Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80.272
Filtrar
1.
Clin Oral Investig ; 28(6): 305, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722356

RESUMEN

OBJECTIVE: To evaluate the ability of the water glass treatment to penetrate zirconia and improve the bond strength of resin cement. MATERIAL AND METHODS: Water glass was applied to zirconia specimens, which were then sintered. The specimens were divided into water-glass-treated and untreated zirconia (control) groups. The surface properties of the water-glass-treated specimens were evaluated using surface roughness and electron probe micro-analyser (EPMA) analysis. A resin cement was used to evaluate the tensile bond strength, with2 and without a silane-containing primer. After 24 h in water storage at 37 °C and thermal cycling, the bond strengths were statistically evaluated with t-test, and the fracture surfaces were observed using SEM. RESULTS: The water glass treatment slightly increased the surface roughness of the zirconia specimens, and the EPMA analysis detected the water glass penetration to be 50 µm below the zirconia surface. The application of primer improved the tensile bond strength in all groups. After 24 h, the water-glass-treated zirconia exhibited a tensile strength of 24.8 ± 5.5 MPa, which was significantly higher than that of the control zirconia (17.6 ± 3.5 MPa) (p < 0.05). After thermal cycling, the water-glass-treated zirconia showed significantly higher tensile strength than the control zirconia. The fracture surface morphology was mainly an adhesive pattern, whereas resin cement residue was occasionally detected on the water-glass-treated zirconia surfaces. CONCLUSION: The water glass treatment resulted in the formation of a stable silica phase on the zirconia surface. This process enabled silane coupling to the zirconia and improved the adhesion of the resin cement.


Asunto(s)
Recubrimiento Dental Adhesivo , Vidrio , Ensayo de Materiales , Cementos de Resina , Silanos , Propiedades de Superficie , Resistencia a la Tracción , Agua , Circonio , Circonio/química , Cementos de Resina/química , Silanos/química , Agua/química , Recubrimiento Dental Adhesivo/métodos , Vidrio/química , Microscopía Electrónica de Rastreo , Análisis del Estrés Dental
2.
J Biomed Mater Res B Appl Biomater ; 112(5): e35416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747324

RESUMEN

The bone formation response of ceramic bone graft materials can be improved by modifying the material's surface and composition. A unique dual-phase ceramic bone graft material with a nanocrystalline, hydroxycarbanoapatite (HCA) surface and a calcium carbonate core (TrelCor®-Biogennix, Irvine, CA) was characterized through a variety of analytical methods. Scanning electron microscopy (SEM) of the TrelCor surface (magnification 100-100,000X) clearly demonstrated a nanosized crystalline structure covering the entire surface. The surface morphology showed a hierarchical structure that included micron-sized spherulites fully covered by plate-like nanocrystals (<60 nm in thickness). Chemical and physical characterization of the material using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDX) showed a surface composed of HCA. Analysis of fractured samples confirmed the dual-phase composition with the presence of a calcium carbonate core and HCA surface. An in vitro bioactivity study was conducted to evaluate whether TrelCor would form a bioactive layer when immersed in simulated body fluid. This response was compared to a known bioactive material (45S5 bioactive glass - Bioglass). Following 14-days of immersion, surface and cross-sectional analysis via SEM-EDX showed that the TrelCor material elicited a bioactive response with the formation of a bioactive layer that was qualitatively thicker than the layer that formed on Bioglass. An in vivo sheep muscle pouch model was also conducted to evaluate the ability of the material to stimulate an ectopic, cellular bone formation response. Results were compared against Bioglass and a first-generation calcium phosphate ceramic that lacked a nanocrystalline surface. Histology and histomorphometric analysis (HMA) confirmed that the TrelCor nanocrystalline HCA surface stimulated a bone formation response in muscle (avg. 11% bone area) that was significantly greater than Bioglass (3%) and the smooth surface calcium phosphate ceramic (0%).


Asunto(s)
Sustitutos de Huesos , Nanopartículas , Animales , Sustitutos de Huesos/química , Nanopartículas/química , Cerámica/química , Ensayo de Materiales , Durapatita/química , Ovinos , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos X , Trasplante Óseo
3.
Braz Oral Res ; 38: e032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747819

RESUMEN

This study assessed the reliability of a color measurement method using images obtained from a charge-coupled device (CCD) camera and a stereoscopic loupe. Disc-shaped specimens were created using the composite Filtek Z350 XT (shades DA1, DA2, DA3, and DA4) (n = 3). CIELAB color coordinates of the specimens were measured using the spectrophotometer SP60 over white and black backgrounds. Images of the same specimens were taken using a CCD camera attached to a stereoscopic loupe. The color of the image was measured (red-green-blue [RGB]) using an image processing software and converted to CIELAB coordinates. For each color coordinate, data from images were adjusted using linear regressions predicting those values from SP60. The whiteness index for dentistry (WID) and translucency parameter (TP00) of the specimens as well as the color differences (ΔE00) among pairwise shades were calculated. Data were analyzed via repeated-measures analysis of variance and Tukey's post hoc test (α = 0.05). Images obtained using the loupe tended to be darker and redder than the actual color. Data adjustment resulted in similar WID, ΔE00, and TP00 values to those observed for the spectrophotometer. Differences were observed only for the WID of shade DA3 and ΔE00 for comparing DA1 and DA3 over the black background. However, these differences were not clinically relevant. The use of adjusted data from images taken using a stereoscopic loupe is considered a feasible method for color measurement.


Asunto(s)
Color , Colorimetría , Resinas Compuestas , Ensayo de Materiales , Espectrofotometría , Reproducibilidad de los Resultados , Resinas Compuestas/química , Espectrofotometría/métodos , Colorimetría/métodos , Colorimetría/instrumentación , Análisis de Varianza , Valores de Referencia , Modelos Lineales , Procesamiento de Imagen Asistido por Computador/métodos
4.
Braz Oral Res ; 38: e036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747823

RESUMEN

This study aimed to evaluate in vitro the effect protocols and anticaries agents containing casein amorphous calcium fluoride phosphopeptide-phosphate (CPP-ACPF, MI Paste Plus), sodium trimetaphosphate (TMP) and fluoride (F), in remineralization of caries lesions. Bovine enamel blocks with initial caries lesions were divided into groups (n = 12): 1) Toothpaste without F-TMP-MI Plus (Placebo); 2) Toothpaste 1100 ppm F (1100F), 3) 1100F + MI Paste Plus (1100F-MI Paste Plus), 4) Toothpaste with 1100F + Neutral gel with 4,500 ppm F + 5%TMP (1100F + Gel TMP) and 5) Toothpaste with 1100F + Neutral gel with 9,000 ppm F (1100F + Gel F). For the 4 and 5 groups the gel was applied only once for 1 minute, initially to the study. For the 3 group, after treatment with 1100F, MI Paste Plus was applied 2x/day for 3 minute. After pH cycling, the percentage of surface hardness recovery (%SHR); integrated loss of subsurface hardness (ΔKHN); profile and depth of the subsuperficial lesion (PLM); concentrations of F, calcium (Ca) and phosphorus (P) in enamel was determined. The data were analyzed by ANOVA (1-criterion) and Student-Newman-Keuls test (p < 0.001). Treatment with 1100F alone led to ~ 28% higher remineralization when compared to treatment with 1100F associated with MI Paste Plus (p < 0.001). The 1100F and 1100F + Gel F groups showed similar values for %SHR (p = 0.150). 1100F + Gel TMP treatment also remineralized the enamel surface by ~ 30% and 20% when compared to the 1100F + Gel F and 1100F groups (p < 0.001). The lower lesion depth (ΔKHN) was observed for the 1100F + Gel TMP group (p < 0.001), where it was 54% and 44% lower in comparison to the 1100F and 1100F + Gel F groups (p < 0.001). Polarized light microscopy photomicrographs showed subsurface lesions in all groups, but these lesions were present to a lower extent in the 1100F + Gel TMP group (p < 0.001). Treatment with 1100F + Gel TMP promoted an increase in the concentration of Ca in the enamel by ~ 57% and ~ 26% when compared to the 1100F and 1100F + MI Paste Plus groups (p < 0.001), respectively. There were no significant differences between the 1100F, 1100F + MI Paste Plus and 1100F + Gel F groups (p > 0.001). Similar values of P in the enamel were observed in the 1100F, 1100F + MI Paste Plus and 1100F + Gel F groups (p > 0.001), except for the 1100F + Gel TMP group, which presented a high concentration (p < 0.001). We conclude that the 1100F+TMP gel treatment/protocol led to a significant increased remineralization when compared to the other treatments/protocols and may be a promising strategy for patients with early caries lesions.


Asunto(s)
Cariostáticos , Caseínas , Esmalte Dental , Fluoruros , Remineralización Dental , Caseínas/farmacología , Caseínas/uso terapéutico , Remineralización Dental/métodos , Bovinos , Animales , Esmalte Dental/efectos de los fármacos , Cariostáticos/farmacología , Fluoruros/farmacología , Factores de Tiempo , Pastas de Dientes/química , Caries Dental/tratamiento farmacológico , Análisis de Varianza , Reproducibilidad de los Resultados , Polifosfatos/farmacología , Polifosfatos/química , Polifosfatos/uso terapéutico , Pruebas de Dureza , Concentración de Iones de Hidrógeno , Propiedades de Superficie/efectos de los fármacos , Ensayo de Materiales , Resultado del Tratamiento , Valores de Referencia , Dureza/efectos de los fármacos , Fosfatos
5.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731508

RESUMEN

This study delves into the physicochemical properties of inorganic hydroxyapatite (HAp) and hybrid hydroxyapatite-chitosan (HAp-CTS) granules, also gold-enriched, which can be used as aggregates in biomicroconcrete-type materials. The impact of granules' surface modifications with citric acid (CA) or polyethylene glycol (PEG) was assessed. Citric acid modification induced increased specific surface area and porosity in inorganic granules, contrasting with reduced parameters in hybrid granules. PEG modification resulted in a slight increase in specific surface area for inorganic granules and a substantial rise for hybrid granules with gold nanoparticles. Varied effects on open porosity were observed based on granule type. Microstructural analysis revealed increased roughness for inorganic granules post CA modification, while hybrid granules exhibited smoother surfaces. Novel biomicroconcretes, based on α-tricalcium phosphate (α-TCP) calcium phosphate cement and developed granules as aggregates within, were evaluated for compressive strength. Compressive strength assessments showcased significant enhancement with PEG modification, emphasizing its positive impact. Citric acid modification demonstrated variable effects, depending on granule composition. The incorporation of gold nanoparticles further enriched the multifaceted approach to enhancing calcium phosphate-based biomaterials for potential biomedical applications. This study demonstrates the pivotal role of surface modifications in tailoring the physicochemical properties of granules, paving the way for advanced biomicroconcretes with improved compressive strength for diverse biomedical applications.


Asunto(s)
Ácido Cítrico , Durapatita , Polietilenglicoles , Ácido Cítrico/química , Durapatita/química , Polietilenglicoles/química , Oro/química , Materiales Biocompatibles/química , Ensayo de Materiales , Quitosano/química , Porosidad , Nanopartículas del Metal/química , Fenómenos Químicos , Fuerza Compresiva , Propiedades de Superficie
6.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731542

RESUMEN

Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.


Asunto(s)
Materiales Biocompatibles , Proliferación Celular , Poliésteres , Piel , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Poliésteres/química , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Andamios del Tejido/química , Resistencia a la Tracción , Membranas Artificiales , Línea Celular , Ensayo de Materiales , Polímeros/química , Adhesión Celular/efectos de los fármacos
7.
Sci Rep ; 14(1): 10798, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734777

RESUMEN

The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.


Asunto(s)
Materiales Biocompatibles , Sustitutos de Huesos , Durapatita , Nanocompuestos , Silicatos , Durapatita/química , Nanocompuestos/química , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Silicatos/química , Materiales Biocompatibles/química , Compuestos de Calcio/química , Liberación de Fármacos , Dexametasona/química , Dexametasona/farmacología , Polímeros/química , Humanos , Difracción de Rayos X , Ensayo de Materiales , Espectroscopía Infrarroja por Transformada de Fourier , Animales
8.
PLoS One ; 19(5): e0303327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739645

RESUMEN

This study applied the pull-out test to examine the influence of freeze-thaw cycles and hybrid fiber incorporation on the bond performance between BFRP bars and hybrid fiber-reinforced concrete. The bond-slip curves were fitted by the existing bond-slip constitutive model, and then the bond strength was predicted by a BP neural network. The results indicated that the failure mode changed from pull-out to splitting for the BFRP bar ordinary concrete specimens when the freeze-thaw cycles exceeded 50, while only pull-out failure occurred for all BFRP bar hybrid fiber-reinforced concrete specimens. An increasing trend was shown on the peak slip, but a decreasing trend was shown on the bond stiffness and bond strength when freeze-thaw cycles increased. The bond strength could be increased significantly by the incorporation of basalt fiber (BF) and cellulose fiber (CF) under the same freezing and thawing conditions as compared to concrete specimens without fibers. The Malvar model and the Continuous Curve model performed best in fitting the ascending and descending sections of the bond-slip curves, respectively. The BP neural network also accurately predicted the bond strength, with relative errors of predicted bond strengths ranging from 3.75% to 13.7%, and 86% of them being less than 10%.


Asunto(s)
Materiales de Construcción , Congelación , Materiales de Construcción/análisis , Ensayo de Materiales , Redes Neurales de la Computación , Estrés Mecánico
9.
J Biomed Mater Res B Appl Biomater ; 112(5): e35417, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742468

RESUMEN

Stress shielding is one of the major concerns for total ankle replacement implants nowadays, because it is responsible for implant-induced bone resorption. The bone resorption contributes to the aseptic loosening and failure of ankle implants in later stages. To reduce the stress shielding, improvements can be made in the implant material by decreasing the elastic mismatch between the implant and the tibia bone. This study proposes a new functionally graded material (FGM) based tibial implant for minimizing the problem of stress shielding. Three-dimensional finite element (FE) models of the intact tibia and the implanted tibiae were created to study the influence of material gradation law and volume fraction index on stress shielding and implant-bone micromotion. Different implant materials were considered that is, cobalt-chromium, titanium (Ti), and FGM with Ti at the bottom and hydroxyapatite (HA) at the top. The FE models of FGM implants were generated by using different volume fractions and the rule of mixtures. The rule of mixtures was used to calculate the FGM properties based on the local volume fraction. The volume fraction was defined by using exponential, power, and sigmoid laws. For the power and sigmoid law varying volume fraction indices (0.1, 0.2, 0.5, 1, 2, and 5) were considered. The geometry resembling STAR® ankle system tibial implant was considered for the present study. The results indicate that FGMs lower stress shielding but also marginally increase implant-bone micromotion; however, the values were within the acceptable limit for bone ingrowth. It is observed that the material gradation law and volume fraction index influence the performance of FGM tibial implants. The tibial implant composed of FGM using power law with a volume fraction index of 0.1 was the preferred option because it showed the least stress shielding.


Asunto(s)
Artroplastia de Reemplazo de Tobillo , Análisis de Elementos Finitos , Tibia , Titanio , Titanio/química , Humanos , Durapatita/química , Diseño de Prótesis , Estrés Mecánico , Ensayo de Materiales
10.
ACS Appl Mater Interfaces ; 16(19): 24274-24294, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699930

RESUMEN

In the field of bone tissue engineering, recently developed Zn alloy scaffolds are considered potential candidates for biodegradable implants for bone regeneration and defect reconstruction. However, the clinical success of these alloys is limited due to their insufficient surface bioactivities. Further, the higher concentration of Zn2+ produced during degradation promotes antibacterial activity, but deteriorates osteogenic properties. This study fabricated an Azadirachta indica (neem)-assisted brushite-hydroxyapatite (HAp) coating on the recently developed Zn-2Cu-0.5Mg alloy to tackle the above dilemma. The microstructure, degradation behavior, antibacterial activity, and hemocompatibility, along with in vitro and in vivo cytocompatibility of the coated alloys, are systematically investigated. Microstructural analysis reveals flower-like morphology with uniformly grown flakes for neem-assisted deposition. The neem-assisted deposition significantly improves the adhesion strength from 12.7 to 18.8 MPa, enhancing the mechanical integrity. The potentiodynamic polarization study shows that the neem-assisted deposition decreases the degradation rate, with the lowest degradation rate of 0.027 mm/yr for the ZHN2 sample. In addition, the biomineralization process shows the apatite formation on the deposited coating after 21 days of immersion. In vitro cytotoxicity assay exhibits the maximum cell viability of 117% for neem-assisted coated alloy in 30% extract after 5d and the improved cytocompatibility which is due to the controlled release of Zn2+ ions. Meanwhile, neem-assisted coated alloy increases the ZOI by 32 and 24% for Gram-positive and Gram-negative bacteria, respectively. Acceptable hemolysis (<5%) and anticoagulation parameters demonstrate a promising hemocompatibility of the coated alloy. In vivo implantation illustrates a slight inflammatory response and vascularization after 2 weeks of subcutaneous implantation, and neo-bone formation in the defect areas of the rat femur. Micro-CT and histology studies demonstrate better osseointegration with satisfactory biosafety response for the neem-assisted coated alloy as compared to that without neem-assisted deposition. Hence, this neem-assisted brushite-Hap coating strategy elucidates a new perspective on the surface modification of biodegradable implants for the treatment of bone defects.


Asunto(s)
Aleaciones , Fosfatos de Calcio , Materiales Biocompatibles Revestidos , Zinc , Aleaciones/química , Aleaciones/farmacología , Zinc/química , Zinc/farmacología , Animales , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Humanos , Durapatita/química , Durapatita/farmacología , Ensayo de Materiales , Ratones , Tecnología Química Verde , Implantes Absorbibles
11.
ACS Appl Mater Interfaces ; 16(19): 24321-24340, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700914

RESUMEN

In current clinical practices related to orthopedics, dental, and cardiovascular surgeries, a number of biomaterial coatings, such as hydroxyapatite (HAp), diamond-like carbon (DLC), have been used in combination with metallic substrates (stainless steel, Ti6Al4V alloy, etc.). Although SiBCN coatings are widely explored in material science for diverse applications, their potential remains largely unexplored for biomedical applications. With this motivation, the present work reports the development of SiBxCyNzOm coatings on a Ti6Al4V substrate, employing a reactive radiofrequency (RF) magnetron sputtering technique. Three different coating compositions (Si0.27B0.10C0.31N0.07O0.24, Si0.23B0.06C0.21N0.22O0.27, and Si0.20B0.05C0.19N0.20O0.35) were obtained using a Si2BC2N target and varying nitrogen flow rates. The hydrophilic properties of the as-synthesized coatings were rationalized in terms of an increase in the number of oxygen-containing functional groups (OH and NO) on the surface, as probed using XPS and FTIR analyses. Furthermore, the cellular monoculture of SVEC4-10 endothelial cells and L929 fibroblasts established good cytocompatibility. More importantly, the coculture system of SVEC4-10 and L929, in the absence of growth factors, demonstrated clear cellular phenotypical changes, with extensive sprouting leading to tube-like morphologies on the coating surfaces, when stimulated using a customized cell stimulator (StimuCell) with 1.15 V/cm direct current (DC) electric field strength for 1 h. In addition, the hemocompatibility assessment using human blood samples revealed clinically acceptable hemolysis, less erythrocyte adhesion, shorter plasma recalcification, and reduced risk for thrombosis on the SiBxCyNzOm coatings, when compared to uncoated Ti6Al4V. Taken together, the present study unambiguously establishes excellent cytocompatibility, hemocompatibility, and defines the preangiogenic properties of SiBxCyNzOm bioceramic coatings for potential biomedical applications.


Asunto(s)
Aleaciones , Materiales Biocompatibles Revestidos , Ensayo de Materiales , Titanio , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Aleaciones/química , Aleaciones/farmacología , Titanio/química , Titanio/farmacología , Humanos , Animales , Ratones , Células Endoteliales/efectos de los fármacos , Células Endoteliales/citología , Línea Celular , Propiedades de Superficie , Fibroblastos/efectos de los fármacos , Fibroblastos/citología , Neovascularización Fisiológica/efectos de los fármacos
12.
J Cardiothorac Surg ; 19(1): 292, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760659

RESUMEN

BACKGROUND: Although well-known for their thromboresistance, bileaflet mechanical heart valves (BMHV) require lifelong anti-thrombotic therapy. This must be associated with a certain level of thrombogenicity. Since both thromboresistance and thrombogenicity are explained by the blood-artificial surface or liquid-solid interactions, the aim of the present study was to explore BMHV thromboresistance from new perspectives. The wettability of BMHV pyrolytic carbon (PyC) occluders was investigated in under-liquid conditions. The submerged BMHV wettability clarifies the mechanisms involved in the thromboresistance. METHODS: The PyC occluders of a SJM Regent™ BMHV were previously laser irradiated, to create a surface hierarchical nano-texture, featuring three nano-configurations. Additionally, four PyC occluders of standard BMHV (Carbomedics, SJM Regent™, Bicarbon™, On-X®), were investigated. All occluders were evaluated in under-liquid configuration, with silicon oil used as the working droplet, while water, simulating blood, was used as the surrounding liquid. The under-liquid droplet-substrate wetting interactions were analyzed using contact angle goniometry. RESULTS: All the standard occluders showed very low contact angle, reflecting a pronounced affinity for non-polar molecules. No receding of the contact line could be observed for the untreated occluders. The smallest static contact angle of around 61° could be observed for On-X® valve (the only valve made of full PyC). The laser-treated occluders strongly repelled oil in underwater conditions. A drastic change in their wetting behaviour was observed depending on the surrounding fluid, displaying a hydrophobic behaviour in the presence of air (as the surrounding medium), and showing instead a hydrophilic nature, when surrounded by water. CONCLUSIONS: BMHV "fear" water and blood. The intrinsic affinity of BMHV for nonpolar fluids can be translated into a tendency to repel polar fluids, such as water and blood. The blood-artificial surface interaction in BMHV is minimized. The contact between blood and BMHV surface is drastically reduced by polar-nonpolar Van der Waals forces. The "hydro/bloodphobia" of BMHV is intrinsically related to their chemical composition and their surface energy, thus their material: PyC indeed. Pertaining to thromboresistance, the surface roughness does not play a significant role. Instead, the thromboresistance of BMHV lies in molecular interactions. BMHV wettability can be tuned by altering the surface interface, by means of nanotechnology.


Asunto(s)
Prótesis Valvulares Cardíacas , Trombosis , Humectabilidad , Humanos , Trombosis/prevención & control , Diseño de Prótesis , Ensayo de Materiales
13.
ACS Appl Bio Mater ; 7(5): 3096-3109, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764432

RESUMEN

Wire arc additive manufacturing (WAAM) holds promise for producing medium to large industrial components. Application of WAAM in the manufacturing of biomedical materials has not yet been evaluated. The current study addresses two key research questions: first, the suitability of the WAAMed Ti6Al4V alloy for biomedical applications, and second, the effect of Ti6Al4V's constituents (α and ß phases) on the cell viability. The WAAMed Ti6Al4V alloy was fabricated (as-deposited: AD) using a metal inert gas (MIG)-based wire arc system using an in-house designed shielding chamber filled with argon. Subsequently, samples were subjected to solution treatment (950 °C for 1 h), followed by aging at 480 °C (T1), 530 °C (T2), and 580 °C (T3) for 8 h and subsequent normalization to ambient conditions. Microstructural analysis revealed ∼45.45% of α'-Ti colonies in the as-deposited samples, reducing to 23.26% postaging at 580 °C (T3). The α-lath thickness and interstitial oxygen content in the sample were observed to be proportional to the aging temperature, peaking at 580 °C (T3). Remarkably, during tribocorrosion analysis in simulated body fluid, the 580 °C-aged T3 sample displayed the lowest corrosion rate (7.9 µm/year) and the highest coefficient of friction (CoF) at 0.58, showing the effect of increasing oxygen content in the alloy matrix. Cell studies showed significant growth at 530 and 580 °C by day 7, correlated with higher oxygen content, while other samples had declining cell density. Additionally, optimal metallurgical property ranges were identified to enhance the Ti6Al4V alloy's biocompatibility, providing crucial insights for biomedical implant development.


Asunto(s)
Aleaciones , Materiales Biocompatibles , Supervivencia Celular , Calor , Ensayo de Materiales , Titanio , Titanio/química , Aleaciones/química , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Tamaño de la Partícula , Ratones , Propiedades de Superficie
14.
Eur Rev Med Pharmacol Sci ; 28(9): 3391-3402, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38766802

RESUMEN

OBJECTIVE: Although pure titanium (PT) and its alloys exhibit excellent mechanical properties, they lack biological activity as implants. The purpose of this study was to improve the biological activity of titanium implants through surface modification. MATERIALS AND METHODS: Titanium was processed into titanium discs, where the titanium discs served as anodes and stainless steel served as cathodes, and a copper- and cobalt-doped porous coating [pure titanium model (PTM)] was prepared on the surface of titanium via plasma electrolytic oxidation. The surface characteristics of the coating were evaluated using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and profilometry. The corrosion resistance of PTM was evaluated with an electrochemical workstation. The biocompatibility and bioactivity of coated bone marrow mesenchymal stem cells (BMSCs) were evaluated through in vitro cell experiments. RESULTS: A copper- and cobalt-doped porous coating was successfully prepared on the surface of titanium, and the doping of copper and cobalt did not change the surface topography of the coating. The porous coating increased the surface roughness of titanium and improved its resistance to corrosion. In addition, the porous coating doped with copper and cobalt promoted the adhesion and spreading of BMSCs. CONCLUSIONS: A porous coating doped with copper and cobalt was prepared on the surface of titanium through plasma electrolytic oxidation. The coating not only improved the roughness and corrosion resistance of titanium but also exhibited good biological activity.


Asunto(s)
Materiales Biocompatibles Revestidos , Cobalto , Cobre , Células Madre Mesenquimatosas , Propiedades de Superficie , Titanio , Titanio/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Cobre/química , Porosidad , Cobalto/química , Animales , Corrosión , Ensayo de Materiales , Células Cultivadas , Prótesis e Implantes
15.
BMC Oral Health ; 24(1): 583, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764030

RESUMEN

BACKGROUND: Endocrown in pediatric dentistry was rooted in the fundamental principles of preserving healthy dental tissues, leveraging contemporary adhesive methodologies. AIM: This research aimed on assessing and comparing the fracture resistance of pulpotomized primary molars when rehabilitated with zirconia crowns and two distinct types of endocrowns, namely E-Max and Brilliant Crios. METHODS: The study involved thirty, anonymized, freshly extracted second primary molars that underwent pulpotomy. These teeth were then evenly divided into three groups, each consisting of ten specimens: the zirconia crown, the E-Max endocrown, and the Brilliant Crios endocrown groups. Post-pulpotomy, the teeth were prepared for their respective restorations. Subsequent to this preparation, the zirconia crowns, E-Max endocrowns, and Brilliant Crios endocrowns were secured. To evaluate the fracture resistance using a computer-controlled testing machine (Instron), a progressively increasing load was applied to each group until fracture occurred. The gathered data were then analyzed for outliers and subjected to normality testing using the Shapiro-Wilk and/or Kolmogorov-Smirnov tests, with a significance threshold set at 0.05. RESULTS: There was no statistically significant difference in fracture resistance of pulpotomized primary molars among lithium disilicate (E-Max) group (mean=1367.59N), Brilliant Crios group (mean=1349.73N) and zirconia group (mean=1240.82N). CONCLUSION: Endocrowns can be considered a promising restoration for pulpotomized primary molars.


Asunto(s)
Coronas , Porcelana Dental , Diente Molar , Pulpotomía , Diente Primario , Circonio , Humanos , Porcelana Dental/química , Pulpotomía/métodos , Fracturas de los Dientes , Análisis del Estrés Dental , Cerámica/química , Restauración Dental Permanente/métodos , Ensayo de Materiales
16.
BMC Oral Health ; 24(1): 581, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764034

RESUMEN

BACKGROUND: This study was conducted to compare chemical, elemental and surface properties of sound and carious dentin after application of two restorative materials resin-modified glassionomer claimed to be bioactive and glass hybrid restorative material after enzymatic chemomechanical caries removal (CMCR) agent. METHODS: Forty carious and twenty non-carious human permanent molars were used. Molars were randomly distributed into three main groups: Group 1 (negative control) - sound molars, Group 2 (positive control) - molars were left without caries removal and Group 3 (Test Group) caries excavated with enzymatic based CMCR agent. After caries excavation and restoration application, all specimens were prepared Vickers microhardness test (VHN), for elemental analysis using Energy Dispersive Xray (EDX) mapping and finally chemical analysis using Micro-Raman microscopy. RESULTS: Vickers microhardness values of dentin with the claimed bioactive GIC specimens was statistically higher than with glass hybrid GIC specimens. EDX analysis at the junction estimated: Calcium and Phosphorus of the glass hybrid GIC showed insignificantly higher mean valued than that of the bioactive GIC. Silica and Aluminum mean values at the junction were significantly higher with bioactive GIC specimens than glass hybrid GIC specimen. Micro-raman spectroscopy revealed that bioactive GIC specimens showed higher frequencies of v 1 PO 4, which indicated high level of remineralization. CONCLUSIONS: It was concluded that ion-releasing bioactive resin-based restorative material had increased the microhardness and remineralization rate of carries affected and sound dentin. In addition, enzymatic caries excavation with papain-based CMCR agent has no adverse effect on dentin substrate.


Asunto(s)
Caries Dental , Preparación de la Cavidad Dental , Dentina , Cementos de Ionómero Vítreo , Dureza , Humanos , Caries Dental/terapia , Cementos de Ionómero Vítreo/química , Preparación de la Cavidad Dental/métodos , Fósforo/análisis , Papaína/uso terapéutico , Propiedades de Superficie , Restauración Dental Permanente/métodos , Espectrometría por Rayos X , Espectrometría Raman , Calcio/análisis , Diente Molar , Remineralización Dental/métodos , Aluminio , Dióxido de Silicio , Ensayo de Materiales
17.
Clin Exp Dent Res ; 10(3): e893, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38770579

RESUMEN

OBJECTIVES: The present study reviews the current literature regarding the utilization of the extended finite element method (XFEM) in clinical and experimental endodontic studies and the suitability of XFEM in the assessment of cyclic fatigue in rotary endodontic nickel-titanium (NiTi) instruments. MATERIAL AND METHODS: An electronic literature search was conducted using the appropriate search terms, and the titles and abstracts were screened for relevance. The search yielded 13 hits after duplicates were removed, and four studies met the inclusion criteria for review. RESULTS: No studies to date have utilized XFEM to study cyclic fatigue or crack propagation in rotary endodontic NiTi instruments. Challenges such as modelling material inputs and fatigue criteria could explain the lack of utilization of XFEM in the analysis of mechanical behavior in NiTi instruments. CONCLUSIONS: The review showed that XFEM was seldom employed in endodontic literature. Recent work suggests potential promise in using XFEM for modelling NiTi structures.


Asunto(s)
Endodoncia , Análisis de Elementos Finitos , Níquel , Titanio , Humanos , Aleaciones Dentales/química , Instrumentos Dentales , Endodoncia/instrumentación , Endodoncia/métodos , Ensayo de Materiales , Preparación del Conducto Radicular/instrumentación , Preparación del Conducto Radicular/métodos , Estrés Mecánico
18.
Clin Exp Dent Res ; 10(3): e901, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38770577

RESUMEN

OBJECTIVES: The study aimed to evaluate the debonding resistance of three different endocrown designs on molar teeth, using three different zirconia surface pretreatments. MATERIAL AND METHOD: Ninety human mandibular first molars were divided into three main groups: endocrowns without ferrule, with 1 mm ferrule, and with 2 mm ferrule. The subgroups were defined by their surface pretreatment method used (n = 15): 50 µm alumina air-particle abrasion, silica coating using 30 µm Cojet™ particles, and Zircos-E® etching. The endocrowns were fabricated using multilayer zirconia ceramic, cemented with self-adhesive resin cement, and subjected to 5000 thermocycles (5-55°C) before debonding. The data obtained were analyzed using a two-way ANOVA. RESULTS: All test specimens survived the thermocyclic aging. The results indicated that both the preparation design and the surface treatment had a significant impact on the resistance to debonding of the endocrowns (p < .001). The 2 mm ferrule followed by the 1 mm ferrule designs exhibited the highest debonding resistance, both were superior to the endocrown without ferrule. Zircos-E® etching and silica coating yielded comparable debonding resistance, which were significantly higher than alumina air-particle abrasion. All endocrowns demonstrated a favorable failure mode. CONCLUSIONS: All designs and surface treatments showed high debonding resistance for a single restoration. However, ferrule designs with Zircos-E® etching or silica coating may represent better clinical options compared to the nonferrule design or alumina airborne-particle abrasion. Nonetheless, further research, including fatigue testing and evaluations with different luting agents is recommended.


Asunto(s)
Óxido de Aluminio , Dióxido de Silicio , Propiedades de Superficie , Circonio , Óxido de Aluminio/química , Humanos , Dióxido de Silicio/química , Circonio/química , Diente Molar , Ensayo de Materiales , Abrasión Dental por Aire/métodos , Cementos de Resina/química , Grabado Dental/métodos , Análisis del Estrés Dental , Diseño de Prótesis Dental
19.
PLoS One ; 19(5): e0303645, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771843

RESUMEN

The corrosion resistance of FRP-reinforced ordinary concrete members under the combined action of harsh environments (i.e., alkaline or acidic solutions, salt solutions) and freeze-thaw cycles is still unclear. To study the mechanical and apparent deterioration of carbon/basalt/glass/aramid fiber cloth reinforced concrete under chemical and freeze-thaw coupling. Plain concrete blocks and FRP-bonded concrete blocks were fabricated. The tensile properties of the FRP sheet and epoxy resin sheet before and after chemical freezing, the compressive strength of the FRP reinforced test block, and the bending capacity of the prismatic test block pasted with FRP on the prefabricated crack side were tested. The deterioration mechanism of the test block was analyzed through the change of surface photos. Based on the experimental data, the Lam-Teng constitutive model of concrete reinforced by alkali-freeze coupling FRP is modified. The results indicate that, in terms of apparent properties, with the increase in the duration of chemical freeze-thaw erosion, the surface of epoxy resin sheets exhibits an increase in pores, along with the emergence of small cracks and wrinkles. The texture of FRP sheets becomes blurred, and cracks and wrinkles appear on the surface. In terms of failure modes, as the number of chemical coupling erosion cycles increases, the location of failure in epoxy resin sheets becomes uncertain, and the failure plane tilts towards the direction of the applied load. The failure mode of FRP sheets remains unchanged. However, the bonding strength between FRP sheets and concrete decreases, resulting in a weakened reinforcement effect. In terms of mechanical properties, FRP sheets undergo the most severe degradation in the coupled environment of acid freeze-thaw cycles. Among them, GFRP experiences the largest degradation in tensile strength, reaching up to 30.17%. In terms of tensile performance, the sheets rank from highest to lowest as follows: CFRP, BFRP, AFRP, and GFRP.As the duration of chemical freeze-coupled erosion increases, the loss rate of compressive strength for specimens bonded with CFRP is the smallest (9.62% in salt freeze-thaw environment), while the loss rate of bearing capacity is higher for specimens reinforced with GFRP (33.8% in acid freeze-thaw environment). In contrast, the loss rate of bearing capacity is lower for specimens reinforced with CFRP (13.6% in salt freeze-thaw environment), but still higher for specimens reinforced with GFRP (25.8% in acid freeze-thaw environment).


Asunto(s)
Materiales de Construcción , Congelación , Ensayo de Materiales , Resistencia a la Tracción , Materiales de Construcción/análisis , Fuerza Compresiva
20.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732241

RESUMEN

Biodegradable (BP) poly(D,L-lactic acid) (PDLLA) membranes are widely used in tissue engineering. Here, we investigate the effects of varying concentrations of PDLLA/gelatin membranes electrospun in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP; C3H2F6O) solvent on their mechanical and physical properties as well as their biocompatibility. Regardless of the environmental conditions, increasing the gelatin content resulted in elevated stress and reduced strain at membrane failure. There was a remarkable difference in strain-to-failure between dry and wet PDLLA/gelatin membranes, with wet strains consistently higher than those of the dry membranes because of the hydrophilic nature of gelatin. A similar wet strain (εw = 2.7-3.0) was observed in PDLLA/gelatin membranes with a gelatin content between 10 and 40%. Both dry and wet stresses increased with increasing gelatin content. The dry stress on PDLLA/gelatin membranes (σd = 6.7-9.7 MPa) consistently exceeded the wet stress (σw = 4.5-8.6 MPa). The water uptake capacity (WUC) improved, increasing from 57% to 624% with the addition of 40% gelatin to PDLLA. PDLLA/gelatin hybrid membranes containing 10 to 20 wt% gelatin exhibited favorable wet mechanical properties (σw = 5.4-6.3 MPa; εw = 2.9-3.0); WUC (337-571%), degradability (11.4-20.2%), and excellent biocompatibility.


Asunto(s)
Gelatina , Membranas Artificiales , Poliésteres , Gelatina/química , Poliésteres/química , Materiales Biocompatibles/química , Ensayo de Materiales , Ingeniería de Tejidos/métodos , Agua/química , Estrés Mecánico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA