Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.198
Filtrar
1.
J Nanobiotechnology ; 22(1): 260, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760847

RESUMEN

Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Barrera Hematoencefálica/metabolismo , Animales , Encéfalo/metabolismo , Ligandos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Péptidos/química
2.
Clin Interv Aging ; 19: 681-693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706635

RESUMEN

Aging and aging-related diseases present a global public health problem. Therefore, the development of efficient anti-aging drugs has become an important area of research. Traditional Chinese medicine is an important complementary and alternative branch of aging-related diseases therapy. Recently, a growing number of studies have revealed that traditional Chinese medicine has a certain delaying effect on the progression of aging and aging-related diseases. Here, we review the progress in research into using traditional Chinese medicine for aging and aging-related diseases (including neurodegenerative diseases, cardiovascular diseases, diabetes, and cancer). Furthermore, we summarize the potential mechanisms of action of traditional Chinese medicine and provide references for further studies on aging and aging-related diseases.


Asunto(s)
Envejecimiento , Medicamentos Herbarios Chinos , Medicina Tradicional China , Neoplasias , Enfermedades Neurodegenerativas , Humanos , Envejecimiento/efectos de los fármacos , Medicina Tradicional China/métodos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus/tratamiento farmacológico
3.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731618

RESUMEN

Neurodegeneration is a gradual decay process leading to the depletion of neurons in both the central and peripheral nervous systems, ultimately resulting in cognitive dysfunctions and the deterioration of brain functions, alongside a decline in motor skills and behavioral capabilities. Neurodegenerative disorders (NDs) impose a substantial socio-economic strain on society, aggravated by the advancing age of the world population and the absence of effective remedies, predicting a negative future. In this context, the urgency of discovering viable therapies is critical and, despite significant efforts by medicinal chemists in developing potential drug candidates and exploring various small molecules as therapeutics, regrettably, a truly effective treatment is yet to be found. Nitrogen heterocyclic compounds, and particularly those containing the indole nucleus, which has emerged as privileged scaffold, have attracted particular attention for a variety of pharmacological applications. This review analyzes the rational design strategy adopted by different research groups for the development of anti-neurodegenerative indole-based compounds which have the potential to modulate various molecular targets involved in NDs, with reference to the most recent advances between 2018 and 2023.


Asunto(s)
Indoles , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Indoles/química , Indoles/farmacología , Indoles/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/química
4.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732545

RESUMEN

Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.


Asunto(s)
Curcumina , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Resveratrol , Fármacos Neuroprotectores/farmacología , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Curcumina/farmacología , Resveratrol/farmacología , Ergotioneína/farmacología , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Ficocianina/farmacología , Animales , Cianobacterias , Agaricales/química , Microalgas
5.
J Biochem Mol Toxicol ; 38(5): e23717, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742857

RESUMEN

Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.


Asunto(s)
Cloruro de Aluminio , Flavanonas , Trastornos de la Memoria , Estrés Oxidativo , Animales , Flavanonas/farmacología , Flavanonas/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Ratones , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Cloruro de Aluminio/toxicidad , Masculino , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
6.
J Nanobiotechnology ; 22(1): 248, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741193

RESUMEN

The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.


Asunto(s)
Oro , Nanopartículas del Metal , Enfermedades Neurodegenerativas , alfa-Sinucleína , Proteínas tau , Humanos , Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Proteínas tau/metabolismo , Animales , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/diagnóstico , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/diagnóstico , Sistemas de Liberación de Medicamentos/métodos , Biomarcadores
8.
Basic Clin Pharmacol Toxicol ; 134(6): 770-777, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566316

RESUMEN

Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are characterised by the progressive loss of specific neuronal cell populations due to multifactorial factors, including neurochemical and immunological disturbances. Consequently, patients can develop cognitive, motor and behavioural dysfunctions, which lead to impairments in their quality of life. Over the years, studies have reported on the neuroprotective properties inherent in phenolic compounds. Therefore, this review highlights the most recent scientific findings regarding phenolic compounds as promising neuroprotective molecules against neurodegenerative diseases.


Asunto(s)
Fármacos Neuroprotectores , Fenoles , Fármacos Neuroprotectores/farmacología , Animales , Humanos , Fenoles/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Modelos Animales de Enfermedad , Enfermedad de Parkinson/tratamiento farmacológico , Neuroprotección/efectos de los fármacos
9.
Bioorg Chem ; 147: 107386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643565

RESUMEN

Neurodegenerative diseases (NDD) are characterized by the gradual deterioration of neuronal function and integrity, resulting in an overall decline in brain function. The existing therapeutic options for NDD, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, fall short of meeting the clinical demand. A prominent pathological hallmark observed in numerous neurodegenerative disorders is the aggregation and misfolding of proteins both within and outside neurons. These abnormal proteins play a pivotal role in the pathogenesis of neurodegenerative diseases. Targeted degradation of irregular proteins offers a promising avenue for NDD treatment. Proteolysis-targeting chimeras (PROTACs) function via the ubiquitin-proteasome system and have emerged as a novel and efficacious approach in drug discovery. PROTACs can catalytically degrade "undruggable" proteins even at exceptionally low concentrations, allowing for precise quantitative control of aberrant protein levels. In this review, we present a compilation of reported PROTAC structures and their corresponding biological activities aimed at addressing NDD. Spanning from 2016 to present, this review provides an up-to-date overview of PROTAC-based therapeutic interventions. Currently, most protein degraders intended for NDD treatment remain in the preclinical research phase. Overcoming several challenges is imperative, including enhancing oral bioavailability and permeability across the blood-brain barrier, before these compounds can progress to clinical research or eventually reach the market. However, armed with an enhanced comprehension of the underlying pathological mechanisms and the emergence of innovative scaffolds for protein degraders, along with further structural optimization, we are confident that PROTAC possesses the potential to make substantial breakthroughs in the field of neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Proteolisis , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Proteolisis/efectos de los fármacos , Animales , Descubrimiento de Drogas , Estructura Molecular , Quimera Dirigida a la Proteólisis
10.
Int J Mol Med ; 53(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577947

RESUMEN

Chronic neuroinflammation serves a key role in the onset and progression of neurodegenerative disorders. Mitochondria serve as central regulators of neuroinflammation. In addition to providing energy to cells, mitochondria also participate in the immunoinflammatory response of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis and epilepsy, by regulating processes such as cell death and inflammasome activation. Under inflammatory conditions, mitochondrial oxidative stress, epigenetics, mitochondrial dynamics and calcium homeostasis imbalance may serve as underlying regulatory mechanisms for these diseases. Therefore, investigating mechanisms related to mitochondrial dysfunction may result in therapeutic strategies against chronic neuroinflammation and neurodegeneration. The present review summarizes the mechanisms of mitochondria in chronic neuroinflammatory diseases and the current treatment approaches that target mitochondrial dysfunction in these diseases.


Asunto(s)
Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neuroinflamatorias , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedades Mitocondriales/metabolismo
11.
Chem Biol Drug Des ; 103(4): e14515, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570333

RESUMEN

Neurodegenerative disorders are devastating disorders characterized by gradual loss of neurons and cognition or mobility impairment. The common pathological features of these diseases are associated with the accumulation of misfolded or aggregation of proteins. The pivotal roles of autophagy and proteostasis in maintaining cellular health and preventing the accumulation of misfolded proteins, which are associated with neurodegenerative diseases like Huntington's disease (HD), Alzheimer's disease (AD), and Parkinson's disease (PD). This article presents an in-depth examination of the interplay between autophagy and proteostasis, highlighting how these processes cooperatively contribute to cellular homeostasis and prevent pathogenic protein aggregate accumulation. Furthermore, the review emphasises the potential therapeutic implications of targeting autophagy and proteostasis to mitigate neurodegenerative diseases. While advancements in research hold promise for developing novel treatments, the article also addresses the challenges and complexities associated with modulating these intricate cellular pathways. Ultimately, advancing understanding of the underlying mechanism of autophagy and proteostasis in neurodegenerative disorders provides valuable insights into potential therapeutic avenues and future research directions.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Proteostasis , Proteínas/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Autofagia
12.
J Neurosci Res ; 102(4): e25321, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588013

RESUMEN

Neurodegenerative diseases are progressive disorders characterized by synaptic loss and neuronal death. Optogenetics combines optical and genetic methods to control the activity of specific cell types. The efficacy of this approach in neurodegenerative diseases has been investigated in many reviews, however, none of them tackled it systematically. Our study aimed to review systematically the findings of optogenetics and its potential applications in animal models of chronic neurodegenerative diseases and compare it with deep brain stimulation and designer receptors exclusively activated by designer drugs techniques. The search strategy was performed based on the PRISMA guidelines and the risk of bias was assessed following the Systematic Review Centre for Laboratory Animal Experimentation tool. A total of 247 articles were found, of which 53 were suitable for the qualitative analysis. Our data revealed that optogenetic manipulation of distinct neurons in the brain is efficient in rescuing memory impairment, alleviating neuroinflammation, and reducing plaque pathology in Alzheimer's disease. Similarly, this technique shows an advanced understanding of the contribution of various neurons involved in the basal ganglia pathways with Parkinson's disease motor symptoms and pathology. However, the optogenetic application using animal models of Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis was limited. Optogenetics is a promising technique that enhanced our knowledge in the research of neurodegenerative diseases and addressed potential therapeutic solutions for managing these diseases' symptoms and delaying their progression. Nevertheless, advanced investigations should be considered to improve optogenetic tools' efficacy and safety to pave the way for their translatability to the clinic.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Optogenética/métodos , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/tratamiento farmacológico , Encéfalo/fisiología , Ganglios Basales , Enfermedad de Parkinson/genética
13.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612544

RESUMEN

N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato , Enfermedad de Alzheimer/tratamiento farmacológico , Ácido Glutámico
14.
Biochem Soc Trans ; 52(2): 693-706, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629629

RESUMEN

Pathological breakdown of membrane lipids through excessive lipid peroxidation (LPO) was first described in the mid-20th century and is now recognized as a form of regulated cell death, dubbed ferroptosis. Accumulating evidence unveils how metabolic regulation restrains peroxidation of phospholipids within cellular membranes, thereby impeding ferroptosis execution. Unleashing these metabolic breaks is currently therapeutically explored to sensitize cancers to ferroptosis inducing anti-cancer therapies. Reversely, these natural ferroptotic defense mechanisms can fail resulting in pathological conditions or diseases such as ischemia-reperfusion injury, multi-organ dysfunction, stroke, infarction, or neurodegenerative diseases. This minireview outlines current ferroptosis-inducing anti-cancer strategies and highlights the detection as well as the therapeutic targeting of ferroptosis in preclinical experimental settings. Herein, we also briefly summarize observations related to LPO, iron and redox deregulation in patients that might hint towards ferroptosis as a contributing factor.


Asunto(s)
Ferroptosis , Peroxidación de Lípido , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Hierro/metabolismo , Oxidación-Reducción , Antineoplásicos/uso terapéutico , Daño por Reperfusión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico
15.
Biosci Rep ; 44(4)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38577975

RESUMEN

Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.


Asunto(s)
Fármacos Antiobesidad , Neuropéptidos , Fármacos Neuroprotectores , Obesidad , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Animales , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Neuropéptidos/uso terapéutico , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Ingestión de Alimentos/efectos de los fármacos
16.
Neurochem Int ; 176: 105745, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641025

RESUMEN

Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.


Asunto(s)
Butiratos , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Animales , Butiratos/uso terapéutico , Butiratos/farmacología , Butiratos/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Probióticos/uso terapéutico
17.
Pharmacol Rep ; 76(3): 439-451, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38568371

RESUMEN

Neurodegenerative diseases, which occur when neurons begin to deteriorate, affect millions of people worldwide. These age-related disorders are becoming more common partly because the elderly population has increased in recent years. While no treatments are accessible, every year an increasing number of therapeutic and supportive options become available. Various substances that may have neuroprotective effects are currently being researched. One of them is apelin. This review aims to illustrate the results of research on the neuroprotective effect of apelin amino acid oligopeptide which binds to the apelin receptor and exhibits neuroprotective effects in the central nervous system. The collected data indicate that apelin can protect the central nervous system against injury by several mechanisms. More studies are needed to thoroughly investigate the potential neuroprotective effects of this peptide in neurodegenerative diseases and various other types of brain damage.


Asunto(s)
Apelina , Péptidos y Proteínas de Señalización Intercelular , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Animales , Apelina/farmacología , Apelina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Receptores de Apelina/metabolismo
18.
Eur J Med Chem ; 271: 116386, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38614063

RESUMEN

Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aß oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.


Asunto(s)
Enfermedades Neurodegenerativas , Inhibidores de Fosfodiesterasa , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/uso terapéutico , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Estructura Molecular
19.
Pharmacol Ther ; 258: 108641, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583670

RESUMEN

Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.


Asunto(s)
Demencia , Trastorno Depresivo Mayor , Enfermedades Neurodegenerativas , Neurogénesis , Psilocibina , Humanos , Demencia/prevención & control , Demencia/tratamiento farmacológico , Animales , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Trastorno Depresivo Mayor/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Psilocibina/uso terapéutico , Psilocibina/farmacología , Hipocampo/efectos de los fármacos , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Microglía/efectos de los fármacos
20.
Adv Drug Deliv Rev ; 209: 115323, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653402

RESUMEN

With the aging population on the rise, neurodegenerative disorders have taken center stage as a significant health concern. The blood-brain barrier (BBB) plays an important role to maintain the stability of central nervous system, yet it poses a formidable obstacle to delivering drugs for neurodegenerative disease therapy. Various methods have been devised to confront this challenge, each carrying its own set of limitations. One particularly promising noninvasive approach involves the utilization of focused ultrasound (FUS) combined with contrast agents-microbubbles (MBs) to achieve transient and reversible BBB opening. This review provides a comprehensive exploration of the fundamental mechanisms behind FUS/MBs-mediated BBB opening and spotlights recent breakthroughs in its application for neurodegenerative diseases. Furthermore, it addresses the current challenges and presents future perspectives in this field.


Asunto(s)
Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Microburbujas , Enfermedades Neurodegenerativas , Barrera Hematoencefálica/metabolismo , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Medios de Contraste , Ondas Ultrasónicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA