RESUMEN
Understanding the pathogenesis and mechanisms of prion diseases can significantly expand our knowledge in the field of neurodegenerative diseases. Prion biology is increasingly recognized as being relevant to the pathophysiology of Alzheimer's disease and Parkinson's disease, both of which affect millions of people each year. This bioinformatics study used a theoretical protein-RNA recognition code (1-L transcription) to reveal the post-transcriptional regulation of the prion protein (PrPC). The principle for this method is directly elucidated on PrPC, in which an octa-repeat can be 1-L transcribed into a GGA triplet repeat RNA aptamer known to reduce the misfolding of normal PrPC into abnormal PrPSc. The identified genes/proteins are associated with mitochondria, cancer, COVID-19 and ER-stress, and approximately half are directly or indirectly associated with prion diseases. For example, the octa-repeat supports CD44, and regions of the brain with astrocytic prion accumulation also display high levels of CD44.
Asunto(s)
Enfermedades por Prión , Enfermedades por Prión/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Humanos , Transcripción Genética , Proteínas PrPC/metabolismo , Proteínas PrPC/genética , Biología Computacional/métodos , COVID-19/metabolismo , COVID-19/virología , COVID-19/genética , Aptámeros de Nucleótidos/metabolismo , Proteínas Priónicas/metabolismo , Proteínas Priónicas/genética , AnimalesRESUMEN
Production of the amyloidogenic prion protein, PrPSc, which forms infectious protein aggregates, or prions, is a key pathogenic event in prion diseases. Functional prion-like protein aggregations, such as the mitochondrial adaptor protein MAVS and the inflammasome component protein ASC, have been identified to play a protective role in viral infections in mammalian cells. In this study, to investigate if PrPSc could play a functional role against external stimuli, we infected prion-infected cells with a neurotropic influenza A virus strain, IAV/WSN. We found that prion-infected cells were highly resistant to IAV/WSN infection. In these cells, NF-κB nuclear translocation was disturbed; therefore, mitochondrial superoxide dismutase (mtSOD) expression was suppressed, and mitochondrial reactive oxygen species (mtROS) was increased. The elevated mtROS subsequently activated NLRP3 inflammasomes, leading to the suppression of IAV/WSN-induced necroptosis. We also found that prion-infected cells accumulated a portion of PrP molecules in the cytosol, and that the N-terminal potential nuclear translocation signal of PrP impeded NF-κB nuclear translocation. These results suggest that PrPSc might play a functional role in protection against viral infections by stimulating the NLRP3 inflammasome-dependent antivirus mechanism through the cytosolic PrP-mediated disturbance of NF-κB nuclear translocation, which leads to suppression of mtSOD expression and consequently upregulation of the NLRP3 inflammasome activator mtROS. IMPORTANCE: Cytosolic PrP has been detected in prion-infected cells and suggested to be involved in the neurotoxicity of prions. Here, we also detected cytosolic PrP in prion-infected cells. We further found that the nuclear translocation of NF-κB was disturbed in prion-infected cells and that the N-terminal potential nuclear translocation signal of PrP expressed in the cytosol disturbed the nuclear translocation of NF-κB. Thus, the N-terminal nuclear translocation signal of cytosolic PrP might play a role in prion neurotoxicity. Prion-like protein aggregates in other protein misfolding disorders, including Alzheimer's disease were reported to play a protective role against various environmental stimuli. We here showed that prion-infected cells were partially resistant to IAV/WSN infection due to the cytosolic PrP-mediated disturbance of the nuclear translocation of NF-κB, which consequently activated NLRP3 inflammasomes after IAV/WSN infection. It is thus possible that prions could also play a protective role in viral infections.
Asunto(s)
Citosol , Inflamasomas , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno , Animales , Citosol/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Humanos , Mitocondrias/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Línea Celular , Superóxido Dismutasa/metabolismo , Priones/metabolismo , Proteínas Priónicas/metabolismo , NecroptosisRESUMEN
Most cases of human prion disease arise due to spontaneous misfolding of WT or mutant prion protein, yet recapitulating this event in animal models has proven challenging. It remains unclear whether spontaneous prion generation can occur within the mouse lifespan in the absence of protein overexpression and how disease-causing mutations affect prion strain properties. To address these issues, we generated knockin mice that express the misfolding-prone bank vole prion protein (BVPrP). While mice expressing WT BVPrP (I109 variant) remained free from neurological disease, a subset of mice expressing BVPrP with mutations (D178N or E200K) causing genetic prion disease developed progressive neurological illness. Brains from spontaneously ill knockin mice contained prion disease-specific neuropathological changes as well as atypical protease-resistant BVPrP. Moreover, brain extracts from spontaneously ill D178N- or E200K-mutant BVPrP-knockin mice exhibited prion seeding activity and transmitted disease to mice expressing WT BVPrP. Surprisingly, the properties of the D178N- and E200K-mutant prions appeared identical before and after transmission, suggesting that both mutations guide the formation of a similar atypical prion strain. These findings imply that knockin mice expressing mutant BVPrP spontaneously develop a bona fide prion disease and that mutations causing prion diseases may share a uniform initial mechanism of action.
Asunto(s)
Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Ratones Transgénicos , Enfermedades por Prión , Proteínas Priónicas , Animales , Ratones , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Mutación Missense , Humanos , Arvicolinae/genética , Arvicolinae/metabolismo , Sustitución de Aminoácidos , Priones/genética , Priones/metabolismo , Pliegue de ProteínaRESUMEN
Prions can exist as different strains that consist of conformational variants of the misfolded, pathogenic prion protein isoform PrPSc. Defined by stably transmissible biological and biochemical properties, strains have been identified in a spectrum of prion diseases, including chronic wasting disease (CWD) of wild and farmed cervids. CWD is highly contagious and spreads via direct and indirect transmission involving extraneural sites of infection, peripheral replication and neuroinvasion of prions. Here, we investigated the impact of infection route on CWD prion conformational selection and propagation. We used gene-targeted mouse models expressing deer PrP for intracerebral or intraperitoneal inoculation with fractionated or unfractionated brain homogenates from white-tailed deer, harboring CWD strains Wisc-1 or 116AG. Upon intracerebral inoculation, Wisc-1 and 116AG-inoculated mice differed in conformational stability of PrPSc. In brains of mice infected intraperitoneally with either inoculum, PrPSc propagated with identical conformational stability and fewer PrPSc deposits in most brain regions than intracerebrally inoculated animals. For either inoculum, PrPSc conformational stability in brain and spinal cord was similar upon intracerebral infection but significantly higher in spinal cords of intraperitoneally infected animals. Inoculation with fractionated brain homogenates resulted in lower variance of survival times upon intraperitoneal compared to intracerebral infection. In summary, we demonstrate that extraneural infection mitigates the impact of PrPSc quaternary structure on infection and reduces conformational variability of PrPSc propagated in the brain. These findings provide new insights into the evolution of stable CWD strains in natural, extraneural transmissions.
Asunto(s)
Encéfalo , Ciervos , Proteínas PrPSc , Enfermedad Debilitante Crónica , Animales , Ratones , Enfermedad Debilitante Crónica/transmisión , Encéfalo/metabolismo , Encéfalo/patología , Proteínas PrPSc/metabolismo , Conformación Proteica , Priones/metabolismo , Priones/patogenicidad , Enfermedades por Prión/transmisión , Enfermedades por Prión/patología , Enfermedades por Prión/metabolismo , Ratones TransgénicosRESUMEN
Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate localized initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of > 5000× across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a localized presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.
Asunto(s)
Síndrome de Creutzfeldt-Jakob , Mutación de Línea Germinal , Proteínas Priónicas , Humanos , Proteínas Priónicas/genética , Masculino , Femenino , Anciano , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Persona de Mediana Edad , Mutación de Línea Germinal/genética , Encéfalo/patología , Anciano de 80 o más Años , Enfermedades por Prión/genética , Enfermedades por Prión/patología , MutaciónRESUMEN
Prion diseases are fatal, infectious, neurodegenerative disorders resulting from accumulation of misfolded cellular prion protein in the brain. Early pathological changes during CNS prion disease also include reactive astrocyte activation with increased CD44 expression, microgliosis, as well as loss of dendritic spines and synapses. CD44 is a multifunctional cell surface adhesion and signalling molecule which is considered to play roles in astrocyte morphology and the maintenance of dendritic spine integrity and synaptic plasticity. However, the role of CD44 in prion disease was unknown. Here we used mice deficient in CD44 to determine the role of CD44 during prion disease. We show that CD44-deficient mice displayed no difference in their response to CNS prion infection when compared to wild type mice. Furthermore, the reactive astrocyte activation and microgliosis that accompanies CNS prion infection was unimpaired in the absence of CD44. Together, our data show that although CD44 expression is upregulated in reactive astrocytes during CNS prion disease, it is dispensable for astrocyte and microglial activation and the development of prion neuropathogenesis.
Asunto(s)
Astrocitos , Receptores de Hialuranos , Enfermedades por Prión , Animales , Astrocitos/metabolismo , Astrocitos/patología , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Enfermedades por Prión/genética , Ratones , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Encéfalo/metabolismo , Encéfalo/patología , Ratones Endogámicos C57BLRESUMEN
Many neurodegenerative diseases (NDs) are characterized by the slow spatial spread of toxic protein species in the brain. The toxic proteins can induce neuronal stress, triggering the Unfolded Protein Response (UPR), which slows or stops protein translation and can indirectly reduce the toxic load. However, the UPR may also trigger processes leading to apoptotic cell death and the UPR is implicated in the progression of several NDs. In this paper, we develop a novel mathematical model to describe the spatiotemporal dynamics of the UPR mechanism for prion diseases. Our model is centered around a single neuron, with representative proteins P (healthy) and S (toxic) interacting with heterodimer dynamics (S interacts with P to form two S's). The model takes the form of a coupled system of nonlinear reaction-diffusion equations with a delayed, nonlinear flux for P (delay from the UPR). Through the delay, we find parameter regimes that exhibit oscillations in the P- and S-protein levels. We find that oscillations are more pronounced when the S-clearance rate and S-diffusivity are small in comparison to the P-clearance rate and P-diffusivity, respectively. The oscillations become more pronounced as delays in initiating the UPR increase. We also consider quasi-realistic clinical parameters to understand how possible drug therapies can alter the course of a prion disease. We find that decreasing the production of P, decreasing the recruitment rate, increasing the diffusivity of S, increasing the UPR S-threshold, and increasing the S clearance rate appear to be the most powerful modifications to reduce the mean UPR intensity and potentially moderate the disease progression.
Asunto(s)
Conceptos Matemáticos , Modelos Neurológicos , Neuronas , Enfermedades por Prión , Respuesta de Proteína Desplegada , Respuesta de Proteína Desplegada/fisiología , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Enfermedades por Prión/fisiopatología , Neuronas/metabolismo , Humanos , Animales , Dinámicas no Lineales , Simulación por Computador , Priones/metabolismo , Análisis Espacio-Temporal , ApoptosisRESUMEN
Mouse neuronal CAD 5 cell line effectively propagates various strains of prions. Previously, we have shown that it can also be differentiated into the cells morphologically resembling neurons. Here, we demonstrate that CAD 5 cells chronically infected with prions undergo differentiation under the same conditions. To make our model more realistic, we triggered the differentiation in the 3D culture created by gentle rocking of CAD 5 cell suspension. Spheroids formed within 1 week and were fully developed in less than 3 weeks of culture. The mature spheroids had a median size of ~300 µm and could be cultured for up to 12 weeks. Increased expression of differentiation markers GAP 43, tyrosine hydroxylase, ß-III-tubulin and SNAP 25 supported the differentiated status of the spheroid cells. The majority of them were found in the G0/G1 phase of the cell cycle, which is typical for differentiated cells. Moreover, half of the PrPC on the cell membrane was N-terminally truncated, similarly as in differentiated CAD 5 adherent cells. Finally, we demonstrated that spheroids could be created from prion-infected CAD 5 cells. The presence of prions was verified by immunohistochemistry, western blot and seed amplification assay. We also confirmed that the spheroids can be infected with the prions de novo. Our 3D culture model of differentiated CAD 5 cells is low cost, easy to produce and cultivable for weeks. We foresee its possible use in the testing of anti-prion compounds and future studies of prion formation dynamics.
Asunto(s)
Diferenciación Celular , Enfermedades por Prión , Esferoides Celulares , Esferoides Celulares/metabolismo , Ratones , Animales , Diferenciación Celular/fisiología , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Línea Celular , Técnicas de Cultivo de Célula/métodos , Neuronas/metabolismo , Técnicas de Cultivo Tridimensional de Células/métodos , Priones/metabolismoRESUMEN
Oligodendrocyte-lineage cells, including NG2 glia, undergo prominent changes in various neurodegenerative disorders. Here, we identify a neuroprotective role for NG2 glia against prion toxicity. NG2 glia were activated after prion infection in cerebellar organotypic cultured slices (COCS) and in brains of prion-inoculated mice. In both model systems, depletion of NG2 glia exacerbated prion-induced neurodegeneration and accelerated prion pathology. Loss of NG2 glia enhanced the biosynthesis of prostaglandin E2 (PGE2) by microglia, which augmented prion neurotoxicity through binding to the EP4 receptor. Pharmacological or genetic inhibition of PGE2 biosynthesis attenuated prion-induced neurodegeneration in COCS and mice, reduced the enhanced neurodegeneration in NG2-glia-depleted COCS after prion infection, and dampened the acceleration of prion disease in NG2-glia-depleted mice. These data unveil a non-cell-autonomous interaction between NG2 glia and microglia in prion disease and suggest that PGE2 signaling may represent an actionable target against prion diseases.
Asunto(s)
Dinoprostona , Microglía , Neuroglía , Neuronas , Enfermedades por Prión , Transducción de Señal , Animales , Microglía/metabolismo , Dinoprostona/metabolismo , Ratones , Transducción de Señal/fisiología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Neuroglía/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Ratones Endogámicos C57BL , Antígenos/metabolismo , Proteoglicanos/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Priones/metabolismo , Priones/toxicidad , Cerebelo/metabolismo , Cerebelo/patologíaRESUMEN
Prion diseases are rare and neurodegenerative diseases that are characterized by the misfolding and infectious spread of the prion protein in the brain, causing progressive and irreversible neuronal loss and associated clinical and behavioral manifestations in humans and animals, ultimately leading to death. The brain has a complex network of neurons and glial cells whose crosstalk is critical for function and homeostasis. Although it is established that prion infection of neurons is necessary for clinical disease to occur, debate remains in the field as to the role played by glial cells, namely astrocytes and microglia, and whether these cells are beneficial to the host or further accelerate disease. Here, we review the current literature assessing the complex morphologies of astrocytes and microglia, and the crosstalk between these two cell types, in the prion-infected brain.
Asunto(s)
Neuroglía , Enfermedades por Prión , Humanos , Enfermedades por Prión/patología , Enfermedades por Prión/metabolismo , Animales , Neuroglía/patología , Neuroglía/metabolismo , Astrocitos/patología , Astrocitos/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Neurobiología , Microglía/patología , Microglía/metabolismo , Neuronas/metabolismo , Neuronas/patología , Neuropatología , Priones/metabolismoRESUMEN
BACKGROUND: Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS: C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS: Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS: The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.
Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedades por Prión , Animales , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Receptores de Muerte Celular/metabolismo , Transducción de Señal , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Proteínas PrPSc/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismoRESUMEN
Prion diseases, also known as Transmissible Spongiform Encephalopathies (TSEs), are protein-based neurodegenerative disorders (NDs) affecting humans and animals. They are characterized by the conformational conversion of the normal cellular prion protein, PrPC, into the pathogenic isoform, PrPSc. Prion diseases are invariably fatal and despite ongoing research, no effective prophylactic or therapeutic avenues are currently available. Anthocyanins (ACNs) are unique flavonoid compounds and interest in their use as potential neuroprotective and/or therapeutic agents against NDs, has increased significantly in recent years. Therefore, we investigated the potential anti-oxidant and anti-prion effects of Oenin and Myrtillin, two of the most common anthocyanins, using the most accepted in the field overexpressing PrPScin vitro model and a cell free protein aggregation model. Our results, indicate both anthocyanins as strong anti-oxidant compounds, upregulating the expression of genes involved in the anti-oxidant response, and reducing the levels of Reactive Oxygen Species (ROS), produced due to pathogenic prion infection, through the activation of the Keap1-Nrf2 pathway. Importantly, they showcased remarkable anti-prion potential, as they not only caused the clearance of pathogenic PrPSc aggregates, but also completely inhibited the formation of PrPSc fibrils in the Cerebrospinal Fluid (CSF) of patients with Creutzfeldt-Jakob disease (CJD). Therefore, Oenin and Myrtillin possess pleiotropic effects, suggesting their potential use as promising preventive and/or therapeutic agents in prion diseases and possibly in the spectrum of neurodegenerative proteinopathies.
Asunto(s)
Antocianinas , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Antocianinas/farmacología , Antocianinas/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Animales , Proteínas PrPSc/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
The history of human prion diseases began with the original description, by Hans Gerhard Creutzfeldt and by Alfons Maria Jakob, of patients with a severe brain disease that included speech abnormalities, confusion, and myoclonus, in a disease that was then named Creutzfeldt Jakob disease (CJD). Later, in Papua New Guinea, a disease characterized by trembling was identified, and given the name "Kuru". Neuropathological examination of the brains from CJD and Kuru patients, and of brains of sheep with scrapie disease revealed significant similarities and suggested a possible common mode of infection that, at the time, was thought to derive from an unknown virus that caused slow infections. John Stanley Griffith hypothesized that the agent causing these diseases was "probably a protein without nucleic acid" and, in 1982, Stanley Prusiner reported the identification of a proteinaceous infectious particle (coining the term prion) that was resistant to inactivation methods that were at the time standard for nucleic acids, and identified PrP as the major protein component of the infectious agent in scrapie and in Creutzfeldt-Jakob disease, classifying this also as a prion disease. Interestingly, the prion concept had been previously expanded to yeast proteins capable of replicating their conformation, seeding their own aggregation and transmitting phenotypic information. The prion concept has been more recently expanded to refer to misfolded proteins that are capable of converting a normal form of a protein into an abnormal form. The quest to understand and treat prion diseases has united a specific research community around the topic, and regular meetings (Prion Meetings) have taken place over the years to enable discussions, train junior researchers, and inspire research in the field.
Asunto(s)
Enfermedades por Prión , Priones , Humanos , Enfermedades por Prión/patología , Enfermedades por Prión/metabolismo , Animales , Priones/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Síndrome de Creutzfeldt-Jakob/metabolismo , Kuru/patologíaRESUMEN
Neuroinflammation is a common pathological feature in a number of neurodegenerative diseases, which is mediated primarily by the activated glial cells. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome-associated neuroinflammatory response is mostly considered. To investigate the situation of the NLRP3-related inflammation in prion disease, we assessed the levels of the main components of NLRP3 inflammasome and its downstream biomarkers in the scrapie-infected rodent brain tissues. The results showed that the transcriptional and expressional levels of NLRP3, caspase-1, and apoptosis-associated speck-like protein (ASC) in the brains of scrapie-infected rodents were significantly increased at terminal stage. The increased NLPR3 overlapped morphologically well with the proliferated GFAP-positive astrocytes, but little with microglia and neurons. Using the brain samples collected at the different time-points after infection, we found the NLRP3 signals increased in a time-dependent manner, which were coincidental with the increase of GFAP. Two main downstream cytokines, IL-1ß and IL-18, were also upregulated in the brains of prion-infected mice. Moreover, the gasdermin D (GSDMD) levels, particularly the levels of GSDMD-NT, in the prion-infected brain tissues were remarkably increased, indicating activation of cell pyroptosis. The GSDMD not only co-localized well with the astrocytes but also with neurons at terminal stage, also showing a time-dependent increase after infection. Those data indicate that NLRP3 inflammasomes were remarkably activated in the infected brains, which is largely mediated by the proliferated astrocytes. Both astrocytes and neurons probably undergo a pyroptosis process, which may help the astrocytes to release inflammatory factors and contribute to neuron death during prion infection.
Asunto(s)
Astrocitos , Encéfalo , Proliferación Celular , Inflamasomas , Piroptosis , Animales , Masculino , Ratones , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades por Prión/patología , Enfermedades por Prión/metabolismo , Priones/metabolismoRESUMEN
The concept of 'prion-like' behavior has emerged in the study of diseases involving protein misfolding where fibrillar structures, called amyloids, self-propagate and induce disease in a fashion similar to prions. From a biological standpoint, in order to be considered 'prion-like,' a protein must traverse cells and tissues and further propagate via a templated conformational change. Since 2017, cryo-electron microscopy structures from patient-derived 'prion-like' amyloids, in particular tau, have been presented and revealed structural similarities shared across amyloids. Since 2021, cryo-EM structures from prions of known infectivity have been added to the ex vivo amyloid structure family. In this review, we discuss current proposals for the 'prion-like' mechanisms of spread for tau and prion protein as well as discuss different influencers on structures of aggregates from tauopathies and prion diseases. Lastly, we discuss some of the current hypotheses for what may distinguish structures that are 'prion-like' from transmissible prion structures.
Asunto(s)
Proteínas Priónicas , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/química , Animales , Proteínas Priónicas/metabolismo , Proteínas Priónicas/química , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Tauopatías/metabolismo , Tauopatías/patología , Priones/metabolismo , Priones/química , Amiloide/metabolismo , Amiloide/químicaRESUMEN
Human spongiform encephalopathies are rare transmissible neurodegenerative diseases of the brain and the nervous system that are caused by misfolding of the physiological prion protein into a pathological form and its deposition in the central nervous system (CNS). Prion diseases include Creutzfeldt-Jakob disease (CJD, sporadic or familial), Gerstmann-Straussler-Scheinker syndrome (GSS) and fatal familial insomnia (FFI). Prion diseases can be differentiated into three etiological categories: spontaneous (sporadic CJD), inherited (familial CJD, FFI, and GSS) and acquired (variant CJD and iatrogenic CJD). Most cases occur sporadically. Prion diseases can lead to a variety of neurological symptoms and always have an inevitably fatal course. Cerebrospinal fluid analysis and magnetic resonance imaging (MRI) play a crucial role in the diagnostics of prion diseases and may facilitate an early and reliable clinical diagnosis. A causal treatment or specific therapeutic agents are not yet available. In general, a palliative therapeutic concept is indicated.
Asunto(s)
Síndrome de Creutzfeldt-Jakob , Encefalopatía Espongiforme Bovina , Enfermedad de Gerstmann-Straussler-Scheinker , Enfermedades por Prión , Animales , Bovinos , Humanos , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/patología , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/patología , Enfermedad de Gerstmann-Straussler-Scheinker/diagnóstico , Enfermedad de Gerstmann-Straussler-Scheinker/genética , Enfermedad de Gerstmann-Straussler-Scheinker/patología , Encéfalo/patología , Encefalopatía Espongiforme Bovina/patologíaRESUMEN
Variably protease-sensitive prionopathy (VPSPr) is a recently characterised rare subtype of sporadic prion disease, mainly affecting individuals with valine homozygosity at codon 129 in the prion protein gene, with only seven methionine homozygote cases reported to date. This case presents clinical, neuropathological and biochemical features of the eighth VPSPr case worldwide with methionine homozygosity at codon 129 and compares the features with the formerly presented cases.The patient, a woman in her 70s, presented with cognitive decline, impaired balance and frequent falls. Medical history and clinical presentation were suggestive of a rapidly progressive dementia disorder. MRI showed bilateral thalamic hyperintensity. Cerebrospinal fluid real-time quaking-induced conversion was negative, and the electroencephalogram was unremarkable. The diagnosis was established through post-mortem pathological examinations. VPSPr should be suspected in rapidly progressive dementia lacking typical features or paraclinical results of protein misfolding diseases.
Asunto(s)
Síndrome de Creutzfeldt-Jakob , Demencia , Enfermedades por Prión , Priones , Femenino , Humanos , Priones/genética , Priones/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Metionina/genética , Metionina/metabolismo , Homocigoto , Encéfalo/patología , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Demencia/genética , Racemetionina/metabolismo , Codón/genética , Codón/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Síndrome de Creutzfeldt-Jakob/patologíaRESUMEN
Prion diseases are rare, rapidly progressive, and fatal incurable degenerative brain disorders caused by the misfolding of a normal protein called PrPC into an abnormal protein called PrPSc. Their highly variable clinical presentation mimics various degenerative and non-degenerative brain disorders, making diagnosis a significant challenge for neurologists. Currently, definitive diagnosis relies on post-mortem examination of nervous tissue to detect the pathogenic prion protein. The current diagnostic criteria are limited. While structural magnetic resonance imaging (MRI) remains the gold standard imaging modality for Creutzfeldt-Jakob disease (CJD) diagnosis, positron emission tomography (PET) using 18fluorine-fluorodeoxyglucose (18F-FDG) and other radiotracers have demonstrated promising potential in the diagnostic assessment of prion disease. In this context, a comprehensive and updated review exclusively focused on PET imaging in prion diseases is still lacking. We review the current value of PET imaging with 18F-FDG and non-FDG tracers in the diagnostic management of prion diseases. From the collected data, 18F-FDG PET mainly reveals cortical and subcortical hypometabolic areas in prion disease, although fails to identify typical pattern or laterality abnormalities to differentiate between genetic and sporadic prion diseases. Although the rarity of prion diseases limits the establishment of a definitive hypometabolism pattern, this review reveals some more prevalent 18F-FDG patterns associated with each disease subtype. Interestingly, in both sporadic and genetic prion diseases, the hippocampus does not show significant glucose metabolism alterations, appearing as a useful sign in the differential diagnosis with other neurodegenerative disease. In genetic prion disease forms, PET abnormality precedes clinical manifestation. Discordant diagnostic value for amyloid tracers among different prion disease subtypes was observed, needing further investigation. PET has emerged as a potential valuable tool in the diagnostic armamentarium for CJD. Its ability to visualize functional and metabolic brain changes provides complementary information to structural MRI, aiding in the early detection and confirmation of CJD.
Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades Neurodegenerativas , Enfermedades por Prión , Humanos , Fluorodesoxiglucosa F18/metabolismo , Radiofármacos/metabolismo , Tomografía de Emisión de Positrones/métodos , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Encéfalo/metabolismoRESUMEN
The misfolding of the α-helical cellular prion protein into a self-propagating ß-rich aggregated form is a key pathogenic event in fatal and transmissible neurodegenerative diseases collectively known as prion diseases. Herein, we utilize the interfacial properties of liquid crystals (LCs) to monitor the lipid-membrane-induced conformational switching of prion protein (PrP) into ß-rich amyloid fibrils. The lipid-induced conformational switching resulting in aggregation occurs at the nanomolar protein concentration and is primarily mediated by electrostatic interactions between PrP and lipid headgroups. Our LC-based methodology offers a potent and sensitive tool to detect and delineate molecular mechanisms of PrP misfolding mediated by lipid-protein interactions at the aqueous interface under physiological conditions.