Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.975
Filtrar
1.
Nat Commun ; 15(1): 4205, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806460

RESUMEN

Understanding how emerging infectious diseases spread within and between countries is essential to contain future pandemics. Spread to new areas requires connectivity between one or more sources and a suitable local environment, but how these two factors interact at different stages of disease emergence remains largely unknown. Further, no analytical framework exists to examine their roles. Here we develop a dynamic modelling approach for infectious diseases that explicitly models both connectivity via human movement and environmental suitability interactions. We apply it to better understand recently observed (1995-2019) patterns as well as predict past unobserved (1983-2000) and future (2020-2039) spread of dengue in Mexico and Brazil. We find that these models can accurately reconstruct long-term spread pathways, determine historical origins, and identify specific routes of invasion. We find early dengue invasion is more heavily influenced by environmental factors, resulting in patchy non-contiguous spread, while short and long-distance connectivity becomes more important in later stages. Our results have immediate practical applications for forecasting and containing the spread of dengue and emergence of new serotypes. Given current and future trends in human mobility, climate, and zoonotic spillover, understanding the interplay between connectivity and environmental suitability will be increasingly necessary to contain emerging and re-emerging pathogens.


Asunto(s)
Dengue , Dengue/epidemiología , Dengue/transmisión , Dengue/virología , Humanos , Brasil/epidemiología , México/epidemiología , Animales , Virus del Dengue/fisiología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Enfermedades Transmisibles Emergentes/transmisión , Ambiente , Migración Humana , Aedes/virología
2.
Adv Exp Med Biol ; 1451: 355-368, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801590

RESUMEN

Monkeypox (mpox), a zoonotic disease caused by the monkeypox virus (MPXV), poses a significant public health threat with the potential for global dissemination beyond its endemic regions in Central and West Africa. This study explores the multifaceted aspects of monkeypox, covering its epidemiology, genomics, travel-related spread, mass gathering implications, and economic consequences. Epidemiologically, mpox exhibits distinct patterns, with variations in age and gender susceptibility. Severe cases can arise in immunocompromised individuals, underscoring the importance of understanding the factors contributing to its transmission. Genomic analysis of MPXV highlights its evolutionary relationship with the variola virus and vaccinia virus. Different MPXV clades exhibit varying levels of virulence and transmission potential, with Clade I associated with higher mortality rates. Moreover, the role of recombination in MPXV evolution remains a subject of interest, with implications for understanding its genetic diversity. Travel and mass gatherings play a pivotal role in the spread of monkeypox. The ease of international travel and increasing globalization have led to outbreaks beyond African borders. The economic ramifications of mpox outbreaks extend beyond public health. Direct treatment costs, productivity losses, and resource-intensive control efforts can strain healthcare systems and economies. While vaccination and mitigation strategies have proven effective, the cost-effectiveness of routine vaccination in non-endemic countries remains a subject of debate. This study emphasizes the role of travel, mass gatherings, and genomics in its spread and underscores the economic impacts on affected regions. Enhancing surveillance, vaccination strategies, and public health measures are essential in controlling this emerging infectious disease.


Asunto(s)
Brotes de Enfermedades , Salud Global , Monkeypox virus , Mpox , Viaje , Mpox/epidemiología , Mpox/virología , Mpox/transmisión , Humanos , Brotes de Enfermedades/prevención & control , Monkeypox virus/genética , Monkeypox virus/patogenicidad , Animales , Enfermedades Raras/epidemiología , Enfermedades Raras/genética , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Enfermedades Transmisibles Emergentes/prevención & control , Salud Pública , Femenino , Zoonosis/epidemiología , Zoonosis/transmisión , Zoonosis/virología , Masculino
4.
Emerg Infect Dis ; 30(6): 1228-1231, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782033
5.
PLoS Negl Trop Dis ; 18(5): e0012116, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722919

RESUMEN

Diagnosing infectious diseases significantly influences patient care, aiding in outbreak identification, response, and public health monitoring. However, the range of FDA-approved molecular tests remains notably limited, especially concerning neglected tropical diseases (NTDs). Drawing upon our experience as one of the largest healthcare networks in the greater New York metropolitan area, this viewpoint manuscript aims to spotlight the existing diagnostic landscape and unmet clinical needs for 4 emerging NTDs increasingly prevalent in the United States, additionally, it delves into the possible adverse effects of the FDA's Proposed Rule on Laboratory-Developed Tests for these clinical conditions and the broader spectrum of NTDs.


Asunto(s)
Enfermedades Transmisibles Emergentes , Enfermedades Desatendidas , United States Food and Drug Administration , Estados Unidos/epidemiología , Enfermedades Desatendidas/epidemiología , Humanos , United States Food and Drug Administration/legislación & jurisprudencia , Enfermedades Transmisibles Emergentes/epidemiología , Medicina Tropical
7.
Indian J Med Ethics ; IX(2): 169-170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38755764

RESUMEN

As the world grapples with the constant threat of new pathogens, the role of government oversight in research and response efforts has become a topic of considerable debate in the academic community. In the recently released "SOP [standard operating procedure] for Nipah virus research in Kerala for studies involving human participants / human samples" by the Government of Kerala, the SOP, apart from administrative permission, requires the proposal to be cleared by the Institutional Research Committee at a Government Medical College, and the inclusion of an investigator from a government institution [1]. In these challenging times, it is crucial to weigh the pros and cons of stringent administrative controls to ensure an effective and ethical approach to tackling emerging infectious diseases.


Asunto(s)
Enfermedades Transmisibles Emergentes , Humanos , Enfermedades Transmisibles Emergentes/prevención & control , India , Investigación Biomédica/ética , Regulación Gubernamental , Virus Nipah , Infecciones por Henipavirus/prevención & control , Comités de Ética en Investigación/normas
8.
PLoS One ; 19(5): e0298591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758948

RESUMEN

Amphibians globally suffer from emerging infectious diseases like chytridiomycosis caused by the continuously spreading chytrid fungi. One is Batrachochytrium salamandrivorans (Bsal) and its disease ‒ the 'salamander plague' ‒ which is lethal to several caudate taxa. Recently introduced into Western Europe, long distance dispersal of Bsal, likely through human mediation, has been reported. Herein we study if Alpine salamanders (Salamandra atra and S. lanzai) are yet affected by the salamander plague in the wild. Members of the genus Salamandra are highly susceptible to Bsal leading to the lethal disease. Moreover, ecological modelling has shown that the Alps and Dinarides, where Alpine salamanders occur, are generally suitable for Bsal. We analysed skin swabs of 818 individuals of Alpine salamanders and syntopic amphibians at 40 sites between 2017 to 2022. Further, we compiled those with published data from 319 individuals from 13 sites concluding that Bsal infections were not detected. Our results suggest that the salamander plague so far is absent from the geographic ranges of Alpine salamanders. That means that there is still a chance to timely implement surveillance strategies. Among others, we recommend prevention measures, citizen science approaches, and ex situ conservation breeding of endemic salamandrid lineages.


Asunto(s)
Batrachochytrium , Micosis , Urodelos , Animales , Batrachochytrium/genética , Batrachochytrium/patogenicidad , Micosis/veterinaria , Micosis/microbiología , Micosis/epidemiología , Urodelos/microbiología , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/veterinaria , Salamandra/microbiología , Europa (Continente)/epidemiología , Quitridiomicetos
9.
Emerg Microbes Infect ; 13(1): 2356143, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38767202

RESUMEN

ABSTRACTImproved sanitation, increased access to health care, and advances in preventive and clinical medicine have reduced the mortality and morbidity rates of several infectious diseases. However, recent outbreaks of several emerging infectious diseases (EIDs) have caused substantial mortality and morbidity, and the frequency of these outbreaks is likely to increase due to pathogen, environmental, and population effects driven by climate change. Extreme or persistent changes in temperature, precipitation, humidity, and air pollution associated with climate change can, for example, expand the size of EID reservoirs, increase host-pathogen and cross-species host contacts to promote transmission or spillover events, and degrade the overall health of susceptible host populations leading to new EID outbreaks. It is therefore vital to establish global strategies to track and model potential responses of candidate EIDs to project their future behaviour and guide research efforts on early detection and diagnosis technologies and vaccine development efforts for these targets. Multi-disciplinary collaborations are demanding to develop effective inter-continental surveillance and modelling platforms that employ artificial intelligence to mitigate climate change effects on EID outbreaks. In this review, we discuss how climate change has increased the risk of EIDs and describe novel approaches to improve surveillance of emerging pathogens that pose the risk for EID outbreaks, new and existing measures that could be used to contain or reduce the risk of future EID outbreaks, and new methods to improve EID tracking during further outbreaks to limit disease transmission.


Asunto(s)
Cambio Climático , Enfermedades Transmisibles Emergentes , Humanos , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/transmisión , Animales , Brotes de Enfermedades/prevención & control
10.
BMC Infect Dis ; 24(1): 403, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622539

RESUMEN

BACKGROUND: Monkeypox is an emerging infectious disease with confirmed cases and deaths in several parts of the world. In light of this crisis, this study aims to analyze the global knowledge pattern of monkeypox-related patents and explore current trends and future technical directions in the medical development of monkeypox to inform research and policy. METHODS: A comprehensive study of 1,791 monkeypox-related patents worldwide was conducted using the Derwent patent database by descriptive statistics, social network method and linear regression analysis. RESULTS: Since the 21st century, the number of monkeypox-related patents has increased rapidly, accompanied by increases in collaboration between commercial and academic patentees. Enterprises contributed the most in patent quantity, whereas the initial milestone patent was filed by academia. The core developments of technology related to the monkeypox include biological and chemical medicine. The innovations of vaccines and virus testing lack sufficient patent support in portfolios. CONCLUSIONS: Monkeypox-related therapeutic innovation is geographically limited with strong international intellectual property right barriers though it has increased rapidly in recent years. The transparent licensing of patent knowledge is driven by the merger and acquisition model, and the venture capital, intellectual property and contract research organization model. Currently, the patent thicket phenomenon in the monkeypox field may slow the progress of efforts to combat monkeypox. Enterprises should pay more attention to the sharing of technical knowledge, make full use of drug repurposing strategies, and promote innovation of monkeypox-related technology in hotspots of antivirals (such as tecovirimat, cidofovir, brincidofovir), vaccines (JYNNEOS, ACAM2000), herbal medicine and gene therapy.


Asunto(s)
Enfermedades Transmisibles Emergentes , Mpox , Vacunas , Humanos , Enfermedades Transmisibles Emergentes/tratamiento farmacológico , Enfermedades Transmisibles Emergentes/epidemiología , Mpox/tratamiento farmacológico , Mpox/epidemiología , Tecnología
12.
Sci Rep ; 14(1): 9823, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684927

RESUMEN

The emergence of infectious diseases with pandemic potential is a major public health threat worldwide. The World Health Organization reports that about 60% of emerging infectious diseases are zoonoses, originating from spillover events. Although the mechanisms behind spillover events remain unclear, mathematical modeling offers a way to understand the intricate interactions among pathogens, wildlife, humans, and their shared environment. Aiming at gaining insights into the dynamics of spillover events and the outcome of an eventual disease outbreak in a population, we propose a continuous time stochastic modeling framework. This framework links the dynamics of animal reservoirs and human hosts to simulate cross-species disease transmission. We conduct a thorough analysis of the model followed by numerical experiments that explore various spillover scenarios. The results suggest that although most epidemic outbreaks caused by novel zoonotic pathogens do not persist in the human population, the rising number of spillover events can avoid long-lasting extinction and lead to unexpected large outbreaks. Hence, global efforts to reduce the impacts of emerging diseases should not only address post-emergence outbreak control but also need to prevent pandemics before they are established.


Asunto(s)
Enfermedades Transmisibles Emergentes , Salud Pública , Zoonosis , Humanos , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Animales , Zoonosis/epidemiología , Zoonosis/transmisión , Brotes de Enfermedades , Modelos Teóricos , Reservorios de Enfermedades , Pandemias
14.
Am J Vet Res ; 85(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593825

RESUMEN

Highly pathogenic avian influenza (HPAI) has persisted as a One Health threat whose current circulation and impact are addressed in the companion Currents in One Health by Puryear and Runstadler, JAVMA, May 2024. Highly pathogenic avian influenza emerged as a by-product of agricultural practices and adapted to endemic circulation in wild bird species. Over more than 20 years, continued evolution in a complex ecology involving multiple hosts has produced a lineage that expanded globally over the last 2 years. Understanding the continued evolution and movement of HPAI relies on understanding how the virus is infecting different hosts in different contexts. This includes understanding the environmental factors and the natural ecology of viral transmission that impact host exposure and ultimately evolutionary trajectories. Particularly with the rapid host expansion, increased spillover to mammalian hosts, and novel clinical phenotypes in infected hosts, despite progress in understanding the impact of specific mutations to HPAI viruses that are associated with spillover potential, the threat to public health is poorly understood. Active research is focusing on new approaches to understanding the relationship of viral genotype to phenotype and the implementation of research and surveillance pipelines to make sense of the enormous potential for diverse HPAI viruses to emerge from wild reservoirs amid global circulation.


Asunto(s)
Animales Salvajes , Aves , Gripe Aviar , Mamíferos , Animales , Gripe Aviar/virología , Gripe Aviar/transmisión , Gripe Aviar/epidemiología , Animales Salvajes/virología , Aves/virología , Mamíferos/virología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/epidemiología , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Enfermedades Transmisibles Emergentes/virología , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/transmisión
15.
Indian J Pharmacol ; 56(2): 129-135, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38687317

RESUMEN

ABSTRACT: The virus known as monkeypox is the source of the zoonotic disease monkeypox, which was historically widespread in Central Africa and West Africa. The cases of monkeypox in humans are uncommon outside of West and Central Africa, but copious nonendemic nations outside of Africa have recently confirmed cases. People when interact with diseased animals, then, they may inadvertently contact monkeypox. There are two drugs in the market: brincidofovir and tecovirimat and both of these drugs are permitted for the cure of monkeypox by the US Food and Drug Administration. The present review summarizes the various parameters of monkeypox in context with transmission, signs and symptoms, histopathological and etiological changes, and possible treatment. Monkeypox is clinically similar to that of smallpox infection but epidemiologically, these two are different, the present study also signifies the main differences and similarities of monkeypox to that of other infectious diseases. As it is an emerging disease, it is important to know about the various factors related to monkeypox so as to control it on a very early stage of transmission.


Asunto(s)
Antivirales , Enfermedades Transmisibles Emergentes , Citosina/análogos & derivados , Mpox , Ftalimidas , Mpox/epidemiología , Mpox/transmisión , Humanos , Animales , Antivirales/uso terapéutico , Enfermedades Transmisibles Emergentes/epidemiología , Citosina/uso terapéutico , Monkeypox virus , Isoindoles/uso terapéutico , Compuestos Organotiofosforados , Organofosfonatos/uso terapéutico , Benzamidas/uso terapéutico
17.
J Math Biol ; 88(6): 62, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38615293

RESUMEN

The design of optimized non-pharmaceutical interventions (NPIs) is critical to the effective control of emergent outbreaks of infectious diseases such as SARS, A/H1N1 and COVID-19 and to ensure that numbers of hospitalized cases do not exceed the carrying capacity of medical resources. To address this issue, we formulated a classic SIR model to include a close contact tracing strategy and structured prevention and control interruptions (SPCIs). The impact of the timing of SPCIs on the maximum number of non-isolated infected individuals and on the duration of an infectious disease outside quarantined areas (i.e. implementing a dynamic zero-case policy) were analyzed numerically and theoretically. These analyses revealed that to minimize the maximum number of non-isolated infected individuals, the optimal time to initiate SPCIs is when they can control the peak value of a second rebound of the epidemic to be equal to the first peak value. More individuals may be infected at the peak of the second wave with a stronger intervention during SPCIs. The longer the duration of the intervention and the stronger the contact tracing intensity during SPCIs, the more effective they are in shortening the duration of an infectious disease outside quarantined areas. The dynamic evolution of the number of isolated and non-isolated individuals, including two peaks and long tail patterns, have been confirmed by various real data sets of multiple-wave COVID-19 epidemics in China. Our results provide important theoretical support for the adjustment of NPI strategies in relation to a given carrying capacity of medical resources.


Asunto(s)
COVID-19 , Enfermedades Transmisibles Emergentes , Subtipo H1N1 del Virus de la Influenza A , Humanos , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , China/epidemiología , Trazado de Contacto
18.
Clin Rehabil ; 38(7): 857-883, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38629433

RESUMEN

OBJECTIVE: Assessing rehabilitation effectiveness for persistent symptoms post-infection with emerging viral respiratory diseases. DATA SOURCES: Systematic review of seven databases (MEDLINE, EMBASE, Cochrane Library, PEDro, MedRxiv, CNKI, Wanfang) until 30 December 2023. REVIEW METHODS: Evaluated 101 studies (9593 participants) on respiratory function, exercise capacity, and quality of life. Methodological quality was assessed using the Cochrane Collaboration's Risk of Bias tool for randomized controlled trials (RCTs), the Newcastle-Ottawa Scale (NOS) for observational studies and non-RCTs, and the NIH Quality Assessment Tools for before-after studies. RESULTS: The most common rehabilitation program combined breathing exercises with aerobic exercise or strength training. Rehabilitation interventions significantly enhanced respiratory function, as evidenced by improvements on the Borg Scale (MD, -1.85; 95% CI, -3.00 to -0.70, low certainty), the mMRC Dyspnea Scale (MD, -0.45; 95% CI, -0.72 to -0.18, low certainty), and the Multidimensional Dyspnoea-12 Scale (MD, -4.64; 95% CI, -6.54 to -2.74, moderate certainty). Exercise capacity also improved, demonstrated by results from the Six-Minute Walk Test (MD, 38.18; 95% CI, 25.33-51.03, moderate certainty) and the Sit-to-Stand Test (MD, 3.04; 95% CI, 1.07-5.01, low certainty). CONCLUSION: Rehabilitation interventions are promising for survivors of viral respiratory diseases, yet gaps in research remain. Future investigations should focus on personalizing rehabilitation efforts, utilizing remote technology-assisted programs, improving research quality, and identifying specific subgroups for customized rehabilitation strategies to achieve the best outcomes for survivors.


Asunto(s)
Enfermedades Transmisibles Emergentes , Infecciones del Sistema Respiratorio , Humanos , Ejercicios Respiratorios/métodos , COVID-19/rehabilitación , Terapia por Ejercicio/métodos , Tolerancia al Ejercicio , Calidad de Vida , Infecciones del Sistema Respiratorio/rehabilitación , Infecciones del Sistema Respiratorio/virología , SARS-CoV-2 , Resultado del Tratamiento , Enfermedades Transmisibles Emergentes/rehabilitación , Enfermedades Transmisibles Emergentes/virología
19.
mSphere ; 9(5): e0016224, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38606973

RESUMEN

Acinetobacter junii is an opportunistic human and animal pathogen severely understudied. Here, we conducted the largest genomic epidemiological study on this pathogen to date. Our data show that this bacterium has spread globally. Also, we found that some human and non-human isolates are not well differentiated from one another, implying transmission between clinical and non-clinical, non-human settings. Remarkably, human but also some non-human isolates have clinically important antibiotic resistance genes, and some of these genes are located in plasmids. Given these results, we put forward that A. junii should be considered an emerging One Health problem. In this regard, future molecular epidemiological studies about this species will go beyond human isolates and will consider animal-, plant-, and water-associated environments. IMPORTANCE: Acinetobacter baumannii is the most well-known species from the genus Acinetobacter. However, other much less studied Acinetobacter species could be important opportunistic pathogens of animals, plants and humans. Here, we conducted the largest genomic epidemiological study of A. junii, which has been described as a source not only of human but also of animal infections. Our analyses show that this bacterium has spread globally and that, in some instances, human and non-human isolates are not well differentiated. Remarkably, some non-human isolates have important antibiotic resistance genes against important antibiotics used in human medicine. Based on our results, we propose that this pathogen must be considered an issue not only for humans but also for veterinary medicine.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/epidemiología , Humanos , Acinetobacter/genética , Acinetobacter/efectos de los fármacos , Acinetobacter/clasificación , Acinetobacter/aislamiento & purificación , Acinetobacter/patogenicidad , Animales , Salud Única , Genoma Bacteriano , Antibacterianos/farmacología , Epidemiología Molecular , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/epidemiología , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA