Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805767

RESUMEN

Novel therapeutics are needed to treat pathologies associated with the Clostridioides difficile binary toxin (CDT), particularly when C. difficile infection (CDI) occurs in the elderly or in hospitalized patients having illnesses, in addition to CDI, such as cancer. While therapies are available to block toxicities associated with the large clostridial toxins (TcdA and TcdB) in this nosocomial disease, nothing is available yet to treat toxicities arising from strains of CDI having the binary toxin. Like other binary toxins, the active CDTa catalytic subunit of CDT is delivered into host cells together with an oligomeric assembly of CDTb subunits via host cell receptor-mediated endocytosis. Once CDT arrives in the host cell's cytoplasm, CDTa catalyzes the ADP-ribosylation of G-actin leading to degradation of the cytoskeleton and rapid cell death. Although a detailed molecular mechanism for CDT entry and host cell toxicity is not yet fully established, structural and functional resemblances to other binary toxins are described. Additionally, unique conformational assemblies of individual CDT components are highlighted herein to refine our mechanistic understanding of this deadly toxin as is needed to develop effective new therapeutic strategies for treating some of the most hypervirulent and lethal strains of CDT-containing strains of CDI.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/antagonistas & inhibidores , Clostridioides difficile/patogenicidad , Infección Hospitalaria/tratamiento farmacológico , Enterocolitis Seudomembranosa/tratamiento farmacológico , Enterotoxinas/antagonistas & inhibidores , ADP-Ribosilación/efectos de los fármacos , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/deficiencia , Actinas/genética , Antibacterianos/uso terapéutico , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sitios de Unión , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Infección Hospitalaria/metabolismo , Infección Hospitalaria/microbiología , Infección Hospitalaria/patología , Endocitosis/efectos de los fármacos , Enterocolitis Seudomembranosa/metabolismo , Enterocolitis Seudomembranosa/microbiología , Enterocolitis Seudomembranosa/patología , Enterotoxinas/química , Enterotoxinas/genética , Enterotoxinas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína
2.
Nat Med ; 26(4): 608-617, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32066975

RESUMEN

The involvement of host immunity in the gut microbiota-mediated colonization resistance to Clostridioides difficile infection (CDI) is incompletely understood. Here, we show that interleukin (IL)-22, induced by colonization of the gut microbiota, is crucial for the prevention of CDI in human microbiota-associated (HMA) mice. IL-22 signaling in HMA mice regulated host glycosylation, which enabled the growth of succinate-consuming bacteria Phascolarctobacterium spp. within the gut microbiome. Phascolarctobacterium reduced the availability of luminal succinate, a crucial metabolite for the growth of C. difficile, and therefore prevented the growth of C. difficile. IL-22-mediated host N-glycosylation is likely impaired in patients with ulcerative colitis (UC) and renders UC-HMA mice more susceptible to CDI. Transplantation of healthy human-derived microbiota or Phascolarctobacterium reduced luminal succinate levels and restored colonization resistance in UC-HMA mice. IL-22-mediated host glycosylation thus fosters the growth of commensal bacteria that compete with C. difficile for the nutritional niche.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Clostridioides difficile/inmunología , Infecciones por Clostridium/prevención & control , Microbioma Gastrointestinal/fisiología , Interleucinas/fisiología , Animales , Bacterias/efectos de los fármacos , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/inmunología , Enterocolitis Seudomembranosa/inmunología , Enterocolitis Seudomembranosa/metabolismo , Enterocolitis Seudomembranosa/microbiología , Enterocolitis Seudomembranosa/prevención & control , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Glicosilación/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Interleucinas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Veillonellaceae/efectos de los fármacos , Veillonellaceae/crecimiento & desarrollo , Veillonellaceae/metabolismo , Interleucina-22
3.
FASEB J ; 34(2): 2198-2212, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907988

RESUMEN

Clostridioides difficile (formerly Clostridium difficile; C difficile), the leading cause of nosocomial antibiotic-associated colitis and diarrhea in the industrialized world, triggers colonic disease through the release two toxins, toxin A (TcdA) and toxin B (TcdB), glucosyltransferases that modulate monomeric G-protein function and alter cytoskeletal function. The initial degree of the host immune response to C difficile and its pathogenic toxins is a common indicator of disease severity and infection recurrence. Thus, targeting the intestinal inflammatory response during infection could significantly decrease disease morbidity and mortality. In the current study, we sought to interrogate the influence of the pregnane X receptor (PXR), a modulator of xenobiotic and detoxification responses, which can sense and respond to microbial metabolites and modulates inflammatory activity, during exposure to TcdA and TcdB. Following intrarectal exposure to TcdA/B, PXR-deficient mice (Nr1i2-/- ) exhibited reduced survival, an effect that was associated with increased levels of innate immune cell influx. This exacerbated response was associated with a twofold increase in the expression of Tlr4. Furthermore, while broad-spectrum antibiotic treatment (to deplete the intestinal microbiota) did not alter the responses in Nr1i2-/- mice, blocking TLR4 signaling significantly reduced TcdA/B-induced disease severity and immune responses in these mice. Lastly, to assess the therapeutic potential of targeting the PXR, we activated the PXR with pregnenolone 16α-carbonitrile (PCN) in wild-type mice, which greatly reduced the severity of TcdA/B-induced damage and intestinal inflammation. Taken together, these data suggest that the PXR plays a role in the host's response to TcdA/B and may provide a novel target to dampen the inflammatory tissue damage in C difficile infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile , Enterocolitis Seudomembranosa/metabolismo , Enterotoxinas/metabolismo , Receptor X de Pregnano/metabolismo , Transducción de Señal , Animales , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidad , Enterocolitis Seudomembranosa/genética , Enterocolitis Seudomembranosa/patología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados , Receptor X de Pregnano/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
4.
Eur J Immunol ; 49(5): 747-757, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30802297

RESUMEN

Infection with Clostridium difficile is one of the major causes of health care acquired diarrhea and colitis. Signaling though MyD88 downstream of TLRs is critical for initiating the early protective host response in mouse models of C. difficile infection (CDI). In the intestine, MyD88 is expressed in various tissues and cell types, such as the intestinal epithelium and mononuclear phagocytes (MNP), including DC or macrophages. Using a genetic gain-of-function system, we demonstrate here that restricting functional MyD88 signaling to the intestinal epithelium, but also to MNPs is sufficient to protect mice during acute CDI by upregulation of the intestinal barrier function and recruitment of neutrophils. Nevertheless, we also show that mice depleted for CD11c-expressing MNPs in the intestine display no major defects in mounting an effective inflammatory response, indicating that the absence of these cells is irrelevant for inducing host protection during acute infection. Together, our results highlight the importance of epithelial-specific MyD88 signaling and demonstrate that although functional MyD88 signaling in DC and macrophages alone is sufficient to correct the phenotype of MyD88-deficiency, these cells do not seem to be essential for host protection in MyD88-sufficient animals during acute infection with C. difficile.


Asunto(s)
Clostridioides difficile/inmunología , Enterocolitis Seudomembranosa/inmunología , Enterocolitis Seudomembranosa/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Enterocolitis Seudomembranosa/microbiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Mucosa Intestinal/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones
5.
Am J Physiol Gastrointest Liver Physiol ; 315(1): G43-G52, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29597352

RESUMEN

Clostridium difficile infection (CDI) is the primary cause of nosocomial diarrhea in the United States. Although C. difficile toxins A and B are the primary mediators of CDI, the overall pathophysiology underlying C. difficile-associated diarrhea remains poorly understood. Studies have shown that a decrease in both NHE3 (Na+/H+ exchanger) and DRA (downregulated in adenoma, Cl-/[Formula: see text] exchanger), resulting in decreased electrolyte absorption, is implicated in infectious and inflammatory diarrhea. Furthermore, studies have shown that NHE3 is depleted at the apical surface of intestinal epithelial cells and downregulated in patients with CDI, but the role of DRA in CDI remains unknown. In the current studies, we examined the effects of C. difficile toxins TcdA and TcdB on DRA protein and mRNA levels in intestinal epithelial cells (IECs). Our data demonstrated that DRA protein levels were significantly reduced in response to TcdA and TcdB in IECs in culture. This effect was also specific to DRA, as NHE3 and PAT-1 (putative anion transporter 1) protein levels were unaffected by TcdA and TcdB. Additionally, purified TcdA and TcdA + TcdB, but not TcdB, resulted in a decrease in colonic DRA protein levels in a toxigenic mouse model of CDI. Finally, patients with recurrent CDI also exhibited significantly reduced expression of colonic DRA protein. Together, these findings indicate that C. difficile toxins markedly downregulate intestinal expression of DRA which may contribute to the diarrheal phenotype of CDI. NEW & NOTEWORTHY Our studies demonstrate, for the first time, that C. difficile toxins reduce DRA protein, but not mRNA, levels in intestinal epithelial cells. These findings suggest that a downregulation of DRA may be a critical factor in C. difficile infection-associated diarrhea.


Asunto(s)
Antiportadores/metabolismo , Toxinas Bacterianas/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Clostridioides difficile/fisiología , Enterocolitis Seudomembranosa , Transportadores de Sulfato/metabolismo , Animales , Modelos Animales de Enfermedad , Enterocolitis Seudomembranosa/metabolismo , Enterocolitis Seudomembranosa/microbiología , Enterocolitis Seudomembranosa/patología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , ARN Mensajero/metabolismo , Intercambiadores de Sodio-Hidrógeno , Factores de Transcripción/metabolismo
6.
Mol Aspects Med ; 56: 54-65, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28602676

RESUMEN

Bile acids are synthesized from cholesterol in the liver and released into the intestine to aid the digestion of dietary lipids. The host enzymes that contribute to bile acid synthesis in the liver and the regulatory pathways that influence the composition of the total bile acid pool in the host have been well established. In addition, the gut microbiota provides unique contributions to the diversity of bile acids in the bile acid pool. Gut microbial enzymes contribute significantly to bile acid metabolism through deconjugation and dehydroxylation reactions to generate unconjugated bile acids and secondary bile acids. These microbial enzymes (which include bile salt hydrolase (BSH) and bile acid-inducible (BAI) enzymes) are essential for bile acid homeostasis in the host and represent a vital contribution of the gut microbiome to host health. Perturbation of the gut microbiota in disease states may therefore significantly influence bile acid signatures in the host, especially in the context of gastrointestinal or systemic disease. Given that bile acids are ligands for host cell receptors (including the FXR, TGR5 and Vitamin D Receptor) alterations to microbial enzymes and associated changes to bile acid signatures have significant consequences for the host. In this review we examine the contribution of microbial enzymes to the process of bile acid metabolism in the host and discuss the implications for microbe-host signalling in the context of C. difficile infection, inflammatory bowel disease and other disease states.


Asunto(s)
Amidohidrolasas/genética , Proteínas Bacterianas/genética , Ácidos y Sales Biliares/metabolismo , Microbioma Gastrointestinal/fisiología , Interacciones Huésped-Patógeno , NADH NADPH Oxidorreductasas/genética , Amidohidrolasas/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Biotransformación , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidad , Enterocolitis Seudomembranosa/metabolismo , Enterocolitis Seudomembranosa/microbiología , Enterocolitis Seudomembranosa/patología , Regulación de la Expresión Génica , Homeostasis/fisiología , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Hígado/citología , Hígado/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Microb Pathog ; 107: 6-11, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28284851

RESUMEN

Clostridium difficile is the most common etiological agent of antibiotic-associated diarrhea in hospitalized and non-hospitalized patients. This study investigated the secretion of membrane vesicles (MVs) from C. difficile and determined the expression of pro-inflammatory cytokine genes and cytotoxicity of C. difficile MVs in epithelial cells in vitro. C. difficile ATCC 43255 and two clinical isolates secreted spherical MVs during in vitro culture. Proteomic analysis revealed that MVs of C. difficile ATCC 43255 contained a total of 262 proteins. Translation-associated proteins were the most commonly identified in C. difficile MVs, whereas TcdA and TcdB toxins were not detected. C. difficile ATCC 43255-derived MVs stimulated the expression of pro-inflammatory cytokine genes, including interleukin (IL)-1ß, IL-6, IL-8, and monocyte chemoattractant protein-1 in human colorectal epithelial Caco-2 cells. Moreover, these extracellular vesicles induced cytotoxicity in Caco-2 cells. In conclusion, C. difficile MVs are important nanocomplexes that elicit a pro-inflammatory response and induce cytotoxicity in colonic epithelial cells, which may contribute, along with toxins, to intestinal mucosal injury during C. difficile infection.


Asunto(s)
Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Clostridioides difficile/metabolismo , Colon/patología , Citocinas/efectos de los fármacos , Citocinas/genética , Enterotoxinas/toxicidad , Células Epiteliales/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células CACO-2/efectos de los fármacos , Técnicas de Cultivo de Célula , Quimiocina CCL2/efectos de los fármacos , Quimiocina CCL2/genética , Clostridioides difficile/genética , Enterocolitis Seudomembranosa/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2/efectos de los fármacos , Humanos , Interleucina-1beta/efectos de los fármacos , Interleucina-1beta/genética , Interleucina-6/genética , Interleucina-8/efectos de los fármacos , Interleucina-8/genética , Mucosa Intestinal/efectos de los fármacos , Microscopía Electrónica de Transmisión , Proteómica
8.
Cell Mol Life Sci ; 74(8): 1527-1551, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27891552

RESUMEN

Clostridium difficile causes nosocomial/antibiotic-associated diarrhoea and pseudomembranous colitis. The major virulence factors are toxin A and toxin B (TcdB), which inactivate GTPases by monoglucosylation, leading to cytopathic (cytoskeleton alteration, cell rounding) and cytotoxic effects (cell-cycle arrest, apoptosis). C. difficile toxins breaching the intestinal epithelial barrier can act on underlying cells, enterocytes, colonocytes, and enteric neurons, as described in vitro and in vivo, but until now no data have been available on enteric glial cell (EGC) susceptibility. EGCs are crucial for regulating the enteric nervous system, gut homeostasis, the immune and inflammatory responses, and digestive and extradigestive diseases. Therefore, we evaluated the effects of C. difficile TcdB in EGCs. Rat-transformed EGCs were treated with TcdB at 0.1-10 ng/ml for 1.5-48 h, and several parameters were analysed. TcdB induces the following in EGCs: (1) early cell rounding with Rac1 glucosylation; (2) early G2/M cell-cycle arrest by cyclin B1/Cdc2 complex inactivation caused by p27 upregulation, the downregulation of cyclin B1 and Cdc2 phosphorylated at Thr161 and Tyr15; and (3) apoptosis by a caspase-dependent but mitochondria-independent pathway. Most importantly, the stimulation of EGCs with TNF-α plus IFN-γ before, concomitantly or after TcdB treatment strongly increased TcdB-induced apoptosis. Furthermore, EGCs that survived the cytotoxic effect of TcdB did not recover completely and showed not only persistent Rac1 glucosylation, cell-cycle arrest and low apoptosis but also increased production of glial cell-derived neurotrophic factor, suggesting self-rescuing mechanisms. In conclusion, the high susceptibility of EGCs to TcdB in vitro, the increased sensitivity to inflammatory cytokines related to apoptosis and the persistence of altered functions in surviving cells suggest an important in vivo role of EGCs in the pathogenesis of C. difficile infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/fisiología , Enterocolitis Seudomembranosa/microbiología , Enterocolitis Seudomembranosa/patología , Tracto Gastrointestinal/inervación , Neuroglía/microbiología , Neuroglía/patología , Animales , Apoptosis , Puntos de Control del Ciclo Celular , Línea Celular , Enterocolitis Seudomembranosa/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Neuroglía/metabolismo , Ratas
9.
Toxins (Basel) ; 8(8)2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27537911

RESUMEN

Clostridium difficile toxin A (TcdA) and toxin B (TcdB) are the major virulence factors involved in C. difficile-associated diarrhea and pseudomembranous colitis. TcdA and TcdB both contain at least four distinct domains: the glucosyltransferase domain, cysteine protease domain, receptor binding domain, and translocation domain. Few studies have investigated the translocation domain and its mechanism of action. Recently, it was demonstrated that a segment of 97 amino acids (AA 1756-1852, designated D97) within the translocation domain of TcdB is essential for the in vitro and in vivo toxicity of TcdB. However, the mechanism by which D97 regulates the action of TcdB in host cells and the important amino acids within this region are unknown. In this study, we discovered that a smaller fragment, amino acids 1756-1780, located in the N-terminus of the D97 fragment, is essential for translocation of the effector glucosyltransferase domain into the host cytosol. A sequence of 25AA within D97 is predicted to form an alpha helical structure and is the critical part of D97. The deletion mutant TcdB∆1756-1780 showed similar glucosyltransferase and cysteine protease activity, cellular binding, and pore formation to wild type TcdB, but it failed to induce the glucosylation of Rho GTPase Rac1 of host cells. Moreover, we found that TcdB∆1756-1780 was rapidly degraded in the endosome of target cells, and therefore its intact glucosyltransferase domain was unable to translocate efficiently into host cytosol. Our finding provides an insight into the molecular mechanisms of action of TcdB in the intoxication of host cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterocolitis Seudomembranosa/microbiología , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Línea Celular Tumoral , Chlorocebus aethiops , Clostridioides difficile/genética , Clostridioides difficile/patogenicidad , Endocitosis , Enterocolitis Seudomembranosa/metabolismo , Enterocolitis Seudomembranosa/patología , Ratones Endogámicos BALB C , Mutación , Dominios Proteicos , Estabilidad Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteolisis , Células Vero , Factores de Virulencia/química
10.
PLoS Pathog ; 12(7): e1005758, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27414650

RESUMEN

Clostridium difficile is a global health burden and the leading cause of antibiotic-associated diarrhoea worldwide, causing severe gastrointestinal disease and death. Three well characterised toxins are encoded by this bacterium in two genetic loci, specifically, TcdB (toxin B) and TcdA (toxin A) in the Pathogenicity Locus (PaLoc) and binary toxin (CDT) in the genomically distinct CDT locus (CdtLoc). Toxin production is controlled by regulators specific to each locus. The orphan response regulator, CdtR, encoded within the CdtLoc, up-regulates CDT production. Until now there has been no suggestion that CdtR influences TcdA and TcdB production since it is not carried by all PaLoc-containing strains and CdtLoc is not linked genetically to PaLoc. Here we show that, in addition to CDT, CdtR regulates TcdA and TcdB production but that this effect is strain dependent. Of clinical relevance, CdtR increased the production of TcdA, TcdB and CDT in two epidemic ribotype 027 human strains, modulating their virulence in a mouse infection model. Strains traditionally from animal lineages, notably ribotype 078 strains, are increasingly being isolated from humans and their genetic and phenotypic analysis is critical for future studies on this important pathogen. Here we show that CdtR-mediated toxin regulation did not occur in other strain backgrounds, including a ribotype 078 animal strain. The finding that toxin gene regulation is strain dependent highlights the regulatory diversity between C. difficile isolates and the importance of studying virulence regulation in diverse lineages and clinically relevant strains. Our work provides the first evidence that TcdA, TcdB and CDT production is linked by a common regulatory mechanism and that CdtR may act as a global regulator of virulence in epidemic 027 strains.


Asunto(s)
Clostridioides difficile/metabolismo , Enterocolitis Seudomembranosa/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Factores de Virulencia/biosíntesis , Virulencia/fisiología , ADP Ribosa Transferasas/biosíntesis , Animales , Proteínas Bacterianas/biosíntesis , Toxinas Bacterianas/biosíntesis , Western Blotting , Modelos Animales de Enfermedad , Enterotoxinas/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...