Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.017
Filtrar
1.
Saudi Med J ; 45(5): 468-475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38734439

RESUMEN

OBJECTIVES: To compare the genotoxic effects of desflurane and propofol using comet assay in patients undergoing elective discectomy surgery. METHODS: This was a randomized controlled study. Patients who underwent elective lumbar discectomy under general anesthesia with propofol or desflurane were included in the study. Venous blood samples were obtained at 4 different time points: 5 minutes before anesthesia induction (T1), 2 hours after the start of anesthesia (T2), the first day after surgery (T3), and the fifth day following surgery (T4). Deoxyribonucleic acid damage in lymphocytes was assessed via the comet assay. RESULTS: A total of 30 patients, 15 in each group, were included in the analysis. The groups were similar in terms of age and gender distribution. There were no significant differences in demographics, duration of surgery, total remifentanil consumption, and total rocuronium bromide consumption. The comet assay revealed that head length, head intensity, tail intensity, tail moment at T1 were similar in the desflurane and propofol groups. Head length, tail length and tail moment measured in the desflurane group at T4 were significantly higher compared to the propofol group. Tail lengths of the desflurane group at T1, T2 and T3 were significantly higher than the corresponding values in the propofol group. CONCLUSION: Propofol and desflurane do not appear to induce DNA damage in lymphocytes. However, when the quantitative data were compared, it was determined that propofol had relatively lower genotoxic potential than desflurane.ClinicalTrials.gov Reg. No.: NCT05185167.


Asunto(s)
Anestésicos por Inhalación , Ensayo Cometa , Daño del ADN , Desflurano , Discectomía , Linfocitos , Propofol , Humanos , Propofol/efectos adversos , Discectomía/métodos , Ensayo Cometa/métodos , Masculino , Linfocitos/efectos de los fármacos , Femenino , Adulto , Persona de Mediana Edad , Anestésicos por Inhalación/efectos adversos , Daño del ADN/efectos de los fármacos , Vértebras Lumbares/cirugía , Anestésicos Intravenosos/efectos adversos , Isoflurano/análogos & derivados , Isoflurano/efectos adversos
2.
Part Fibre Toxicol ; 21(1): 24, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760761

RESUMEN

BACKGROUND: Significant variations exist in the forms of ZnO, making it impossible to test all forms in in vivo inhalation studies. Hence, grouping and read-across is a common approach under REACH to evaluate the toxicological profile of familiar substances. The objective of this paper is to investigate the potential role of dissolution, size, or coating in grouping ZnO (nano)forms for the purpose of hazard assessment. We performed a 90-day inhalation study (OECD test guideline no. (TG) 413) in rats combined with a reproduction/developmental (neuro)toxicity screening test (TG 421/424/426) with coated and uncoated ZnO nanoforms in comparison with microscale ZnO particles and soluble zinc sulfate. In addition, genotoxicity in the nasal cavity, lungs, liver, and bone marrow was examined via comet assay (TG 489) after 14-day inhalation exposure. RESULTS: ZnO nanoparticles caused local toxicity in the respiratory tract. Systemic effects that were not related to the local irritation were not observed. There was no indication of impaired fertility, developmental toxicity, or developmental neurotoxicity. No indication for genotoxicity of any of the test substances was observed. Local effects were similar across the different ZnO test substances and were reversible after the end of the exposure. CONCLUSION: With exception of local toxicity, this study could not confirm the occasional findings in some of the previous studies regarding the above-mentioned toxicological endpoints. The two representative ZnO nanoforms and the microscale particles showed similar local effects. The ZnO nanoforms most likely exhibit their effects by zinc ions as no particles could be detected after the end of the exposure, and exposure to rapidly soluble zinc sulfate had similar effects. Obviously, material differences between the ZnO particles do not substantially alter their toxicokinetics and toxicodynamics. The grouping of ZnO nanoforms into a set of similar nanoforms is justified by these observations.


Asunto(s)
Exposición por Inhalación , Óxido de Zinc , Animales , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Masculino , Femenino , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Tamaño de la Partícula , Administración por Inhalación , Daño del ADN , Ratas , Ensayo Cometa , Ratas Wistar , Reproducción/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo
3.
PLoS One ; 19(5): e0296255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701093

RESUMEN

Ivermectin (IVM) is an anti-parasitic drug which is used for treating parasitic infestations. It has been used in humans for treating intestinal strongyloidiasis and onchocerciasis however, currently researchers are investigating its potential for treating coronavirus SARS-CoV-2. Due to its broad-spectrum activities, IVM is being used excessively in animals which has generated an interest for researchers to investigate its toxic effects. Cytotoxic and genotoxic effects have been reported in animals due to excessive usage of IVM. Therefore, this study aims to evaluate the cytotoxic and genotoxic effects of IVM on the Madin-Darby-Bovine-Kidney (MDBK) cell line by examining the expression of a DNA damage-responsive gene (OGG1). Cytotoxicity of IVM was tested using an assay (MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), whereas the genotoxicity was evaluated using comet assay along with micronucleus assay. Moreover, the gene expression of DNA damage response gene (OGG1) was measured by qRT-PCR, after extraction of RNA from the MDBK cell line using the TRIzol method and its conversion to cDNA by reverse-transcriptase PCR. During the experiment, cell viability percentage was measured at different doses of IVM i.e., 25%, 50%, 75%, along with LC50/2, LC50 and LC50*2. It was observed that the gene expression of OGG1 increased as the concentration of IVM increased. It was concluded that IVM has both cytotoxic and genotoxic effects on the MDBK cell line. Furthermore, it is recommended that studies related to the toxic effects of IVM at molecular level and on other model organisms should be conducted to combat its hazardous effects.


Asunto(s)
Daño del ADN , Ivermectina , Ivermectina/toxicidad , Ivermectina/farmacología , Animales , Daño del ADN/efectos de los fármacos , Línea Celular , Bovinos , Supervivencia Celular/efectos de los fármacos , Pruebas de Micronúcleos , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Ensayo Cometa , Mutágenos/toxicidad , Antiparasitarios/farmacología , Antiparasitarios/toxicidad , Riñón/efectos de los fármacos , Riñón/citología
4.
PLoS One ; 19(5): e0302691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709735

RESUMEN

Parabens are being used as preservatives due to their antifungal and antimicrobial effects. They are emerging as aquatic pollutants due to their excessive use in many products. The purpose of this study was to determine the toxic effect of ethyl paraben (C9H10O3) on the hematobiochemical, histological, oxidative, and anti-oxidant enzymatic and non-enzymatic activity; the study also evaluates the potential of ethyl paraben to cause genotoxicity in Rohu Labeo rohita. A number of 15 fish with an average weight of 35.45±1.34g were placed in each group and exposed to ethyl paraben for 21 days. Three different concentrations of ethyl paraben, i.e., T1 (2000µg/L), T2 (4000 µg/L), andT3 (6000 µg/L) on which fish were exposed as compared to the control T0 (0.00 µg/L). Blood was used for hematobiochemical and comet assay. Gills, kidneys, and liver were removed for histological alterations. The results showed a significant rise in all hemato-biochemical parameters such as RBCs, WBCs, PLT count, blood sugar, albumin, globulin, and cholesterol. An increase in aspartate aminotransferase (AST) and alanine transaminase (ALT) levels directed the hepatocytic damage. Histological alterations in the liver, gills and kidneys of fish were found. Ethylparaben induces oxidative stress by suppressing antioxidant enzyme activity such as SOD, GSH, CAT and POD. Based on the comet assay, DNA damage was also observed in blood cells, resulting in genotoxicity. Findings from the present study indicate that ethyl paraben induces hemato-biochemical alterations, tissue damage, oxidative stress, and genotoxicity.


Asunto(s)
Antioxidantes , Biomarcadores , Daño del ADN , Animales , Biomarcadores/metabolismo , Antioxidantes/metabolismo , Daño del ADN/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Branquias/efectos de los fármacos , Branquias/patología , Branquias/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Parabenos/toxicidad , Ensayo Cometa , Cyprinidae/metabolismo , Oxidantes/metabolismo , Oxidantes/toxicidad
5.
Physiol Res ; 73(2): 217-225, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38710053

RESUMEN

An analytical method for studying DNA degradation by electrophoresis after cell lysis and visualization of DNA fragments with fluorescent dye, comet assay, was used to evaluate the viability of the endothelial layer of human arterial grafts with the aim of identifying the procedure that will least damage the tissue before cryopreservation. Four groups of samples were studied: cryopreserved arterial grafts that were thawed in two different ways, slowly lasting 2 hours or rapidly for approx. 7 minutes. Arterial grafts that were collected as part of multiorgan procurement with minimal warm ischemia time. Cadaveric grafts were taken as part of the autopsy, so they have a more extended period of warm ischemia. The HeadDNA (%) parameter and others commonly used parameters like TailDNA (%). TailMoment, TailLength, OliveMoment, TailMoment to characterize the comet were used to assess viability in this study. The ratio of non-decayed to decayed nuclei was determined from the values found. This ratio for cadaveric grafts was 0.63, for slowly thawed cryopreserved grafts 2.9, for rapidly thawed cryopreserved grafts 1.9, and for multi-organ procurement grafts 0.68. The results of the study confirmed the assumption that the allografts obtained from cadaveric donors are the least suitable. On the other hand, grafts obtained from multiorgan donors are better in terms of viability monitored by comet assay. Keywords: Arterial grafts, Cryopreservation, Cadaveric, Multiorgan procurement, Viability, Comet assay.


Asunto(s)
Ensayo Cometa , Criopreservación , Humanos , Cadáver , Arterias/trasplante , Supervivencia de Injerto/fisiología
6.
Toxicol Ind Health ; 40(6): 337-351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597775

RESUMEN

Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Gasolina , Pruebas de Micronúcleos , Exposición Profesional , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Gasolina/toxicidad , Adulto , Masculino , Turquía , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN/efectos de los fármacos , Persona de Mediana Edad , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/toxicidad , Ensayo Cometa , Biomarcadores , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Linfocitos/efectos de los fármacos , Femenino , Mutágenos/toxicidad , Benceno/toxicidad , Benceno/análisis
7.
Arch Toxicol ; 98(6): 1919-1935, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38584193

RESUMEN

Human liver-derived metabolically competent HepaRG cells have been successfully employed in both two-dimensional (2D) and 3D spheroid formats for performing the comet assay and micronucleus (MN) assay. In the present study, we have investigated expanding the genotoxicity endpoints evaluated in HepaRG cells by detecting mutagenesis using two error-corrected next generation sequencing (ecNGS) technologies, Duplex Sequencing (DS) and High-Fidelity (HiFi) Sequencing. Both HepaRG 2D cells and 3D spheroids were exposed for 72 h to N-nitrosodimethylamine (NDMA), followed by an additional incubation for the fixation of induced mutations. NDMA-induced DNA damage, chromosomal damage, and mutagenesis were determined using the comet assay, MN assay, and ecNGS, respectively. The 72-h treatment with NDMA resulted in concentration-dependent increases in cytotoxicity, DNA damage, MN formation, and mutation frequency in both 2D and 3D cultures, with greater responses observed in the 3D spheroids compared to 2D cells. The mutational spectrum analysis showed that NDMA induced predominantly A:T → G:C transitions, along with a lower frequency of G:C → A:T transitions, and exhibited a different trinucleotide signature relative to the negative control. These results demonstrate that the HepaRG 2D cells and 3D spheroid models can be used for mutagenesis assessment using both DS and HiFi Sequencing, with the caveat that severe cytotoxic concentrations should be avoided when conducting DS. With further validation, the HepaRG 2D/3D system may become a powerful human-based metabolically competent platform for genotoxicity testing.


Asunto(s)
Ensayo Cometa , Daño del ADN , Dimetilnitrosamina , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Micronúcleos , Mutágenos , Humanos , Dimetilnitrosamina/toxicidad , Ensayo Cometa/métodos , Pruebas de Micronúcleos/métodos , Mutágenos/toxicidad , Daño del ADN/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Técnicas de Cultivo de Célula , Línea Celular , Hepatocitos/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Mutación , Relación Dosis-Respuesta a Droga
8.
Artículo en Inglés | MEDLINE | ID: mdl-38575249

RESUMEN

The risk of generating false positive in vivo comet assay results can be increased when procedural bias and/or technical variability is poorly controlled. This has been an ongoing concern since comet was first introduced into regulatory safety testing. But the proprietary nature of regulated studies and the 3Rs have limited the ability to conduct and publish the comparative in vivo studies necessary to determine the effect these factors can have on comet assay results when substances other than well characterized positive control compounds are evaluated in multiple tissues. That changed when Helix3 was asked to repeat for regulatory submission three independent in vivo comet studies with positive results generated by three other laboratories evaluating the effects of three different test substances on the liver, duodenum, and stomach. We repeated each study using the same test substance and experimental design as the original labs but with our standard quality control methods implemented to reduce procedural bias and variability. In every case, we generated negative results that regulatory authorities accepted over the initial positive results due to evidence of high technical variability and procedural bias in the original labs and studies. Meanwhile, the International Workshop on Genotoxicity (IWGT) compared >14 years of Helix3 comet historical control data (HCD) to HCD from 6 other experienced comet laboratories and concluded that our data exhibited the highest overall background % tail DNA levels with the lowest inter-study variability resulting in the highest quality HCD of all the labs evaluated. These case studies and the IWGT report suggest that our enhanced quality control methods and higher (>2 % mean of slide median tail DNA) background levels can effectively mitigate the nuisance factors that can generate false positive in vivo comet assay results. To facilitate a better understanding of the technical parameters that can significantly influence the comet results, we describe our enhanced procedures with justifications and examples.


Asunto(s)
Daño del ADN , Proyectos de Investigación , Ensayo Cometa/métodos , Reproducibilidad de los Resultados , ADN
9.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 219-224, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650130

RESUMEN

Mitochondrial DNA damage in retinal ganglion cells (RGCs) may be closely related to lesions of glaucoma. RGCs were cultured with different concentrations of glucose and grouped into 3 groups, namely normal control (NC) group, Low-Glu group, and High-Glu group. Cell viability was measured with cell counting kit-8, and cell apoptosis was measured using flow cytometry. The DNA damage was measured with comet assay, and the morphological changes of damaged mitochondria in RGCs were observed using TEM. Western blot analyzed the expression of MRE11, RAD50, and NBS1 protein. Cell viability of RGCs in Low-Glu and High-Glu groups were lower than that of NC group in 48 and 96 h. The cell apoptosis in NC group was 4.9%, the Low-Glu group was 12.2% and High-Glu group was 24.4%. The comet imaging showed that NC cells did not have tailings, but the low-Glu and high-Glu group cells had tailings, indicating that the DNA of RGCs had been damaged. TEM, mitochondrial membrane potential, ROS, mitochondrial oxygen consumption, and ATP content detection results showed that RGCs cultured with high glucose occurred mitochondrial morphology changes and dysfunction. MRE11, RAD50, and NBS1 protein expression associated with DNA damage repair pathway in High-Glu group declined compared with Low-Glu group. Mitochondrial DNA damage caused by high glucose will result in apoptosis of retinal ganglion cells in glaucoma.


Asunto(s)
Apoptosis , Supervivencia Celular , Daño del ADN , ADN Mitocondrial , Glucosa , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno , Células Ganglionares de la Retina , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Glucosa/toxicidad , Glucosa/farmacología , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Adenosina Trifosfato/metabolismo , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Anhídrido Hidrolasas/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ensayo Cometa , Animales
10.
Chemosphere ; 356: 141819, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575080

RESUMEN

The comet assay allows the analysis of DNA damage caused by different genotoxins. This assay has recently gained interest because of its ease of studying the interactions of xenobiotics with different organisms. Chrysoperla externa (Hagen, 1861) is a species of great economic relevance because it is a predator of major agricultural pests during its larval stage. Neonicotinoids are the most important chemical class of insecticides introduced into markets. A previous imidacloprid toxicity assessment on C. externa showed that this neonicotinoid insecticide reduced the egg viability. The objective of this study was to analyze the genotoxicity of Confidor OD® (imidacloprid 20% a.i., LS, Bayer CropScience) on the biological control agent C. externa at DNA level using the comet assay as an ecotoxicological biomarker. A comet assay protocol has been developed for this species at first time. For the bioassays, the commercial product formulated Confidor OD® was used at two concentrations: 100 and 180 mg/l of the active ingredient. Selected eggs were dipped in a Confidor OD® solution for 15 s. Descriptors evaluated in the comet assay were damage index, % DNA damage, and tail length. The damage index did not show any significant differences between the different concentrations evaluated, but differences were observed for tail length, because at higher concentrations of Confidor OD®, there were greater DNA breaks. The DNA of the cells from treated eggs analyzed at 48 h and 96 h of development showed the same % DNA damage; that is, they had no recovery capacity. Application of Confidor OD® to C. externa eggs produced irreparable breaks at the DNA level. The technique adjusted for C. externa can be used in other beneficial insects to study pesticide genotoxicity using a comet assay.


Asunto(s)
Ensayo Cometa , Daño del ADN , Insectos , Insecticidas , Neonicotinoides , Nitrocompuestos , Animales , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Daño del ADN/efectos de los fármacos , Insecticidas/toxicidad , Insectos/efectos de los fármacos , Óvulo/efectos de los fármacos , Mutágenos/toxicidad , Larva/efectos de los fármacos
11.
Mutat Res ; 828: 111855, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38569440

RESUMEN

Environmental and occupational exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with adverse health effects in humans. Uncertainty exists regarding the causation of urinary bladder cancer by benzo[a]pyrene (B[a]P) due to a lack of sufficient data. In this work, we focused on in-vitro DNA damage and the formation of micronuclei and chromosomal aberrations as predictors of cancer risk, applying a wide range of dosages and time periods to quantify the onset, intensity, and duration of the response. We chose two urothelial cell types to compare susceptibility and the ability to increase the malignity of a pre-existing bladder cancer: a cancer cell line (T24) and a pooled sample of primary urinary bladder epithelia cells (PUBEC) from pigs. The highest level of DNA damage assessed by comet assay was observed following 24-h treatment in both cell types, whereas PUBEC cells were clearly more susceptible. Even 4-h treatment induced DNA damage in PUBEC cells with benchmark doses of 0.0027 µM B[a]P and 0.00023 µM after 4-h and 24-h exposure, respectively. Nearly no effect was observed for periods of 48 h. The frequency of micronucleus formation increased more markedly in T24 cells, particularly with 24-h treatment. In PUBEC cells, 48-h exposure notably induced the formation of nucleoplasmic bridges and nuclear buds. Even though only one biological replicate was studied due to the sophisticated study design, our results give a strong indication of the potential of B[a]P to induce and increase malignity in human-relevant cell types.


Asunto(s)
Benzo(a)pireno , Inestabilidad Cromosómica , Daño del ADN , Urotelio , Benzo(a)pireno/toxicidad , Daño del ADN/efectos de los fármacos , Proyectos Piloto , Animales , Urotelio/efectos de los fármacos , Urotelio/patología , Inestabilidad Cromosómica/efectos de los fármacos , Humanos , Porcinos , Pruebas de Micronúcleos , Relación Dosis-Respuesta a Droga , Aberraciones Cromosómicas , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Factores de Tiempo , Ensayo Cometa , Línea Celular Tumoral , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología
12.
Environ Mol Mutagen ; 65(1-2): 67-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525651

RESUMEN

Genotoxicity of styrene monomer was evaluated in male Fischer 344 rats using the alkaline comet assay for DNA damage, micronucleus assay for cytogenetic damage and the Pig-a assay for gene mutations. In a dose range finding (DRF) study, styrene was administered by oral gavage in corn oil for 28 consecutive days at 0, 100, 500, and 1000 mg/kg/day. The bioavailability of styrene was confirmed in the DRF by measuring its plasma levels at approximately 7- or 15-min following dosing. The 1000 mg/kg/day group exceeded the maximum tolerated dose based on body weight and organ weight changes and signs of central nervous system depression. Based on these findings, doses of 0, 100, 250, and 500 mg/kg/day (for 28 or 29 days) were selected for the genotoxicity assays. Animals were sacrificed 3-4 h after treatment on Day 28 or 29 for assessing various genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in peripheral blood erythrocytes. The comet assay was conducted in the glandular stomach, duodenum, liver, lung, and kidney. These studies were conducted in accordance with the relevant OECD test guidelines. Oral administration of styrene did not lead to genotoxicity in any of the investigated endpoints. The adequacy of the experimental conditions was assured by including animals treated by oral gavage with the positive control chemicals ethyl nitrosourea and ethyl methane sulfonate. Results from these studies supplement to the growing body of evidence suggesting the lack of in vivo genotoxic potential for styrene.


Asunto(s)
Daño del ADN , Estireno , Ratas , Masculino , Animales , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Estireno/toxicidad , Eritrocitos , Ensayo Cometa/métodos , Pruebas de Micronúcleos/métodos , Pruebas de Mutagenicidad/métodos
13.
Int Arch Occup Environ Health ; 97(4): 353-363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430240

RESUMEN

OBJECTIVE: Several studies investigated the link between agricultural occupational exposures and DNA damage, in an attempt to bring elements of biological plausibility to the increased cancer risk associated with them. However, only a few of these studies focused on females. METHODS: The comet assay was performed on PBMC (Peripheral Blood Mononuclear Cells) samples from 245 females working in open field farming and cattle raising, located in the Normandy area of France. Individual questionnaires on tasks performed were administered at the time of sampling to directly assess exposures. Environmental exposures were issued from a questionnaire assessing the farm productions. Linear regression analyses were done using the DNA damage scores. RESULTS: Regarding direct exposures, several tasks associated with exposure to potentially harmful chemicals were not associated with DNA damage, but a longer duration of use of herbicide on meadows (p = 0.05) or of cleaning and upkeep of agricultural equipment (p = 0.06) revealed higher DNA damage levels, although the number of exposed women was low. Several indirect and/or environmental exposures were associated with DNA damage in multivariate analyses: a larger surface of meadows (p = 0.006) or the presence of poultry (p = 0.03) was associated with less DNA damage, while the presence of swine (p = 0.01) was associated with higher DNA damage. Smokers and former smokers had less DNA damage than non-smokers (p = 0.0008 and p = 0.03). CONCLUSIONS: We report modified levels of DNA damage for those environmentally exposed to meadows, poultry and pig farming, underlining the need for a better knowledge of the potential health risks experienced by females in this setting.


Asunto(s)
Leucocitos Mononucleares , Exposición Profesional , Femenino , Humanos , Animales , Bovinos , Porcinos , Ensayo Cometa , Agricultores , Daño del ADN , Exposición Profesional/efectos adversos , Agricultura
14.
Artículo en Inglés | MEDLINE | ID: mdl-38432775

RESUMEN

Preclinical and clinical studies have shown that molecular hydrogen (H2) has anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Safety data are available in the literature and acute toxicity has been tested in isolated cells and laboratory animals. We have evaluates the genotoxicity of H2 in vivo in rats after 72 h exposure, following the International Council for Harmonization guidelines ICH S2 (R1). The study was conducted on three groups of male Wistar rats: a negative control group, a positive control group receiving methyl methanesulfonate, and a H2-treated group receiving a 3.1% H2 gas mixture for 72 h. Alkaline comet, formamidopyrimidine DNA glycosylase (Fpg)-modified comet and bone marrow micronucleus assays were performed. H2 exposure increased neither comet-tail DNA intensity (DNA damage) nor frequency of "hedgehogs" in blood, liver, lungs, or bronchoalveolar lavage fluid. No increase in Fpg-sensitive sites in lungs, no induction of micronucleus formation, and no imbalance of immature erythrocyte to total erythrocyte ratio (IME%) was observed in rats exposed to H2. The ICH S2 (R1) test-battery revealed no in vivo genotoxicity in Wistar rats after 72 h inhalation of a mixture containing 3.1% H2.


Asunto(s)
Daño del ADN , Hidrógeno , Masculino , Ratas , Animales , Ratas Wistar , Ensayo Cometa , Antioxidantes , ADN-Formamidopirimidina Glicosilasa
15.
Cryo Letters ; 45(1): 1-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38538367

RESUMEN

The preservation of the nuclear genome's integrity is paramount for the viability and overall health of cells, tissues, and organisms. DNA, being susceptible to damage under physiological conditions and vulnerable to both endogenous and environmental factors, faces constant threats. To assess DNA damage and repair within individual eukaryotic cells, the comet assay presents itself as a versatile, gel electrophoresis-based, relatively simple, and highly sensitive method. Originally designed to monitor DNA damage and repair within populations of mammalian cells, the comet assay has now found applications across diverse domains, including yeast, protozoa, plants, and invertebrates. This technique has proven invaluable in cryopreservation studies, serving as a valuable adjunct for determining suitable cryopreservation protocols. These protocols encompass choices related to cryoprotectants, sample preparation, as well as storage conditions in terms of time and temperature. In the realm of animal cryopreservation research, the comet assay stands as a gold-standard method for assessing DNA integrity. Nevertheless, when applied in plant-oriented investigations, additional efforts are essential due to the distinct nature of plant cells and associated technical challenges. This review elucidates the fundamental principles underlying the comet assay, discusses its current iterations, and delineates its applications in the cryopreservation of both animal and plant specimens. Moreover, we delve into the primary challenges confronting the comet assay's utility as a monitoring tool in the context of plant sample cryopreservation. https://doi.org/10.54680/fr24110110112.


Asunto(s)
Criopreservación , Daño del ADN , Animales , Ensayo Cometa/métodos , Criopreservación/métodos , Crioprotectores/farmacología , ADN , Mamíferos/genética
16.
J Histochem Cytochem ; 72(3): 173-188, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439738

RESUMEN

Cisplatin (cPt) is a commonly used treatment for solid tumors. The main target of its cytotoxicity is the DNA molecule, which makes the DNA damage response (DDR) crucial for cPt-based chemotherapy. Therefore, it is essential to identify biomarkers that can accurately predict the individual clinical response and prognosis. Our goal was to assess the usefulness of alkaline comet assay and immunocytochemical staining of phosphorylated Hsp90α (p-Hsp90α), γH2AX, and 53BP1 as predictive/prognostic markers. Pre-chemotherapy peripheral blood leukocytes were exposed to cPt in vitro and collected at 0, 24 (T24), and 48 (T48) hr post-drug removal. Healthy subjects were also included. Baseline DNA damage was elevated in cancer patients (variability between individuals was observed). After cPt, patients showed increased γH2AX foci/nucleus (T24 and T48). Both in healthy persons and patients, the nuclear p-Hsp90α and N/C (nuclear/cytoplasmic) ratio augmented (T24), decreasing at T48. Favorable clinical response was associated with high DNA damage and p-Hsp90α N/C ratio following cPt. For the first time, p-Hsp90α significance as a predictive marker is highlighted. Post-cPt-DNA damage was associated with longer disease-free survival and overall survival. Our findings indicate that comet assay and p-Hsp90α (a marker of DDR) would be promising prognostic/predictive tools in cP-treated cancer patients.


Asunto(s)
Cisplatino , Neoplasias , Humanos , Ensayo Cometa , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Daño del ADN , Leucocitos
17.
Toxicol Mech Methods ; 34(5): 584-595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38347751

RESUMEN

High Fructose Corn Syrup (HFCS) and Fructose (FR) are widely used sweeteners in many foods and beverages. This study aimed at investigating the cytotoxic effects of HFCS (5%-30%) and FR (62.5-2000 µg/mL) using MTT assay in Human Hepatocellular Carcinoma (HepG2) cells, and genotoxic effects of using Chromosome Aberrations (CAs), Sister Chromatid Exchanges (SCEs), Micronuclei (MN) and comet assays in human lymphocytes. HFCS significantly reduced the cell viability in HepG2 cells at between 7.5% and 30% for 24 and 48 h. 30% HFCS caused a very significant toxic effect. FR had a cytotoxic effect in HepG2 cells at all treatments. However, as fructose concentration decreased, the cell viability decreased. HFCS (10%-20%) and FR (250-2000 µg/mL) decreased the mitotic index at higher concentrations. IC50 value was found to be a 15% for 48 h. IC50 value of FR was detected as 62.5 µg/mL for 24 h and 48 h. HFCS significantly increased CAs frequency at 15% and 20%. FR significantly increased the frequency of CAs at 250, 1000, and 2000 µg/mL for 48 h. Both sweeteners increased the frequency of SCEs at all concentrations. HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency at higher concentrations. HFCS caused DNA damage in comet assay at 10% -30%. FR increased tail intensity and moment at 125-2000 µg/mL and tail length at 62.5, 250 and 500 µg/mL. Therefore, HFCS and FR are clearly seen to be cytotoxic and genotoxic, especially at higher concentrations.


HFCS and FR exhibited cytotoxic effect at HepG2 and human lymphocytes at higher concentrations.Both sweeteners increased the frequencies of CAs and SCEs at higher concentrations.HFCS caused DNA damage at 10% -30% concentrations.HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency.


Asunto(s)
Supervivencia Celular , Ensayo Cometa , Fructosa , Jarabe de Maíz Alto en Fructosa , Edulcorantes , Humanos , Edulcorantes/toxicidad , Jarabe de Maíz Alto en Fructosa/toxicidad , Jarabe de Maíz Alto en Fructosa/efectos adversos , Fructosa/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Daño del ADN/efectos de los fármacos , Intercambio de Cromátides Hermanas/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/patología , Aberraciones Cromosómicas/inducido químicamente , Pruebas de Micronúcleos , Relación Dosis-Respuesta a Droga , Mutágenos/toxicidad , Masculino , Medición de Riesgo
18.
Regul Toxicol Pharmacol ; 148: 105586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382587

RESUMEN

The increasing use of titanium dioxide (TiO2) nanoparticles (NPs) has raised concern about the safety of food additive TiO2. TiO2 has been considered no longer safe by EFSA due to concerns over genotoxicity, however, there are conflicting opinions upon the safety of TiO2 as a food additive, and the number of in vivo genotoxicity studies conducted on food additive TiO2 was limited. In order to investigate the potential genotoxicity of food additive TiO2, we evaluated the genotoxicity of a commercial food additive TiO2 (average size of 135.54 ± 41.01 nm, range from 60.83 to 230.16 nm, NPs account for 30% by number) using a battery of standard in vivo tests, including mammalian erythrocyte micronucleus test, mammalian bone marrow chromosomal aberration test and in vivo mammalian alkaline comet test. After 15 days of consecutive intragastric administration at doses of 250, 500, and 1000 mg/kgBW, food additive TiO2 neither increased the frequencies of bone marrow micronuclei or chromosomal aberration in mice, nor induced DNA strand breakage in rat liver cells. These results indicate that under the condition of this study, food additive TiO2 does not have genotoxic potential although it contains a fraction of NPs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Ratas , Ratones , Animales , Aditivos Alimentarios/toxicidad , Daño del ADN , Pruebas de Micronúcleos , Titanio/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Ensayo Cometa , Mamíferos
19.
Regul Toxicol Pharmacol ; 148: 105583, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38401761

RESUMEN

The alkaline comet assay is frequently used as in vivo follow-up test within different regulatory environments to characterize the DNA-damaging potential of different test items. The corresponding OECD Test guideline 489 highlights the importance of statistical analyses and historical control data (HCD) but does not provide detailed procedures. Therefore, the working group "Statistics" of the German-speaking Society for Environmental Mutation Research (GUM) collected HCD from five laboratories and >200 comet assay studies and performed several statistical analyses. Key results included that (I) observed large inter-laboratory effects argue against the use of absolute quality thresholds, (II) > 50% zero values on a slide are considered problematic, due to their influence on slide or animal summary statistics, (III) the type of summarizing measure for single-cell data (e.g., median, arithmetic and geometric mean) may lead to extreme differences in resulting animal tail intensities and study outcome in the HCD. These summarizing values increase the reliability of analysis results by better meeting statistical model assumptions, but at the cost of information loss. Furthermore, the relation between negative and positive control groups in the data set was always satisfactorily (or sufficiently) based on ratio, difference and quantile analyses.


Asunto(s)
Daño del ADN , Proyectos de Investigación , Animales , Ensayo Cometa/métodos , Reproducibilidad de los Resultados , Mutación
20.
Toxicol Lett ; 393: 84-95, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311193

RESUMEN

Hydroxychloroquine (HCQ), a derivative of chloroquine (CQ), is an antimalarial and antirheumatic drug. Since there is limited data available on the genotoxicity of HCQ, in the current study, we used a battery of in vitro assays to systematically examine the genotoxicity of HCQ in human lymphoblastoid TK6 cells. We first showed that HCQ is not mutagenic in TK6 cells up to 80 µM with or without exogenous metabolic activation. Subsequently, we found that short-term (3-4 h) HCQ treatment did not cause DNA strand breakage as measured by the comet assay and the phosphorylation of histone H2A.X (γH2A.X), and did not induce chromosomal damage as determined by the micronucleus (MN) assay. However, after 24-h treatment, both CQ and HCQ induced comparable and weak DNA damage and MN formation in TK6 cells; upregulated p53 and p53-mediated DNA damage responsive genes; and triggered apoptosis and mitochondrial damage that may partially contribute to the observed MN formation. Using a benchmark dose (BMD) modeling analysis, the lower 95% confidence limit of BMD50 values (BMDL50) for MN induction in TK6 cells were about 19.7 µM for CQ and 16.3 µM for HCQ. These results provide additional information for quantitative genotoxic risk assessment of these drugs.


Asunto(s)
Hidroxicloroquina , Proteína p53 Supresora de Tumor , Humanos , Hidroxicloroquina/toxicidad , Hidroxicloroquina/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Daño del ADN , Cloroquina/toxicidad , Ensayo Cometa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA