk. However, it is unclear whether gluten antigens linked to celiac disease (CD) are transmitted through breast milk, potentially impacting the development of the infant's immune system. Objective: This study aimed to analyze the passage of gluten immunogenic peptides (GIP) into human breast milk. We evaluated the dynamics of GIP secretion after lactating mothers adopted a controlled gluten-rich diet. Methods: We prospectively enrolled 96 non-CD and 23 CD lactating mothers, assessing total proteins and casein in breast milk, and GIP levels in breast milk and urine. Subsequently, a longitudinal study was conducted in a subgroup of 12 non-CD lactating mothers who adopted a controlled gluten-rich diet. GIP levels in breast milk and urine samples were assayed by multiple sample collections over 96 hours. Results: Analysis of a single sample revealed that 24% of non-CD lactating mothers on a regular unrestricted diet tested positive for GIP in breast milk, and 90% tested positive in urine, with significantly lower concentrations in breast milk. Nevertheless, on a controlled gluten-rich diet and the collection of multiple samples, GIP were detected in 75% and 100% of non-CD participants in breast milk and urine, respectively. The transfer dynamics in breast milk samples were long-enduring and GIP secretion persisted from 0 to 72 h. In contrast, GIP secretion in urine samples was limited to the first 24 h, with inter-individual variations. In the cohort of CD mothers, 82.6% and 87% tested negative for GIP in breast milk and urine, respectively. Conclusions: This study definitively established the presence of GIP in breast milk, with substantial inter-individual variations in secretion dynamics. Our findings provide insights into distinct GIP kinetics observed in sequentially collected breast milk and urine samples, suggesting differential gluten metabolism patterns depending on the organ or system involved. Future research is essential to understand whether GIP functions as sensitizing or tolerogenic agents in the immune system of breastfed infants.


Asunto(s)
Enfermedad Celíaca , Glútenes , Lactancia , Leche Humana , Humanos , Leche Humana/inmunología , Leche Humana/química , Leche Humana/metabolismo , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/metabolismo , Glútenes/inmunología , Femenino , Adulto , Estudios Prospectivos , Estudios Longitudinales , Péptidos/inmunología , Péptidos/orina , Lactante , Cinética
10.
Microbiol Spectr ; 12(7): e0352423, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38860826

RESUMEN

Gluten possesses unique properties that render it only partially digestible. Consequently, it exerts detrimental effects on a part of the worldwide population who are afflicted with celiac disease (1%) or related disorders (5%), particularly due to the potential for cross-contamination even when adhering to a gluten-free diet (GFD). Finding solutions to break down gluten during digestion has a high nutritional and social impact. Here, a randomized double-blind placebo-controlled in vivo challenge investigated the gluten-degrading activity of a novel probiotic preparation comprising lactobacilli and their cytoplasmic extracts, Bacillus sp., and bacterial protease. In our clinical trial, we collected feces from 70 healthy volunteers at specific time intervals. Probiotic/placebo administration lasted 32 days, followed by 10 days of wash-out. After preliminary GFD to eliminate residual gluten from feces, increasing amounts of gluten (50 mg-10 g) were administered, each one for 4 consecutive days. Compared to placebo, the feces of volunteers fed with probiotics showed much lower amounts of residual gluten, mainly with increased intakes. Probiotics also regulate the intestinal microbial communities, improving the abundance of genera pivotal to maintaining homeostasis. Quantitative PCR confirmed that all probiotics persisted during the intervention, some also during wash-out. Probiotics promoted a fecal metabolome with potential immunomodulating activity, mainly related to derivatives of branched-chain amino acids and short-chain fatty acids. IMPORTANCE: The untapped potential of gluten-degrading bacteria and their application in addressing the recognized limitations of gluten-related disorder management and the ongoing risk of cross-contamination even when people follow a gluten-free diet (GFD) emphasizes the significance of the work. Because gluten, a common protein found in many cereals, must be strictly avoided to stop autoimmune reactions and related health problems, celiac disease and gluten sensitivity present difficult hurdles. However, because of the hidden presence of gluten in many food products and the constant danger of cross-contamination during food preparation and processing, total avoidance is frequently challenging. Our study presents a novel probiotic preparation suitable for people suffering from gluten-related disorders during GFD and for healthy individuals because it enhances gluten digestion and promotes gut microbiota functionality.


Asunto(s)
Heces , Microbioma Gastrointestinal , Glútenes , Probióticos , Humanos , Probióticos/administración & dosificación , Glútenes/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Heces/microbiología , Heces/química , Método Doble Ciego , Adulto , Masculino , Femenino , Lactobacillus/metabolismo , Enfermedad Celíaca/microbiología , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/dietoterapia , Dieta Sin Gluten , Bacillus/metabolismo , Persona de Mediana Edad , Adulto Joven
11.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719750

RESUMEN

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Asunto(s)
Candida albicans , Enfermedad Celíaca , Homeostasis , Mastocitos , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/microbiología , Enfermedad Celíaca/metabolismo , Humanos , Candida albicans/patogenicidad , Candida albicans/inmunología , Mastocitos/inmunología , Mastocitos/metabolismo , Microbioma Gastrointestinal/inmunología , Disbiosis/inmunología , Candidiasis/inmunología , Candidiasis/microbiología , Animales , Candida/patogenicidad , Candida/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo
12.
Clin Immunol ; 263: 110202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575045

RESUMEN

Celiac disease (CD) is an immune-driven disease characterized by tissue damage in the small intestine of genetically-susceptible individuals. We evaluated here a crucial immune regulatory pathway involving TYRO3, AXL, and MERTK (TAM) receptors and their ligands PROS1 and GAS6 in duodenal biopsies of controls and CD patients. We found increased GAS6 expression associated with downregulation of PROS1 and variable TAM receptors levels in duodenum tissue of CD patients. Interestingly, CD3+ lymphocytes, CD68+, CD11c+ myeloid and epithelial cells, showed differential expressions of TAM components comparing CD vs controls. Principal component analysis revealed a clear segregation of two groups of CD patients based on TAM components and IFN signaling. In vitro validation demonstrated that monocytes, T lymphocytes and epithelial cells upregulated TAM components in response to IFN stimulation. Our findings highlight a dysregulated TAM axis in CD related to IFN signaling and contribute to a deeper understanding of the pathophysiology of CD.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Enfermedad Celíaca , Duodeno , Péptidos y Proteínas de Señalización Intercelular , Mucosa Intestinal , Proteína S , Proteínas Tirosina Quinasas Receptoras , Tirosina Quinasa c-Mer , Femenino , Humanos , Masculino , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismo , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/genética , Duodeno/metabolismo , Duodeno/inmunología , Duodeno/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interferones/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Proteína S/metabolismo , Proteína S/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/inmunología , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo
13.
Angew Chem Int Ed Engl ; 63(21): e202317552, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38497459

RESUMEN

Celiac disease (CeD) is an autoimmune disorder triggered by gluten proteins, affecting approximately 1 % of the global population. The 33-mer deamidated gliadin peptide (DGP) is a metabolically modified wheat-gluten superantigen for CeD. Here, we demonstrate that the 33-mer DGP spontaneously assembles into oligomers with a diameter of approximately 24 nm. The 33-mer DGP oligomers present two main secondary structural motifs-a major polyproline II helix and a minor ß-sheet structure. Importantly, in the presence of 33-mer DGP oligomers, there is a statistically significant increase in the permeability in the gut epithelial cell model Caco-2, accompanied by the redistribution of zonula occludens-1, a master tight junction protein. These findings provide novel molecular and supramolecular insights into the impact of 33-mer DGP in CeD and highlight the relevance of gliadin peptide oligomerization.


Asunto(s)
Enfermedad Celíaca , Enterocitos , Gliadina , Humanos , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/patología , Células CACO-2 , Gliadina/química , Gliadina/metabolismo , Enterocitos/metabolismo , Superantígenos/química , Superantígenos/metabolismo , Permeabilidad
14.
Gastroenterology ; 167(3): 493-504.e10, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38467384

RESUMEN

BACKGROUND & AIMS: Histologic evaluation of gut biopsies is a cornerstone for diagnosis and management of celiac disease (CeD). Despite its wide use, the method depends on proper biopsy orientation, and it suffers from interobserver variability. Biopsy proteome measurement reporting on the tissue state can be obtained by mass spectrometry analysis of formalin-fixed paraffin-embedded tissue. Here we aimed to transform biopsy proteome data into numerical scores that give observer-independent measures of mucosal remodeling in CeD. METHODS: A pipeline using glass-mounted formalin-fixed paraffin-embedded sections for mass spectrometry-based proteome analysis was established. Proteome data were converted to numerical scores using 2 complementary approaches: a rank-based enrichment score and a score based on machine learning using logistic regression. The 2 scoring approaches were compared with each other and with histology analyzing 18 patients with CeD with biopsies collected before and after treatment with a gluten-free diet as well as biopsies from patients with CeD with varying degree of remission (n = 22). Biopsies from individuals without CeD (n = 32) were also analyzed. RESULTS: The method yielded reliable proteome scoring of both unstained and H&E-stained glass-mounted sections. The scores of the 2 approaches were highly correlated, reflecting that both approaches pick up proteome changes in the same biological pathways. The proteome scores correlated with villus height-to-crypt depth ratio. Thus, the method is able to score biopsies with poor orientation. CONCLUSIONS: Biopsy proteome scores give reliable observer and orientation-independent measures of mucosal remodeling in CeD. The proteomic method can readily be implemented by nonexpert laboratories in parallel to histology assessment and easily scaled for clinical trial settings.


Asunto(s)
Enfermedad Celíaca , Dieta Sin Gluten , Mucosa Intestinal , Proteoma , Proteómica , Enfermedad Celíaca/patología , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/diagnóstico , Humanos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Biopsia , Proteoma/análisis , Proteómica/métodos , Femenino , Masculino , Adulto , Aprendizaje Automático , Persona de Mediana Edad , Espectrometría de Masas , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Adhesión en Parafina , Reproducibilidad de los Resultados , Estudios de Casos y Controles
15.
J Mol Histol ; 55(1): 15-24, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38165564

RESUMEN

Intestinal epithelium is a dynamic cellular layer that lines the small-bowel and makes a relatively impenetrable barrier to macromolecules. Intestinal epithelial cell polarity is crucial in coordinating signalling pathways within cells and mainly regulated by three conserved polarity protein complexes, the Crumbs (Crb) complex, partitioning defective (PAR) complex, and Scribble (Scrib) complex. Polarity proteins regulate the proper establishment of the intercellular junctional complexes including tight junctions (TJs), adherence junctions (AJs), and desmosomes which hold epithelial cells together and play a major role in maintaining intestinal barrier integrity. Impaired intestinal epithelial cell polarity and barrier integrity result in irreversible immune responses, the host- microbial imbalance and intestinal inflammatory disorders. Disassembling the epithelial tight junction and augmented paracellular permeability is a conspicuous hallmark of celiac disease (CD) pathogenesis. There are several dietary components that can improve intestinal integrity and function. The aim of this review article is to summarize current information about the association of polarity proteins and AJC damages with pathogenesis of CD.


Asunto(s)
Enfermedad Celíaca , Humanos , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/patología , Mucosa Intestinal/metabolismo , Células Epiteliales/metabolismo , Intestinos , Uniones Estrechas/metabolismo
16.
Biol Sex Differ ; 14(1): 86, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38072919

RESUMEN

BACKGROUND: Celiac disease (CeD) is an immune-mediated disorder that develops in genetically predisposed individuals upon gluten consumption. HLA risk alleles explain 40% of the genetic component of CeD, so there have been continuing efforts to uncover non-HLA loci that can explain the remaining heritability. As in most autoimmune disorders, the prevalence of CeD is significantly higher in women. Here, we investigated the possible involvement of the X chromosome on the sex bias of CeD. METHODS: We performed a X chromosome-wide association study (XWAS) and a gene-based association study in women from the CeD Immunochip (7062 cases, 5446 controls). We also constructed a database of X chromosome cis-expression quantitative trait loci (eQTLs) in monocytes from unstimulated (n = 226) and lipopolysaccharide (LPS)-stimulated (n = 130) female donors and performed a Summary-data-based MR (SMR) analysis to integrate XWAS and eQTL information. We interrogated the expression of the potentially causal gene (TMEM187) in peripheral blood mononuclear cells (PBMCs) from celiac patients at onset, on a gluten-free diet, potential celiac patients and non-celiac controls. RESULTS: The XWAS and gene-based analyses identified 13 SNPs and 25 genes, respectively, 22 of which had not been previously associated with CeD. The X chromosome cis-eQTL analysis found 18 genes with at least one cis-eQTL in naïve female monocytes and 8 genes in LPS-stimulated female monocytes, 2 of which were common to both situations and 6 were unique to LPS stimulation. SMR identified a potentially causal association of TMEM187 expression in naïve monocytes with CeD in women, regulated by CeD-associated, eQTL-SNPs rs7350355 and rs5945386. The CeD-risk alleles were correlated with lower TMEM187 expression. These results were replicated using eQTLs from LPS-stimulated monocytes. We observed higher levels of TMEM187 expression in PBMCs from female CeD patients at onset compared to female non-celiac controls, but not in male CeD individuals. CONCLUSION: Using X chromosome genotypes and gene expression data from female monocytes, SMR has identified TMEM187 as a potentially causal candidate in CeD. Further studies are needed to understand the implication of the X chromosome in the higher prevalence of CeD in women.


Celiac disease (CeD) is an immune-related condition triggered by gluten consumption in genetically susceptible individuals. Women present higher prevalence of CeD than men, but the biological explanation of such difference has not been elucidated. In this study, we investigated whether specific genetic variations on the X chromosome were associated with CeD in each sex. Surprisingly, we found 13 genetic variants and 25 genes significantly linked to CeD in women, but not in men. Additionally, we identified genetic variants on the X chromosome associated with gene expression of monocytes, a type of immune cells that is activated in CeD after gluten intake. Integrating these data with our previous findings, we found that lower expression of a gene termed TMEM187 might be associated with a potential increase in CeD risk in women. Finally, validation experiments confirmed higher TMEM187 levels in blood cells from female CeD patients compared to non-celiac women, while no such difference was seen in males. In summary, our study suggests that the X-chromosome gene TMEM187 may play a key role in CeD development, providing insights into the higher prevalence of CeD in females.


Asunto(s)
Enfermedad Celíaca , Sitios de Carácter Cuantitativo , Humanos , Masculino , Femenino , Enfermedad Celíaca/genética , Enfermedad Celíaca/metabolismo , Monocitos/metabolismo , Leucocitos Mononucleares , Sexismo , Lipopolisacáridos , Proteínas de la Membrana/genética
17.
Sci Rep ; 13(1): 21180, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040898

RESUMEN

Enzyme therapy can be an appropriate treatment option for celiac disease (CeD). Here, we developed Bromelain-Loaded Nanocomposites (BLNCs) to improve the stability and retention of bromelain enzyme activity. After the characterization of BLNCs, the cytotoxicity of BLNCs was determined on the Caco-2 cell line. The effect of BLNCs on gliadin degradation and the production of pro-inflammatory cytokines and anti-inflammatory molecules in peripheral blood mononuclear cells (PBMCs) obtained from celiac patients were assessed. Furthermore, the expression of CXCR3 and CCR5 genes was measured in CaCo-2 cells treated with gliadin, gliadin-digested with BLNCs, and bromelain. Our study demonstrated that the Bromelain entrapment efficiency in these nanoparticles was acceptable, and BLNCs have no toxic effect on cells. SDS-PAGE confirmed the digestion effect of bromelain released from nanocomposites. When Caco-2 cells were treated with gliadin digested by free bromelain and BLNCs, the expression of CXCR3 and CCR5 genes was significantly decreased. PBMCs of celiac patients treated with Bromelain and BLNCs decreased inflammatory cytokines (IL-1ß, IL-6, TNF-α, and IFN-γ) production compared to untreated PBMCs. This treatment also increased IL-10 and CTLA-4 in PBMCs of CeD patients. According to the promising results of this study, we can hope for the therapeutic potential of BLNCs for CeD.


Asunto(s)
Enfermedad Celíaca , Gliadina , Humanos , Células CACO-2 , Gliadina/metabolismo , Leucocitos Mononucleares/metabolismo , Bromelaínas/farmacología , Citocinas/metabolismo , Enfermedad Celíaca/tratamiento farmacológico , Enfermedad Celíaca/metabolismo
18.
Trends Pharmacol Sci ; 44(12): 949-962, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839914

RESUMEN

Celiac disease (CeD) is a widespread, gluten-induced, autoimmune disorder that lacks any medicinal therapy. Towards the goal of developing non-dietary treatments for CeD, research has focused on elucidating its molecular and cellular etiology. A model of pathogenesis has emerged centered on interactions between three molecular families: specific class II MHC proteins on antigen-presenting cells (APCs), deamidated gluten-derived peptides, and T cell receptors (TCRs) on inflammatory CD4+ T cells. Growing evidence suggests that this pathogenic axis can be pharmacologically targeted to protect patients from some of the adverse effects of dietary gluten. Further studies have revealed the existence of additional host and environmental contributors to disease initiation and tissue damage. This review summarizes our current understanding of CeD pathogenesis and how it is being harnessed for therapeutic design and development.


Asunto(s)
Enfermedad Celíaca , Humanos , Enfermedad Celíaca/terapia , Enfermedad Celíaca/metabolismo , Glútenes/metabolismo , Linfocitos T , Receptores de Antígenos de Linfocitos T , Células Presentadoras de Antígenos
19.
Trends Immunol ; 44(10): 745-747, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37591713

RESUMEN

Celiac disease (CeD) is an immune disorder characterized by gluten intolerance that can be unleashed by enteric viral infections in mice. However, Sanchez-Medina et al. recently identified a murine commensal protist, Tritrichomonas arnold, that protects against reovirus-induced intolerance to dietary protein by counteracting virus-induced epithelial stress and proinflammatory dendritic cell (DC) activation.


Asunto(s)
Enfermedad Celíaca , Virosis , Animales , Ratones , Enfermedad Celíaca/metabolismo , Tolerancia Inmunológica
20.
Nutrients ; 15(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375673

RESUMEN

BACKGROUND: Non-celiac wheat sensitivity (NCWS) is a poorly understood gluten-related disorder (GRD) and its prominent symptoms can be ameliorated by gluten avoidance. This study aimed to determine the effectiveness of a probiotic mixture in hydrolyzing gliadin peptides (toxic components of gluten) and suppressing gliadin-induced inflammatory responses in Caco-2 cells. METHODS: Wheat dough was fermented with a probiotic mix for 0, 2, 4, and 6 h. The effect of the probiotic mix on gliadin degradation was monitored by SDS-PAGE. The expression levels of IL-6, IL-17A, INF-γ, IL-10, and TGF-ß were evaluated using ELISA and qRT-PCR methods. RESULTS: According to our findings, fermenting wheat dough with a mix of B. longum, L. acidophilus, and L. plantarum for 6 h was effective in gliadin degradation. This process also reduced levels of IL-6 (p = 0.004), IL-17A (p = 0.004), and IFN-γ (p = 0.01) mRNA, as well as decreased IL-6 (p = 0.006) and IFN-γ (p = 0.0009) protein secretion. 4 h fermentation led to a significant decrease in IL-17A (p = 0.001) and IFN-γ (p = 0.003) mRNA, as well as reduced levels of IL-6 (p = 0.002) and IFN-γ (p < 0.0001) protein secretion. This process was also observed to increase the expression levels of IL-10 (p < 0.0001) and TGF-ß (p < 0.0001) mRNA. CONCLUSIONS: 4 h fermentation of wheat flour with the proposed probiotic mix might be a good strategy to develop an affordable gluten-free wheat dough for NCWS and probably other GRD patients.


Asunto(s)
Enfermedad Celíaca , Gliadina , Humanos , Gliadina/efectos adversos , Células CACO-2 , Hidrólisis , Interleucina-10 , Interleucina-17 , Enfermedad Celíaca/metabolismo , Interleucina-6 , Harina , Triticum/metabolismo , Glútenes/efectos adversos , Lactobacillus acidophilus , Factor de Crecimiento Transformador beta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...