Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
J Neuroinflammation ; 21(1): 176, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026249

RESUMEN

Accumulating evidence implicates that herpes simplex virus type 1 (HSV-1) has been linked to the development and progression of Alzheimer's disease (AD). HSV-1 infection induces ß-amyloid (Aß) deposition in vitro and in vivo, but the effect and precise mechanism remain elusive. Here, we show that HSV-1 infection of the brains of transgenic 5xFAD mice resulted in accelerated Aß deposition, gliosis, and cognitive dysfunction. We demonstrate that HSV-1 infection induced the recruitment of microglia to the viral core to trigger microglial phagocytosis of HSV-GFP-positive neuronal cells. In addition, we reveal that the NLRP3 inflammasome pathway induced by HSV-1 infection played a crucial role in Aß deposition and the progression of AD caused by HSV-1 infection. Blockade of the NLRP3 inflammasome signaling reduces Aß deposition and alleviates cognitive decline in 5xFAD mice after HSV-1 infection. Our findings support the notion that HSV-1 infection is a key factor in the etiology of AD, demonstrating that NLRP3 inflammasome activation functions in the interface of HSV-1 infection and Aß deposition in AD.


Asunto(s)
Enfermedad de Alzheimer , Progresión de la Enfermedad , Herpesvirus Humano 1 , Ratones Transgénicos , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Fagocitosis , Transducción de Señal , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/virología , Ratones , Microglía/metabolismo , Microglía/patología , Microglía/virología , Transducción de Señal/fisiología , Humanos , Herpes Simple/patología , Herpes Simple/inmunología , Herpes Simple/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animales de Enfermedad , Presenilina-1/genética , Presenilina-1/metabolismo
2.
J Infect Public Health ; 17(7): 102462, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824738

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder influenced by age, sex, genetic factors, immune alterations, and infections. Multiple lines of evidence suggest that changes in antibody response are linked to AD pathology. METHODS: To elucidate the mechanisms underlying AD development, we investigated antibodies that target autoimmune epitopes using high-resolution epitope microarrays. Our study compared two groups: individuals with AD (n = 19) and non-demented (ND) controls (n = 19). To validate the results, we measured antibody levels in plasma samples from AD patients (n = 96), mild cognitive impairment (MCI; n = 91), and ND controls (n = 97). To further explore the invlovement of EBV, we performed epitope masking immunofluorescence microscopy analysis and tests to induce lytic replication using the B95-8 cell line. RESULTS: In this study, we analyzed high-resolution epitope-specific serum antibody levels in AD, revealing significant disparities in antibodies targeting multiple epitopes between the AD and control groups. Particularly noteworthy was the significant down-regulation of antibody (anti-DG#29) targeting an epitope of Epstein-Barr virus nuclear antigen 1 (EBNA1). This down-regulation increased AD risk in female patients (odds ratio up to 6.6), but not in male patients. Our investigation further revealed that the down-regulation of the antibody (anti-DG#29) is associated with EBV reactivation in AD, as indicated by the analysis of EBV VCA IgG or IgM levels. Additionally, our data demonstrated that the epitope region on EBNA1 for the antibody is hidden during the EBV lytic reactivation of B95-8 cells. CONCLUSION: Our findings suggest a potential relationship of EBV in the development of AD in female. Moreover, we propose that antibodies targeting the epitope (DG#29) of EBNA1 could serve as valuable indicators of AD risk in female.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos Antivirales , Epítopos , Antígenos Nucleares del Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/sangre , Femenino , Masculino , Antígenos Nucleares del Virus de Epstein-Barr/inmunología , Anciano , Anticuerpos Antivirales/sangre , Epítopos/inmunología , Herpesvirus Humano 4/inmunología , Disfunción Cognitiva/inmunología , Anciano de 80 o más Años , Infecciones por Virus de Epstein-Barr/inmunología , Persona de Mediana Edad
3.
Rev Med Virol ; 34(3): e2550, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801246

RESUMEN

Alzheimer's disease (AD) is a real and current scientific and societal challenge. Alzheimer's disease is characterised by a neurodegenerative neuroinflammatory process, but the etiopathogenetic mechanisms are still unclear. The possible infectious aetiology and potential involvement of Herpes viruses as triggers for the formation of extracellular deposits of amyloid beta (Aß) peptide (amyloid plaques) and intraneuronal aggregates of hyperphosphorylated and misfold could be a possible explanation. In fact, the possible genetic interference of Herpes viruses with the genome of the host neuronal cell or the stimulation of the infection to a continuous immune response with a consequent chronic inflammation could constitute those mechanisms underlying the development of AD, with possible implications in the understanding and management of the disease. Herpes viruses could be significantly involved in the pathogenesis of AD and in particular, their ability to reactivate in particular conditions such as immunocompromise and immunosenescence, could explain the neurological damage characteristic of AD. Our review aims to evaluate the state of the art of knowledge and perspectives regarding the potential relationship between Herpes viruses and AD, in order to be able to identify the possible etiopathogenetic mechanisms and the possible therapeutic implications.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por Herpesviridae , Herpesviridae , Humanos , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/inmunología , Herpesviridae/patogenicidad , Herpesviridae/genética , Herpesviridae/fisiología , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/inmunología , Péptidos beta-Amiloides/metabolismo , Animales
4.
Biomolecules ; 14(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786010

RESUMEN

Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (MßCD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon MßCD treatment. Moreover, MßCD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. MßCD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (Aß) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Colesterol , Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Colesterol/metabolismo , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Herpes Simple/virología , Herpes Simple/metabolismo , Herpes Simple/tratamiento farmacológico , Herpes Simple/patología , Línea Celular Tumoral , Animales , beta-Ciclodextrinas/farmacología , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Proteínas tau/metabolismo , Fenotipo , Ratones
5.
Acta Neuropathol ; 147(1): 92, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801558

RESUMEN

The SARS-CoV-2 virus that led to COVID-19 is associated with significant and long-lasting neurologic symptoms in many patients, with an increased mortality risk for people with Alzheimer's disease (AD) and/or Down syndrome (DS). However, few studies have evaluated the neuropathological and inflammatory sequelae in postmortem brain tissue obtained from AD and people with DS with severe SARS-CoV-2 infections. We examined tau, beta-amyloid (Aß), inflammatory markers and SARS-CoV-2 nucleoprotein in DS, AD, and healthy non-demented controls with COVID-19 and compared with non-infected brain tissue from each disease group (total n = 24). A nested ANOVA was used to determine regional effects of the COVID-19 infection on arborization of astrocytes (Sholl analysis) and percent-stained area of Iba-1 and TMEM 119. SARS-CoV-2 antibodies labeled neurons and glial cells in the frontal cortex of all subjects with COVID-19, and in the hippocampus of two of the three DS COVID-19 cases. SARS-CoV-2-related alterations were observed in peri-vascular astrocytes and microglial cells in the gray matter of the frontal cortex, hippocampus, and para-hippocampal gyrus. Bright field microscopy revealed scattered intracellular and diffuse extracellular Aß deposits in the hippocampus of controls with confirmed SARS-CoV-2 infections. Overall, the present preliminary findings suggest that SARS-CoV-2 infections induce abnormal inflammatory responses in Down syndrome.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , COVID-19 , Síndrome de Down , Humanos , Síndrome de Down/patología , Síndrome de Down/metabolismo , Síndrome de Down/complicaciones , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/metabolismo , COVID-19/patología , COVID-19/complicaciones , Masculino , Femenino , Anciano , Persona de Mediana Edad , Encéfalo/patología , Encéfalo/virología , Anciano de 80 o más Años , Astrocitos/patología , Astrocitos/virología , Astrocitos/metabolismo , Péptidos beta-Amiloides/metabolismo , SARS-CoV-2/patogenicidad , Microglía/patología , Microglía/metabolismo , Adulto , Proteínas tau/metabolismo
6.
Environ Res ; 249: 118451, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341073

RESUMEN

Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.


Asunto(s)
COVID-19 , Mucosa Olfatoria , Material Particulado , SARS-CoV-2 , Material Particulado/toxicidad , Humanos , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/virología , COVID-19/inmunología , Contaminantes Atmosféricos/toxicidad , Anciano , Masculino , Femenino , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/virología , Persona de Mediana Edad , Citocinas/metabolismo , Anciano de 80 o más Años , Estrés Oxidativo/efectos de los fármacos
7.
J Neurovirol ; 30(1): 57-70, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167982

RESUMEN

In recent years, we have seen the widespread devastations and serious health complications manifested by COVID-19 globally. Although we have effectively controlled the pandemic, uncertainties persist regarding its potential long-term effects, including prolonged neurological issues. To gain comprehensive insights, we conducted a meta-analysis of mass spectrometry-based proteomics data retrieved from different studies with a total of 538 COVID-19 patients and 523 healthy controls. The meta-analysis revealed that top-enriched pathways were associated with neurological disorders, including Alzheimer's (AD) and Parkinson's disease (PD). Further analysis confirmed a direct correlation in the expression patterns of 24 proteins involved in Alzheimer's and 23 proteins in Parkinson's disease with COVID-19. Protein-protein interaction network and cluster analysis identified SNCA as a hub protein, a known biomarker for Parkinson's disease, in both AD and PD. To the best of our knowledge, this is the first meta-analysis study providing proteomic profiling evidence linking COVID-19 to neurological complications.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , COVID-19 , Enfermedad de Parkinson , Mapas de Interacción de Proteínas , Proteoma , SARS-CoV-2 , COVID-19/sangre , COVID-19/virología , COVID-19/metabolismo , Humanos , Enfermedad de Parkinson/virología , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , alfa-Sinucleína/sangre , alfa-Sinucleína/metabolismo , Proteómica/métodos
8.
Mol Neurobiol ; 61(8): 5337-5352, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38191694

RESUMEN

Evidence suggests that herpes virus infection is associated with an increased risk of Alzheimer's disease (AD), and innate and adaptive immunity plays an important role in the association. Although there have been many studies, the mechanism of the association is still unclear. This study aims to reveal the underlying molecular and immune regulatory network through multi-omics data and provide support for the study of the mechanism of infection and AD in the future. Here, we found that the herpes virus infection significantly increased the risk of AD. Genes associated with the occurrence and development of AD and genetically regulated by herpes virus infection are mainly enrichment in immune-related pathways. The 22 key regulatory genes identified by machine learning are mainly immune genes. They are also significantly related to the infiltration changes of 3 immune cell in AD. Furthermore, many of these genes have previously been reported to be linked, or potentially linked, to the pathological mechanisms of both herpes virus infection and AD. In conclusion, this study contributes to the study of the mechanisms related to herpes virus infection and AD, and indicates that the regulation of innate and adaptive immunity may be an effective strategy for preventing and treating herpes virus infection and AD. Additionally, the identified key regulatory genes, whether previously studied or newly discovered, may serve as valuable targets for prevention and treatment strategies.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por Herpesviridae , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Humanos , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/complicaciones , Redes Reguladoras de Genes , Genómica/métodos , Factores de Riesgo , Multiómica
9.
Transl Psychiatry ; 13(1): 396, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104129

RESUMEN

Although there are indications of a trend towards less severe acute respiratory symptoms and a decline in overall lethality from the novel Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), more and more attention has been paid to the long COVID, including the increased risk of Alzheimer's disease (AD) in COVID-19 patients. In this study, we aim to investigate the involvement of N-terminal amyloid precursor protein (APP) in SARS-CoV-2-induced amyloid-ß (Aß) pathology. Utilizing both in vitro and in vivo methodologies, we first investigated the interaction between the spike protein of SARS-CoV-2 and N-terminal APP via LSPR and CoIP assays. The in vitro impacts of APP overexpression on virus infection were further evaluated in HEK293T/ACE2 cells, SH-SY5Y cells, and Vero cells. We also analyzed the pseudovirus infection in vivo in a mouse model overexpressing human wild-type APP. Finally, we evaluated the impact of APP on pseudovirus infection within human brain organoids and assessed the chronic effects of pseudovirus infection on Aß levels. We reported here for the first time that APP, the precursor of the Aß of AD, interacts with the Spike protein of SARS-CoV-2. Moreover, both in vivo and in vitro data further indicated that APP promotes the cellular entry of the virus, and exacerbates Aß-associated pathology in the APP/PS1 mouse model of AD, which can be ameliorated by N-terminal APP blockage. Our findings provide experimental evidence to interpret APP-related mechanisms underlying AD-like neuropathology in COVID-19 patients and may pave the way to help inform risk management and therapeutic strategies against diseases accordingly.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Internalización del Virus , Animales , Humanos , Ratones , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/virología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Chlorocebus aethiops , COVID-19/complicaciones , Modelos Animales de Enfermedad , Células HEK293 , Ratones Transgénicos , Síndrome Post Agudo de COVID-19 , Presenilina-1 , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus , Células Vero
10.
J Neurochem ; 163(6): 517-530, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36321194

RESUMEN

Inflammation associated with viral infection of the nervous system has been involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis. Polyinosinic:polycytidylic acid (poly[I:C]) is a Toll-like receptor 3 (TLR3) agonist that mimics the inflammatory response to systemic viral infections. Despite growing recognition of the role of glial cells in AD pathology, their involvement in the accumulation and clearance of amyloid ß (Aß) in the brain of patients with AD is poorly understood. Neprilysin (NEP) and insulin-degrading enzyme (IDE) are the main Aß-degrading enzymes in the brain. This study investigated whether poly(I:C) regulated Aß degradation and neurotoxicity by modulating NEP and IDE protein levels through TLR3 in astrocytes. To this aim, primary rat primary astrocyte cultures were treated with poly(I:C) and inhibitors of the TLR3 signaling. Protein levels were assessed by Western blot. Aß toxicity to primary neurons was measured by lactate dehydrogenase release. Poly(I:C) induced a significant decrease in NEP levels on the membrane of astrocytes as well as in the culture medium. The degradation of exogenous Aß was markedly delayed in poly(I:C)-treated astrocytes. This delay significantly increased the neurotoxicity of exogenous Aß1-42. Altogether, these results suggest that viral infections induce Aß neurotoxicity by decreasing NEP levels in astrocytes and consequently preventing Aß degradation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Astrocitos , Insulisina , Neprilisina , Virosis , Animales , Ratas , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/virología , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Astrocitos/virología , Insulisina/metabolismo , Neprilisina/metabolismo , Receptor Toll-Like 3/antagonistas & inhibidores , Poli I-C/farmacología , Virosis/complicaciones
11.
Physiol Int ; 109(2): 135-162, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35895572

RESUMEN

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to the pulmonary manifestations, COVID-19 patients may present a wide range of neurological disorders as extrapulmonary presentations. In this view, several studies have recently documented the worsening of neurological symptoms within COVID-19 morbidity in patients previously diagnosed with neurodegenerative diseases (NDs). Moreover, several cases have also been reported in which the patients presented parkinsonian features after initial COVID-19 symptoms. These data raise a major concern about the possibility of communication between SARS-CoV-2 infection and the initiation and/or worsening of NDs. In this review, we have collected compelling evidence suggesting SARS-CoV-2, as an environmental factor, may be capable of developing NDs. In this respect, the possible links between SARS-CoV-2 infection and molecular pathways related to most NDs and the pathophysiological mechanisms of the NDs such as Alzheimer's disease, vascular dementia, frontotemporal dementia, Parkinson's disease, and amyotrophic lateral sclerosis will be explained.


Asunto(s)
COVID-19/complicaciones , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/virología , SARS-CoV-2 , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/virología , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/virología
12.
Cells ; 11(8)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35455977

RESUMEN

The novel coronavirus (2019-nCoVCOVID-19) belongs to the Beta coronavirus family, which contains MERS-CoV (Middle East respiratory syndrome coronavirus) and SARS-CoV (severe acute respiratory syndrome coronavirus). SARS-CoV-2 activates the innate immune system, thereby activating the inflammatory mechanism, causing the release of inflammatory cytokines. Moreover, it has been suggested that COVID-19 may penetrate the central nervous system, and release inflammatory cytokines in the brains, inducing neuroinflammation and neurodegeneration. Several links connect COVID-19 with Alzheimer's disease (AD), such as elevated oxidative stress, uncontrolled release of the inflammatory cytokines, and mitochondrial apoptosis. There are severe concerns that excessive immune cell activation in COVID-19 may aggravate the neurodegeneration and amyloid-beta pathology of AD. Here, we have collected the evidence, showing the links between the two diseases. The focus has been made to collect the information on the activation of the inflammation, its contributors, and shared therapeutic targets. Furthermore, we have given future perspectives, research gaps, and overlapping pathological bases of the two diseases. Lastly, we have given the short touch to the drugs that have equally shown rescuing effects against both diseases. Although there is limited information available regarding the exact links between COVID-19 and neuroinflammation, we have insight into the pathological contributors of the diseases. Based on the shared pathological features and therapeutic targets, we hypothesize that the activation of the immune system may induce neurological disorders by triggering oxidative stress and neuroinflammation.


Asunto(s)
COVID-19 , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/virología , Antioxidantes/metabolismo , COVID-19/complicaciones , COVID-19/fisiopatología , Citocinas , Humanos , Enfermedades Neuroinflamatorias/virología , Estrés Oxidativo , SARS-CoV-2
13.
J Alzheimers Dis ; 85(2): 729-744, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34776447

RESUMEN

BACKGROUND: COVID-19 pandemic is a global crisis which results in millions of deaths and causes long-term neurological sequelae, such as Alzheimer's disease (AD). OBJECTIVE: We aimed to explore the interaction between COVID-19 and AD by integrating bioinformatics to find the biomarkers which lead to AD occurrence and development with COVID-19 and provide early intervention. METHODS: The differential expressed genes (DEGs) were found by GSE147507 and GSE132903, respectively. The common genes between COVID-19 and AD were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interactions (PPI) network analysis were carried out. Hub genes were found by cytoscape. A multivariate logistic regression model was constructed. NetworkAnalyst was used for the analysis of TF-gene interactions, TF-miRNA coregulatory network, and Protein-chemical Interactions. RESULTS: Forty common DEGs for AD and COVID-19 were found. GO and KEGG analysis indicated that the DEGs were enriched in the calcium signal pathway and other pathways. A PPI network was constructed, and 5 hub genes were identified (ITPR1, ITPR3, ITPKB, RAPGEF3, MFGE8). Four hub genes (ITPR1, ITPR3, ITPKB, RAPGEF3) which were considered as important factors in the development of AD that were affected by COVID-19 were shown by nomogram. Utilizing NetworkAnalyst, the interaction network of 4 hub genes and TF, miRNA, common AD risk genes, and known compounds is displayed, respectively. CONCLUSION: COVID-19 patients are at high risk of developing AD. Vaccination is required. Four hub genes can be considered as biomarkers for prediction and treatment of AD development caused by COVID-19. Compounds with neuroprotective effects can be used as adjuvant therapy for COVID-19 patients.


Asunto(s)
Enfermedad de Alzheimer/genética , COVID-19/virología , Mapas de Interacción de Proteínas/genética , SARS-CoV-2/patogenicidad , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/virología , Biología Computacional/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Humanos , SARS-CoV-2/genética
14.
J Alzheimers Dis ; 85(3): 1053-1061, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34924389

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a fatal neurodegenerative disease, the etiology of which is unclear. Previous studies have suggested that some viruses are neurotropic and associated with AD. OBJECTIVE: By using bioinformatics analysis, we investigated the potential association between viral infection and AD. METHODS: A total of 5,066 differentially expressed genes (DEGs) in the temporal cortex between AD and control samples were identified. These DEGs were then examined via weighted gene co-expression network analysis (WGCNA) and clustered into modules of genes with similar expression patterns. Of identified modules, module turquoise had the highest correlation with AD. The module turquoise was further characterized using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis. RESULTS: Our results showed that the KEGG pathways of the module turquoise were mainly associated with viral infection signaling, specifically Herpes simplex virus, Human papillomavirus, and Epstein-Barr virus infections. A total of 126 genes were enriched in viral infection signaling pathways. In addition, based on values of module membership and gene significance, a total of 508 genes within the module were selected for further analysis. By intersecting these 508 genes with those 126 genes enriched in viral infection pathways, we identified 4 hub genes that were associated with both viral infection and AD: TLR2, COL1A2, NOTCH3, and ZNF132. CONCLUSION: Through bioinformatics analysis, we demonstrated a potential link between viral infection and AD. These findings may provide a platform to further our understanding of AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Biología Computacional , Perfilación de la Expresión Génica , Virosis/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/virología , Bases de Datos Genéticas , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Transducción de Señal/genética
15.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34948400

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the pandemic Coronavirus Disease 19 (COVID-19), causing millions of deaths. The elderly and those already living with comorbidity are likely to die after SARS-CoV-2 infection. People suffering from Alzheimer's disease (AD) have a higher risk of becoming infected, because they cannot easily follow health roles. Additionally, those suffering from dementia have a 40% higher risk of dying from COVID-19. Herein, we collected from Gene Expression Omnibus repository the brain samples of AD patients who died of COVID-19 (AD+COVID-19), AD without COVID-19 (AD), COVID-19 without AD (COVID-19) and control individuals. We inspected the transcriptomic and interactomic profiles by comparing the COVID-19 cohort against the control cohort and the AD cohort against the AD+COVID-19 cohort. SARS-CoV-2 in patients without AD mainly activated processes related to immune response and cell cycle. Conversely, 21 key nodes in the interactome are deregulated in AD. Interestingly, some of them are linked to beta-amyloid production and clearance. Thus, we inspected their role, along with their interactors, using the gene ontologies of the biological process that reveals their contribution in brain organization, immune response, oxidative stress and viral replication. We conclude that SARS-CoV-2 worsens the AD condition by increasing neurotoxicity, due to higher levels of beta-amyloid, inflammation and oxidative stress.


Asunto(s)
Enfermedad de Alzheimer/genética , COVID-19/complicaciones , COVID-19/genética , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/virología , Péptidos beta-Amiloides/metabolismo , Encéfalo/virología , COVID-19/fisiopatología , Comorbilidad/tendencias , Bases de Datos Factuales , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Inflamación/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Estrés Oxidativo/fisiología , Pandemias , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Transcriptoma/genética
16.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298881

RESUMEN

Chronic neurodegenerative diseases are complex, and their pathogenesis is uncertain. Alzheimer's disease (AD) is a neurodegenerative brain alteration that is responsible for most dementia cases in the elderly. AD etiology is still uncertain; however, chronic neuroinflammation is a constant component of brain pathology. Infections have been associated with several neurological diseases and viruses of the Herpes family appear to be a probable cause of AD neurodegenerative alterations. Several different factors may contribute to the AD clinical progression. Exogeneous viruses or other microbes and environmental pollutants may directly induce neurodegeneration by activating brain inflammation. In this paper, we suggest that exogeneous brain insults may also activate retrotransposons and silent human endogenous retroviruses (HERVs). The initial inflammation of small brain areas induced by virus infections or other brain insults may activate HERV dis-regulation that contributes to neurodegenerative mechanisms. Chronic HERV activation in turn may cause progressive neurodegeneration that thereafter merges in cognitive impairment and dementia in genetically susceptible people. Specific treatment for exogenous end endogenous pathogens and decreasing pollutant exposure may show beneficial effect in early intervention protocol to prevent the progression of cognitive deterioration in the elderly.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/virología , Encéfalo/patología , Encéfalo/virología , Retrovirus Endógenos/patogenicidad , Virosis/patología , Virosis/virología , Animales , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/virología , Encefalitis/patología , Encefalitis/virología , Humanos
17.
Antiviral Res ; 192: 105116, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34107282

RESUMEN

Growing evidence supports that chronic or latent infection of the central nervous system might be implicated in Alzheimer's disease (AD). Among them, Herpes simplex virus type 1 (HSV-1) has emerged as a major factor in the etiology of the disease. Our group is devoted to the study of the relationship among HSV-1, oxidative stress (OS) and neurodegeneration. We have found that HSV-1 induces the main neuropathological hallmarks of AD, including the accumulation of intracellular amyloid beta (Aß), hyperphosphorylated tau protein and autophagic vesicles, that OS exacerbates these effects, and that matrix metalloproteinase 14 (MMP-14) participates in the alterations induced by OS. In this work, we focused on the role of MMP-14 in the degenerative markers raised by HSV-1 infection. Interestingly, we found that MMP-14 blockage is a potent inhibitor of HSV-1 infection efficiency, that also reduces the degeneration markers, accumulation of Aß and hyperphosphorylated tau, induced by the virus. Our results point to MMP-14 as a potent antiviral target to control HSV-1 infection and its associated neurodegenerative effects.


Asunto(s)
Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Metaloproteinasa 14 de la Matriz/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/virología , Péptidos beta-Amiloides/metabolismo , Animales , Antivirales/farmacología , Autofagosomas/metabolismo , Biomarcadores/metabolismo , Línea Celular Tumoral , Herpes Simple/virología , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Metaloproteinasa 14 de la Matriz/deficiencia , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Neuroblastoma/patología , Estrés Oxidativo , Fosforilación , Proteínas tau/metabolismo
18.
J Biol Chem ; 297(1): 100845, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34052228

RESUMEN

Alzheimer's disease (AD) is a devastating fatal neurodegenerative disease. An alternative to the amyloid cascade hypothesis is that a viral infection is key to the etiology of late-onset AD, with ß-amyloid (Aß) peptides playing a protective role. In the current study, young 5XFAD mice that overexpress mutant human amyloid precursor protein with the Swedish, Florida, and London familial AD mutations were infected with one of two strains of herpes simplex virus 1 (HSV-1), 17syn+ and McKrae, at three different doses. Contrary to previous work, 5XFAD genotype failed to protect mice against HSV-1 infection. The region- and cell-specific tropisms of HSV-1 were not affected by the 5XFAD genotype, indicating that host-pathogen interactions were not altered. Seven- to ten-month-old 5XFAD animals in which extracellular Aß aggregates were abundant showed slightly better survival rate relative to their wild-type (WT) littermates, although the difference was not statistically significant. In these 5XFAD mice, HSV-1 replication centers were partially excluded from the brain areas with high densities of Aß aggregates. Aß aggregates were free of HSV-1 viral particles, and the limited viral invasion to areas with a high density of Aß aggregates was attributed to phagocytic activity of reactive microglia. In the oldest mice (12-15 months old), the survival rate did not differ between 5XFAD and WT littermates. While the current study questions the antiviral role of Aß, it neither supports nor refutes the viral etiology hypothesis of late-onset AD.


Asunto(s)
Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Interacciones Huésped-Patógeno/genética , Virosis/genética , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/virología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/patología , Encéfalo/virología , Modelos Animales de Enfermedad , Herpes Simple/genética , Herpes Simple/patología , Herpes Simple/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidad , Humanos , Ratones , Ratones Transgénicos , Microglía/patología , Microglía/virología , Presenilina-1/genética , Virosis/complicaciones , Virosis/patología , Virosis/virología , Replicación Viral/genética
19.
Neurochem Int ; 146: 105032, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33781848

RESUMEN

Mounting evidence suggests a major role of infectious agents in the pathogenesis of sporadic Alzheimer's disease (AD). Among them, herpes simplex virus type 1 (HSV-1) infection has emerged as a major factor in the etiology of AD. HSV-1 is able to induce some of the main alterations of the disease such as hyperphosphorylation of tau protein and accumulation of amyloid-ß peptide. Functional genomic analysis of a cell model of HSV-1 infection and oxidative stress developed in our laboratory revealed lysosomal system to be the main pathway altered, and the lysosome-associated membrane protein 2 (LAMP2) gene one of the most strongly modulated genes. The aim of this work is to study LAMP2 as an AD candidate gene and to investigate its role in the neurodegeneration induced by HSV-1 using a LAMP2 knockdown cell model. LAMP2 deficiency led to a significant reduction of viral DNA replication and formation of infectious particles. In addition, tau hyperphosphorylation and inhibition of Aß secretion induced by the virus were attenuated by the absence of LAMP2. Finally, genetic association studies revealed LAMP2 genetic variants to be associated with AD risk. In summary, our data indicate that LAMP2 could be a suitable candidate to mediate the AD-like phenotype caused by HSV-1.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Herpes Simple/metabolismo , Herpes Simple/prevención & control , Herpesvirus Humano 1/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/virología , Animales , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen/métodos , Herpes Simple/genética , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/antagonistas & inhibidores , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Masculino , Ratones , Persona de Mediana Edad , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/virología
20.
Arch Virol ; 166(3): 733-753, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33502593

RESUMEN

The chronic dysfunction of neuronal cells, both central and peripheral, a characteristic of neurological disorders, may be caused by irreversible damage and cell death. In 2016, more than 276 million cases of neurological disorders were reported worldwide. Moreover, neurological disorders are the second leading cause of death. Generally, the etiology of neurological diseases is not fully understood. Recent studies have related the onset of neurological disorders to viral infections, which may cause neurological symptoms or lead to immune responses that trigger these pathological signs. Currently, this relationship is mostly based on epidemiological data on infections and seroprevalence of patients who present with neurological disorders. The number of studies aiming to elucidate the mechanism of action by which viral infections may directly or indirectly contribute to the development of neurological disorders has been increasing over the years but these studies are still scarce. Comprehending the pathogenesis of these diseases and exploring novel theories may favor the development of new strategies for diagnosis and therapy in the future. Therefore, the objective of the present study was to review the main pieces of evidence for the relationship between viral infection and neurological disorders such as Alzheimer's disease, Parkinson's disease, Guillain-Barré syndrome, multiple sclerosis, and epilepsy. Viruses belonging to the families Herpesviridae, Orthomyxoviridae, Flaviviridae, and Retroviridae have been reported to be involved in one or more of these conditions. Also, neurological symptoms and the future impact of infection with SARS-CoV-2, a member of the family Coronaviridae that is responsible for the COVID-19 pandemic that started in late 2019, are reported and discussed.


Asunto(s)
COVID-19/patología , Enfermedades del Sistema Nervioso/virología , Tropismo Viral/fisiología , Enfermedad de Alzheimer/virología , COVID-19/virología , Epilepsia/virología , Flaviviridae/metabolismo , Síndrome de Guillain-Barré/virología , Herpesviridae/metabolismo , Humanos , Esclerosis Múltiple/virología , Enfermedades del Sistema Nervioso/patología , Orthomyxoviridae/metabolismo , Enfermedad de Parkinson/virología , Retroviridae/metabolismo , SARS-CoV-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...