Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
J Immunol Methods ; 533: 113743, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147231

RESUMEN

Sepsis remains a leading cause of death worldwide with no proven immunomodulatory therapies. Stratifying Patient Immune Endotypes in Sepsis ('SPIES') is a prospective, multicenter observational study testing the utility of ELISpot as a functional bioassay specifically measuring cytokine-producing cells after stimulation to identify the immunosuppressed endotype, predict clinical outcomes in septic patients, and test potential immune stimulants for clinical development. Most ELISpot protocols call for the isolation of PBMC prior to their inclusion in the assay. In contrast, we developed a diluted whole blood (DWB) ELISpot protocol that has been validated across multiple laboratories. Heparinized whole blood was collected from healthy donors and septic patients and tested under different stimulation conditions to evaluate the impact of blood dilution, stimulant concentration, blood storage, and length of stimulation on ex vivo IFNγ and TNFα production as measured by ELISpot. We demonstrate a dynamic range of whole blood dilutions that give a robust ex vivo cytokine response to stimuli. Additionally, a wide range of stimulant concentrations can be utilized to induce cytokine production. Further modifications demonstrate anticoagulated whole blood can be stored up to 24 h at room temperature without losing significant functionality. Finally, we show ex vivo stimulation can be as brief as 4 h allowing for a substantial decrease in processing time. The data demonstrate the feasibility of using ELISpot to measure the functional capacity of cells within DWB under a variety of stimulation conditions to inform clinicians on the extent of immune dysregulation in septic patients.


Asunto(s)
Ensayo de Immunospot Ligado a Enzimas , Interferón gamma , Sepsis , Factor de Necrosis Tumoral alfa , Humanos , Ensayo de Immunospot Ligado a Enzimas/métodos , Interferón gamma/sangre , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/inmunología , Sepsis/inmunología , Sepsis/diagnóstico , Sepsis/sangre , Estudios Prospectivos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Femenino , Reproducibilidad de los Resultados
2.
Methods Mol Biol ; 2826: 141-150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017891

RESUMEN

Enzyme-Linked Immunosorbent Spot assay (ELISpot) is an immunoassay used to quantify individual protein-specific secreting cells. Proteins secreted by cells cultured in ELISpot plates (96- or 8-well format) bind to a specific antigen bound to a PVDF membrane at the bottom of the well. A detection antibody followed by an enzymatic reaction is used to identify secreted protein bound to the membrane coated antigen. This reaction results in distinct "spots" on the membrane corresponding to individual protein secreting cells. While the design is similar to an ELISA, ELISpots quantify the number and relative amount of secreted protein on a single cell level, as opposed to an ELISA that reveals the concentration of secreted proteins from a population of cells. The sensitivity, robustness, and diversity of different antigens used by ELISpots have led to an array of research applications such as measuring cytokines from cytotoxic T cells in cancer and quantifying antibody specificity from B cells following vaccinations. Improvements have been made to assays measuring cytokines and antibodies on a single cell basis, such as intracellular flow cytometry. Yet the ability of an ELISpot to evaluate the quantity and quality of protein secretion on an individual cell basis remains unmatched. Here, we describe the use of a modified ELISpot assay to detect antigen-specific memory B cells in the setting of a viral infection and autoimmunity.


Asunto(s)
Autoinmunidad , Ensayo de Immunospot Ligado a Enzimas , Células B de Memoria , Ensayo de Immunospot Ligado a Enzimas/métodos , Humanos , Células B de Memoria/inmunología , Células B de Memoria/metabolismo , Antígenos/inmunología , Animales
3.
PLoS One ; 19(7): e0306728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38980880

RESUMEN

OBJECTIVE: We investigated the performance of enzyme linked immunospot (ELISpot) assay for the diagnosis of invasive aspergillosis (IA) in high-risk patients with hematologic malignancies. METHODS: We prospectively enrolled two cohorts of patients undergoing intensive myelosuppressive or immunosuppressive treatments at high risk for IA. ELISpot was performed to detect Aspergillus-specific T cells producing Interleukin-10. RESULTS: In the discovery cohort, a derived cut-off of 40 spot forming cells (SFCs)/106 PBMCs has shown to correctly classify IA cases with a sensitivity and specificity of 89.5% and 88.6%, respectively. This cut-off is lowered to 25 SFC when considering the subset of possible IA patients, with sensitivity and specificity of 76% and 93%, respectively. The application of the 40 SFCs cut-off to the validation cohort resulted in a positivity rate of 83.3% in proven/probable cases and a negativity rate of 92.5% in possible/non-IA cases. Adopting the 25 SCFs cut-off, the assay resulted positive in 83.3% of proven/probable cases while it resulted negative in 66.7% of possible/non-IA cases. CONCLUSIONS: ELISpot shows promises in the diagnosis of IA and the possibility to use two distinct cut-offs with similar diagnostic performances according to patients' different pre-test probability of infection can widen its use in patients at risk.


Asunto(s)
Ensayo de Immunospot Ligado a Enzimas , Humanos , Ensayo de Immunospot Ligado a Enzimas/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Estudios Prospectivos , Aspergilosis/diagnóstico , Aspergilosis/inmunología , Interleucina-10/inmunología , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/diagnóstico , Sensibilidad y Especificidad , Linfocitos T/inmunología
4.
Methods Mol Biol ; 2837: 227-240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044089

RESUMEN

Virus-specific T cells are critical to mediating viral control; however, Hepatitis B virus (HBV)-specific T cells among chronic Hepatitis B (CHB) patients are functionally exhausted. The inability to consistently measure the ex vivo functionality of HBV-specific T cells has prevented meaningful analysis during antiviral events such as HBeAg seroconversion, hepatic flares, and HBsAg loss. We optimized the traditional IFN-γ ELISpot assay to measure total ex vivo HBV-specific T cell frequencies using CHB PBMCs stimulated with HBV overlapping peptide (OLP) pools. This was then further adapted to assess individual antigen specificity (core, envelop, polymerase, X) and multifunctional HBV-specific T cells using a 3-analyte FluoroSpot assay. This protocol encompasses two major components: (1) PBMC handling/stimulation and (2) assay plate preparation and spot development. By performing this assay, ex vivo CHB patient T cell responses could be assessed longitudinally during immunotherapy or other important clinical events.


Asunto(s)
Ensayo de Immunospot Ligado a Enzimas , Virus de la Hepatitis B , Hepatitis B Crónica , Linfocitos T , Humanos , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Virus de la Hepatitis B/inmunología , Ensayo de Immunospot Ligado a Enzimas/métodos , Linfocitos T/inmunología , Interferón gamma/metabolismo , Interferón gamma/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Leucocitos Mononucleares/metabolismo
5.
Vaccine ; 42(22): 126032, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38964950

RESUMEN

For the rational design of epitope-specific vaccines, identifying epitopes that can be processed and presented is essential. As algorithm-based epitope prediction is frequently discordant with actually recognized CD8+ T-cell epitopes, we developed an in vitro CD8 T-cell priming protocol to enable the identification of truly and functionally expressed HLA class I epitopes. The assay was established and validated to identify epitopes presented by hepatitis C virus (HCV)-infected cells. In vitro priming of naïve CD8 T cells was achieved by culturing unfractionated PBMCs in the presence of a specific cocktail of growth factors and cytokines, and next exposing the cells to hepatic cells expressing the NS3 protein of HCV. After a 10-day co-culture, HCV-specific T-cell responses were identified based on IFN-γ ELISpot analysis. For this, the T cells were restimulated with long synthetic peptides (SLPs) spanning the whole NS3 protein sequence allowing the identification of HCV-specificity. We demonstrated that this protocol resulted in the in vitro priming of naïve precursors to antigen-experienced T-cells specific for 11 out of 98 SLPs tested. These 11 SLPs contain 12 different HLA-A*02:01-restricted epitopes, as predicted by a combination of three epitope prediction algorithms. Furthermore, we identified responses against 3 peptides that were not predicted to contain any immunogenic HLA class I epitopes, yet showed HCV-specific responses in vitro. Separation of CD8+ and CD8- T cells from PBMCs primed in vitro showed responses only upon restimulation with short peptides. We established an in vitro method that enables the identification of HLA class I epitopes resulting from cross-presented antigens and that can cross-prime T cells and allows the effective selection of functional immunogenic epitopes, but also less immunogenic ones, for the design of tailored therapeutic vaccines against persistent viral infections and tumor antigens.


Asunto(s)
Linfocitos T CD8-positivos , Epítopos de Linfocito T , Hepacivirus , Vacunas contra Hepatitis Viral , Proteínas no Estructurales Virales , Linfocitos T CD8-positivos/inmunología , Humanos , Epítopos de Linfocito T/inmunología , Hepacivirus/inmunología , Hepacivirus/genética , Vacunas contra Hepatitis Viral/inmunología , Proteínas no Estructurales Virales/inmunología , Hepatitis C/inmunología , Hepatitis C/prevención & control , Ensayo de Immunospot Ligado a Enzimas/métodos , Antígeno HLA-A2/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Proteasas Virales , Serina Endopeptidasas , Nucleósido-Trifosfatasa , ARN Helicasas DEAD-box
6.
J Virol Methods ; 327: 114949, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710307

RESUMEN

BACKGROUND: T cell immunity plays a pivotal role in mitigating the severity of coronavirus disease 2019 (COVID-19). Therefore, reliable functional T cell assays are required to evaluate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell immunity in specific patient populations. METHODS: We recruited a cohort of 23 healthcare workers who received their bivalent Omicron BA.1 / ancestral mRNA booster vaccination or were infected with the Omicron variant at a median of 144 days and 227 days before blood collection, respectively. In this cohort, we compared the performances of two widely utilized commercial SARS-CoV-2 interferon-gamma release assays (IGRAs), i.e., QuantiFERON SARS-CoV-2 and T-SPOT.COVID, and an in-house designed Omicron enzyme-linked immunospot (ELISpot). RESULTS: The QuantiFERON SARS-CoV-2 and T-SPOT.COVID assays detected SARS-CoV-2 spike-specific T cells in 34.8 % and 21.7 % of participants, respectively. Moreover, our in-house designed ELISpot that included Omicron BA.4 and BA.5 full-spike peptides detected T cell responses in 47.8 % of participants and was strongly associated with the T-SPOT.COVID. CONCLUSION: The evaluation of SARS-CoV-2 T cell immunity using commercially accessible assays may yield disparate outcomes as results from different assays are not directly comparable. A specific Omicron ELISpot should be considered to assess Omicron-specific T cell immunity.


Asunto(s)
COVID-19 , Ensayo de Immunospot Ligado a Enzimas , Ensayos de Liberación de Interferón gamma , SARS-CoV-2 , Linfocitos T , Humanos , COVID-19/diagnóstico , COVID-19/inmunología , SARS-CoV-2/inmunología , Ensayo de Immunospot Ligado a Enzimas/métodos , Adulto , Masculino , Femenino , Linfocitos T/inmunología , Persona de Mediana Edad , Ensayos de Liberación de Interferón gamma/métodos , Vacunas contra la COVID-19/inmunología , Personal de Salud , Estudios de Cohortes , Interferón gamma/inmunología
7.
Cells ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38727277

RESUMEN

Assessing immune responses to cytomegalovirus (CMV) after liver transplant in patients on immunosuppressive therapy remains challenging. In this study, employing ELISPOT assays, 52 liver-transplant recipients were evaluated for antiviral T-cell activity in peripheral blood mononuclear cells (PBMCs), measuring interferon-γ (IFN-γ) secretion upon stimulation with CMV-specific peptides (CMV peptide pool, CMV IE-1, and pp65 antigens). Parameters such as stimulation index, mean spot size, and mean spot count were measured. The study found that heightened immunosuppression, especially with prednisolone in triple therapy, significantly dampened CMV-specific immune responses. This was demonstrated by decreased IFN-γ production by CMV-specific T-cells (CMV peptide pool: p = 0.036; OR = 0.065 [95% CI: 0.005-0.840], pp65 antigen: p = 0.026; OR = 0.048 [95% CI: 0.003-0.699]). Increased immunosuppression correlated with reduced IFN-γ secretion per cell, reflected in smaller mean spot sizes for the CMV peptide pool (p = 0.019). Notably, shorter post-transplant intervals correlated with diminished antiviral T-cell IFN-γ release at two years (CMV peptide pool: p = 0.019; IE antigen: p = 0.010) and five years (CMV peptide pool: p = 0.0001; IE antigen: p = 0.002; pp65 antigen: p = 0.047), as did advancing age (pp65 antigen: p = 0.016, OR = 0.932, 95% CI: 0.881-0.987). Patients with undetectable CMV antigens had a notably higher risk of CMV reactivation within six months from blood collection, closely linked with triple immunosuppression and prednisolone use. These findings highlight the intricate interplay between immunosuppression, immune response dynamics, and CMV reactivation risk, emphasizing the necessity for tailored immunosuppressive strategies to mitigate CMV reactivation in liver-transplant recipients. It can be concluded that, particularly in the early months post-transplantation, the use of prednisolone as a third immunosuppressant should be critically reconsidered. Additionally, the use of prophylactic antiviral therapy effective against CMV in this context holds significant importance.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Ensayo de Immunospot Ligado a Enzimas , Huésped Inmunocomprometido , Interferón gamma , Trasplante de Hígado , Linfocitos T , Humanos , Trasplante de Hígado/efectos adversos , Citomegalovirus/inmunología , Masculino , Femenino , Ensayo de Immunospot Ligado a Enzimas/métodos , Persona de Mediana Edad , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Linfocitos T/inmunología , Interferón gamma/metabolismo , Interferón gamma/inmunología , Anciano , Adulto , Inmunosupresores/uso terapéutico , Terapia de Inmunosupresión
8.
PLoS One ; 19(5): e0301687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718078

RESUMEN

In the monitoring of human Toxoplasma gondii infection, it is crucial to confirm the development of a specific Th1/Th17 immune response memory. The use of a simple, specific, and sensitive assay to follow the T-cell activation is thus required. Current protocols are not always specific as stimulation with peptides is Human Leukocyte Antigen (HLA)-dependent, while stimulation with total-lysis antigens tends to stimulate seronegative donors resulting to false positives. Here, an improved ELISPOT protocol is reported, using peripheral blood mononuclear cells (PBMC) of T.gondii-infected donors, incubated with the inactivated parasite. The results showed that, contrary to standard protocols, a pre-incubation step at high cell density in presence of the inactivated parasite allowed a specific Th1/Th17 response with the secretion of IFN-γ, IL-2, IL-12 and IL-17 cytokines. This protocol allows to evaluate precisely the immune response after a T.gondii infection.


Asunto(s)
Ensayo de Immunospot Ligado a Enzimas , Células TH1 , Células Th17 , Toxoplasma , Toxoplasmosis , Humanos , Células TH1/inmunología , Células Th17/inmunología , Ensayo de Immunospot Ligado a Enzimas/métodos , Toxoplasmosis/inmunología , Toxoplasma/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Leucocitos Mononucleares/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo
9.
Methods Mol Biol ; 2782: 209-226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38622405

RESUMEN

T cells are instrumental in protecting the host against invading pathogens and the development of cancer. To do so, they produce effector molecules such as granzymes, interleukins, interferons, and perforin. For the development and immunomonitoring of therapeutic applications such as cell-based therapies and vaccines, assessing T cell effector function is paramount. This can be achieved through various methods, such as 51Cr release assays, flow cytometry, and enzyme-linked immune absorbent spot (ELISpot) assays. For T cell ELISpots, plates are coated with antibodies directed against the effector molecule of interest (e.g., IFN-g). Subsequently, peripheral blood mononuclear cells (PBMCs) or isolated T cells are cultured on the plate together with stimuli of choice, and the production of effector molecules is visualized via labeled detection antibodies. For clinical studies, ELISpot is currently the gold standard to determine antigen-specific T cell frequencies. In contrast to 51Cr release assays, ELISpot allows for the exact enumeration of responding T cells, and compared to flow cytometry, ELISpot is more cost-effective and high throughput. Here, we optimize and describe, in a step-by-step fashion, how to perform a controlled IFN-γ ELISpot experiment to determine the frequency of responding or antigen-specific T cells in healthy human volunteers. Of note, this protocol can also be employed to assess the frequency of antigen-specific T cells induced in, e.g., vaccination studies or present in cellular products.


Asunto(s)
Leucocitos Mononucleares , Linfocitos T , Humanos , Ensayo de Immunospot Ligado a Enzimas/métodos , Antígenos , Granzimas , Ensayo de Inmunoadsorción Enzimática/métodos
10.
Methods Mol Biol ; 2768: 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502384

RESUMEN

The ELISpot assay has a solid place in the immune monitoring field for over 40 years. It is an assay that can assess the function of single immune cells in a straightforward and easy-to-learn approach. Its use in basic research, translational, and clinical work has been documented in countless publications. Harmonization guidelines and invaluable tools for optimal assay performance and evaluation exist. However, the validation of an established ELISpot protocol has been left to diverse opinions about how to interpret and tackle typical validation parameters. This chapter addresses important considerations for ELISpot validation, including the interpretations of validation parameters for a meaningful description of assay performance.


Asunto(s)
Interferón gamma , Ensayo de Immunospot Ligado a Enzimas/métodos
11.
Methods Mol Biol ; 2768: 105-115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502390

RESUMEN

ELISPOT and FluoroSpot assays, collectively called ImmunoSpot assays, permit to reliable detection of rare antigen-specific T cells in freshly isolated cell material, such as peripheral blood mononuclear cells (PBMC). Establishing their frequency within all PBMC permits to assess the magnitude of antigen-specific T-cell immunity; the simultaneous measurement of their cytokine signatures reveals these T-cells' lineage and effector functions, that is, the quality of T-cell-mediated immunity. Because of their unparalleled sensitivity, ease of implementation, robustness, and frugality in PBMC utilization, T-cell ImmunoSpot assays are increasingly becoming part of the standard immune monitoring repertoire. For regulated workflows, stringent audit trails of the data generated are a requirement. While this has been fully accomplished for the analysis of T-cell ImmunoSpot assay results, such are missing for the wet laboratory implementation of the actual test performed. Here we introduce a solution for enhancing and verifying the error-free implementation of T-cell ImmunoSpot assays.


Asunto(s)
Leucocitos Mononucleares , Linfocitos T , Citocinas , Ensayo de Immunospot Ligado a Enzimas/métodos , Inmunidad Celular
12.
Methods Mol Biol ; 2768: 59-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502388

RESUMEN

Antigen-specific B-cell ELISPOT and multicolor FluoroSpot assays, in which the membrane-bound antigen itself serves as the capture reagent for the antibodies that B cells secrete, inherently result in a broad range of spot sizes and intensities. The diversity of secretory footprint morphologies reflects the polyclonal nature of the antigen-specific B cell repertoire, with individual antibody-secreting B cells in the test sample differing in their affinity for the antigen, fine epitope specificity, and activation/secretion kinetics. To account for these heterogeneous spot morphologies, and to eliminate the need for setting up subjective counting parameters well-by-well, CTL introduces here its cutting-edge deep learning-based IntelliCount™ algorithm within the ImmunoSpot® Studio Software Suite, which integrates CTL's proprietary deep neural network. Here, we report detailed analyses of spots with a broad range of morphologies that were challenging to analyze using standard parameter-based counting approaches. IntelliCount™, especially in conjunction with high dynamic range (HDR) imaging, permits the extraction of accurate, high-content information of such spots, as required for assessing the affinity distribution of an antigen-specific memory B-cell repertoire ex vivo. IntelliCount™ also extends the range in which the number of antibody-secreting B cells plated and spots detected follow a linear function; that is, in which the frequencies of antigen-specific B cells can be accurately established. Introducing high-content analysis of secretory footprints in B-cell ELISPOT/FluoroSpot assays, therefore, fundamentally enhances the depth in which an antigen-specific B-cell repertoire can be studied using freshly isolated or cryopreserved primary cell material, such as peripheral blood mononuclear cells.


Asunto(s)
Inteligencia Artificial , Leucocitos Mononucleares , Ensayo de Immunospot Ligado a Enzimas/métodos , Algoritmos , Linfocitos B , Antígenos
13.
Methods Mol Biol ; 2768: 273-296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502399

RESUMEN

Enzyme-linked immunospot (ELISPOT) is one of the most important methods to measure the number of specific cells by detecting protein secretion at a single-cell level. However, traditional ELISPOT based on enzyme-substrate color development can only detect one target. Therefore, scientists developed multiple-target ELISPOT based on enzyme-substrate coloring. Besides, FluoroSPOT that can detect 2-4 fluorescent signals are developed. Nevertheless, the maximum detection targets of multiple-target ELISPOT and FluoroSPOT are around 4, and the signal amplification system can be further optimized. Fluorescence-based oligo-linked immunospot (FOLISPOT), which utilized DNA-barcoded antibodies to provide a highly multiplexed method with signal amplification, was developed to detect multiple targets simultaneously. In this method, multiple targets can be detected in one round and multiple rounds of detection can be conducted, and thus a large number of targets can be detected. Besides, signal amplification is achieved by DNA complementary pairing and modular orthogonal DNA concatemers, and thus cells secreting limited amounts of proteins can be detected. According to the studies, FOLISPOT can detect more spots than ELISPOT and can detect targets that are undetectable by ELISPOT. Furthermore, FOLISPOT can be utilized to detect more than 6 targets, by allowing sequential detection of multiple targets in one round and sequential detection in multiple rounds.


Asunto(s)
Citocinas , Linfocitos T , Ensayo de Immunospot Ligado a Enzimas/métodos , Citocinas/metabolismo , Linfocitos B , Colorantes/metabolismo
14.
Hum Gene Ther ; 35(13-14): 506-516, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38264994

RESUMEN

Adeno-associated virus (AAV)-based gene therapies have shown promise as novel treatments for rare genetic disorders such as hemophilia A and spinal muscular atrophy. However, cellular immune responses mediated by cytotoxic (CD8+) and helper (CD4+) T cells may target vector-transduced cells as well as healthy immune cells, impacting safety and efficacy. In this study, we describe the optimization and reproducibility of interferon-γ (IFNγ)-based and interleukin-2 (IL-2)-based enzyme-linked immunosorbent spot (ELISpot) assays for measuring T cell responses against AAV peptide antigens. For method optimization, peripheral blood mononuclear cells (PBMCs) were isolated from healthy human donors and stimulated with commercially available major histocompatibility complex (MHC) class I or II-specific peptides as positive controls. Peptide pools were designed from published AAV8 and AAV9 capsid protein sequences and then used to assess the presence of AAV-specific T cell responses. Our results demonstrate a measurable increase in IFNγ and IL-2-producing cells after AAV peptide presentation. Furthermore, there was an observed difference in the magnitude and specificity of response to peptide pools based on AAV serotype and donor. Finally, using individual peptides, we identified a region of the AAV9 capsid protein that can elicit an immunogenic response. This work shows the applicability of ELISpot in assessing anti-AAV immune responses and provides insight into how novel recombinant AAV vectors could be designed to reduce immunogenic potential.


Asunto(s)
Dependovirus , Ensayo de Immunospot Ligado a Enzimas , Vectores Genéticos , Interferón gamma , Interleucina-2 , Péptidos , Dependovirus/genética , Dependovirus/inmunología , Humanos , Ensayo de Immunospot Ligado a Enzimas/métodos , Vectores Genéticos/genética , Interferón gamma/metabolismo , Interferón gamma/inmunología , Péptidos/inmunología , Interleucina-2/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Terapia Genética , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo
15.
J Immunol Methods ; 524: 113588, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040193

RESUMEN

The Enzyme-Linked ImmunoSpot (ELISpot) assay detects cytokines secreted during T cell-specific immune responses against pathogens. As this assay has acquired importance in the clinical setting, standard bioanalytical evaluation of this method is required. Here, we describe a formal bioanalytical validation of a double-color ELISpot assay for the evaluation of IFN-γ and IL-4 released by T helper 1 and T helper 2 cells, respectively. As recommended by international guidelines, the parameters assessed were: range and detection limits (limit of detection, LOD; upper and lower limit of quantification, ULOQ and LLOQ), Linearity, Relative Accuracy, Repeatability, Intermediate Precision, Specificity and Robustness. The results obtained in this validation study demonstrate that this assay meets the established acceptability criteria. ELISpot is therefore a reliable technique for measuring T cell-specific immune responses against various antigens of interest.


Asunto(s)
Interleucina-4 , Leucocitos Mononucleares , Humanos , Interferón gamma , Ensayo de Immunospot Ligado a Enzimas/métodos , Citocinas
16.
J Immunol Methods ; 523: 113584, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37918618

RESUMEN

The magnitude and quality of cell-mediated immune responses elicited by natural infection or vaccination are commonly measured by Interferon-É£ (IFN-É£) Enzyme-Linked ImmunoSpot (ELISpot) and Intracellular Cytokine Staining (ICS). To date, laboratories apply a variety of in-house procedures which leads to diverging results, complicates interlaboratory comparisons and hampers vaccine evaluations. During the FLUCOP project, efforts have been made to develop harmonized Standard Operating Procedures (SOPs) for influenza-specific IFN-É£ ELISpot and ICS assays. Exploratory pilot studies provided information about the interlaboratory variation before harmonization efforts were initiated. Here we report the results of two proficiency tests organized to evaluate the impact of the harmonization effort on assay results and the performance of participating FLUCOP partners. The introduction of the IFN-É£ ELISpot SOP reduced variation of both background and stimulated responses. Post-harmonization background responses were all lower than an arbitrary threshold of 50 SFU/million cells. When stimulated with A/California and B/Phuket, a statistically significant reduction in variation (p < 0.0001) was observed and CV values were strongly reduced, from 148% to 77% for A/California and from 126% to 73% for B/Phuket. The harmonizing effect of applying an ICS SOP was also confirmed by an increased homogeneity of data obtained by the individual labs. The application of acceptance criteria on cell viability and background responses further enhanced the data homogeneity. Finally, as the same set of samples was analyzed by both the IFN-É£ ELISpot and the ICS assays, a method comparison was performed. A clear correlation between the two methods was observed, but they cannot be considered interchangeable. In conclusion, proficiency tests show that a limited harmonization effort consisting of the introduction of SOPs and the use of the same in vitro stimulating antigens leads to a reduction of the interlaboratory variation of IFN-É£ ELISpot data and demonstrate that substantial improvements for the ICS assay are achieved as comparable laboratory datasets could be generated. Additional steps to further reduce the interlaboratory variation of ICS data can consist of standardized gating templates and detailed data reporting instructions as well as further efforts to harmonize reagent and instrument use.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Interferón gamma , Citocinas , Laboratorios , Coloración y Etiquetado , Ensayo de Immunospot Ligado a Enzimas/métodos
17.
AAPS J ; 25(6): 93, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770755

RESUMEN

Cell and gene therapies have demonstrated impressive therapeutic efficacy in various human diseases. Nevertheless, cellular immune response directed against these therapeutic agents is an obstacle for achieving long-lasting clinical efficacy. Therefore, it is crucial to develop robust assays to accurately monitor cellular immunogenicity towards these therapies. Enzyme-linked immunospot (ELISpot) assay is one of the primarily used methods for measuring cellular immune response in clinical programs, which requires isolation of the peripheral blood mononuclear cells (PBMCs). The quality of this clinical material is one of the most critical factors that impact the robust assessment of cellular immune responses. The optimal blood sample processing conditions, however, remain poorly understood. In this study, we examined the impact of blood sample processing time on the performance characteristics of ELISpot to measure antigen-specific cellular responses. Blood samples that were processed after overnight delay resulted in a loss of ELISpot signals. We subsequently optimized several parameters of sample processing, and successfully recovered ELISpot signals for the blood samples that are processed within 32 h. Furthermore, several mitigation strategies were employed that would potentially address the impact of granulocyte contamination on detection of antigen-specific cellular responses. Our investigation provides an extension of sample processing window for clinical studies and is significant for resolving the logistical challenge of whole blood sample shipment for timely PBMC preparation in cell/gene therapy clinical studies.


Asunto(s)
Interferón gamma , Leucocitos Mononucleares , Humanos , Ensayo de Immunospot Ligado a Enzimas/métodos , Inmunidad Celular
18.
J Immunol Methods ; 512: 113395, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470409

RESUMEN

Inborn errors of immunity (IEI) that present with recurrent infections are largely due to antibody (Ab) deficiencies. Therefore, assessment of the B-cell and Ab compartment is a major part of immunologic evaluation. Here we provide an overview about cellular assays used to study B-cell function and focus on lymphocyte proliferation assay (LPA), opsonophagocytic assay (OPA), and the Enzyme-linked Immunosorbent Spot Assay (ELISPOT) including clinical applications and limitations of these techniques. LPAs assess ex-vivo cell proliferation in response to various stimuli. Clinically available LPAs utilize peripheral blood mononuclear cells and mostly assess T-cell proliferation with pokeweed mitogen considered the most B-cell specific stimulus. In the research setting, isolating B cells or using more B-cell specific stimuli such as CD40L with IL-4/IL-21 or the TLR9 ligand CpG can more specifically capture the proliferative ability of B cells. OPAs are functional in-vitro killing assays used to evaluate the ability of IgG Ab to induce phagocytosis applied when assessing the potency of vaccine candidates or along with avidity assays to evaluate the quality of secreted IgG. The B-cell ELISPOT assesses Ab production at a cellular level and can characterize the Ab response of particular B-cell subtypes. It can be used in patients on IgG therapy by capturing specific Abs produced by individual B cells, which is not affected by exogenous IgG from plasma donors, and when assessing the vaccine response in patients on immunomodulatory drugs that can affect memory B-cell function. Emerging approaches that are only available in research settings are also briefly introduced.


Asunto(s)
Linfocitos B , Leucocitos Mononucleares , Humanos , Ensayo de Immunospot Ligado a Enzimas/métodos , Inmunoglobulina G , Proliferación Celular
19.
Front Immunol ; 13: 984642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159843

RESUMEN

Influenza continues to be the most important cause of viral respiratory disease, despite the availability of vaccines. Today's evaluation of influenza vaccines mainly focuses on the quantitative and functional analyses of antibodies to the surface proteins haemagglutinin (HA) and neuraminidase (NA). However, there is an increasing interest in measuring cellular immune responses targeting not only mutation-prone surface HA and NA but also conserved internal proteins as these are less explored yet potential correlates of protection. To date, laboratories that monitor cellular immune responses use a variety of in-house procedures. This generates diverging results, complicates interlaboratory comparisons, and hampers influenza vaccine evaluation. The European FLUCOP project aims to develop and standardize assays for the assessment of influenza vaccine correlates of protection. This report describes the harmonization and qualification of the influenza-specific interferon-gamma (IFN-γ) Enzyme-Linked ImmunoSpot (ELISpot) assay. Initially, two pilot studies were conducted to identify sources of variability during sample analysis and spot enumeration in order to develop a harmonized Standard Operating Procedure (SOP). Subsequently, an assay qualification study was performed to investigate the linearity, intermediate precision (reproducibility), repeatability, specificity, Lower and Upper Limits of Quantification (LLOQ-ULOQ), Limit of Detection (LOD) and the stability of signal over time. We were able to demonstrate that the FLUCOP harmonized IFN-γ ELISpot assay procedure can accurately enumerate IFN-γ secreting cells in the analytical range of 34.4 Spot Forming Units (SFU) per million cells up to the technical limit of the used reader and in the linear range from 120 000 to 360 000 cells per well, in plates stored up to 6 weeks after development. This IFN-γ ELISpot procedure will hopefully become a useful and reliable tool to investigate influenza-specific cellular immune responses induced by natural infection or vaccination and can be an additional instrument in the search for novel correlates of protection.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Ensayo de Immunospot Ligado a Enzimas/métodos , Hemaglutininas , Humanos , Inmunidad Celular , Interferón gamma/metabolismo , Proteínas de la Membrana , Neuraminidasa , Reproducibilidad de los Resultados
20.
Methods Mol Biol ; 2573: 323-332, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040606

RESUMEN

Formation of neutralizing antibodies and cellular immune response with repeat adeno-associated virus (AAV) gene therapy dosing are critical concerns in translational, large animal studies. The enzyme-linked immunospot/immunosorbent spot (ELISpot) assay introduced a way to track B- and/or T-cell response to therapy over time at a protein level. We describe the protocol for this assay looking at relative interferon (IFN)-γ secretion in pre- and post-AAV injections in a pig model.


Asunto(s)
Interferón gamma , Linfocitos T , Animales , Ensayo de Immunospot Ligado a Enzimas/métodos , Terapia Genética , Inmunidad Celular , Interferón gamma/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...