Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Viruses ; 13(2)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669273

RESUMEN

Enteroviruses, including Coxsackievirus B3 (CVB3), are pervasive pathogens that cause significant disease, including cardiomyopathies. Unfortunately, no treatments or vaccines are available for infected individuals. We identified the host polyamine pathway as a potential drug target, as inhibiting polyamine biosynthesis significantly reduces enterovirus replication in vitro and in vivo. Here, we show that CVB3 is sensitive to polyamine depletion through the polyamine analog diethylnorspermidine (DENSpm), which enhances polyamine catabolism through induction of polyamine acetylation. We demonstrate that CVB3 acquires resistance to DENSpm via mutation of the 2A protease, which enhances proteolytic activity in the presence of DENSpm. Resistance to DENSpm occurred via mutation of a non-catalytic site mutation and results in decreased fitness. These data demonstrate that potential for targeting polyamine catabolism as an antiviral target as well as highlight a potential mechanism of resistance.


Asunto(s)
Antivirales/farmacología , Cisteína Endopeptidasas/genética , Enterovirus Humano B/efectos de los fármacos , Poliaminas/farmacología , Proteínas Virales/genética , Antivirales/química , Cisteína Endopeptidasas/metabolismo , Farmacorresistencia Viral , Enterovirus Humano B/enzimología , Enterovirus Humano B/metabolismo , Enterovirus Humano B/fisiología , Infecciones por Enterovirus/virología , Humanos , Mutación , Poliaminas/química , Poliaminas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
2.
J Biol Chem ; 295(31): 10624-10637, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32493771

RESUMEN

Picornaviral RNA-dependent RNA polymerases (RdRPs) have low replication fidelity that is essential for viral fitness and evolution. Their global fold consists of the classical "cupped right hand" structure with palm, fingers, and thumb domains, and these RdRPs also possess a unique contact between the fingers and thumb domains. This interaction restricts movements of the fingers, and RdRPs use a subtle conformational change within the palm domain to close their active sites for catalysis. We have previously shown that this core RdRP structure and mechanism provide a platform for polymerases to fine-tune replication rates and fidelity to optimize virus fitness. Here, we further elucidated the structural basis for differences in replication rates and fidelity among different viruses by generating chimeric RdRPs from poliovirus and coxsackievirus B3. We designed these chimeric polymerases by exchanging the fingers, pinky finger, or thumb domains. The results of biochemical, rapid-quench, and stopped-flow assays revealed that differences in biochemical activity map to individual modular domains of this polymerase. We found that the pinky finger subdomain is a major regulator of initiation and that the palm domain is the major determinant of catalytic rate and nucleotide discrimination. We further noted that thumb domain interactions with product RNA regulate translocation and that the palm and thumb domains coordinately control elongation complex stability. Several RdRP chimeras supported the growth of infectious poliovirus, providing insights into enterovirus species-specific protein-protein interactions required for virus replication.


Asunto(s)
Enterovirus Humano B , Poliovirus , ARN Viral , ARN Polimerasa Dependiente del ARN , Proteínas Virales , Enterovirus Humano B/enzimología , Enterovirus Humano B/genética , Células HeLa , Humanos , Poliovirus/enzimología , Poliovirus/genética , Dominios Proteicos , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Int J Mol Sci ; 21(9)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344926

RESUMEN

AIMS: Coxsackievirus B3 (CVB3) is known to be an important cause of myocarditis and dilated cardiomyopathy. Enterovirus-2C (E2C) is a viral RNA helicase. It inhibits host protein synthesis. Based on these facts, we hypothesize that the inhibition of 2C may suppress virus replication and prevent enterovirus-mediated cardiomyopathy. METHODS AND RESULTS: We generated a chemically modified enterovirus-2C inhibitor (E2CI). From the in vitro assay, E2CI was showed strong antiviral effects. For in vivo testing, mice were treated with E2CI intraperitoneally injected daily for three consecutive days at a dose of 8mg/kg per day, after CVB3 post-infection (p.i) (CVB3 + E2CI, n = 33). For the infected controls (CVB3 only, n = 35), mice were injected with PBS (phosphate buffered saline) in a DBA/2 strain to establish chronic myocarditis. The four-week survival rate of E2CI-treated mice was significantly higher than that of controls (92% vs. 71%; p < 0.05). Virus titers and myocardial damage were significantly reduced in the E2CI treated group. In addition, echocardiography indicated that E2CI administration dramatically maintained mouse heart function compared to control at day 28 p.i chronic stage (LVIDD, 3.1 ± 0.08 vs. 3.9 ± 0.09, p < 0.01; LVDS, 2.0 ± 0.07 vs. 2.5 ± 0.07, p < 0.001; FS, 34.8 ± 1.6% vs. 28.5 ± 1.5%; EF, 67. 9 ± 2.9% vs. 54.7 ± 4.7%, p < 0.05; CVB3 + E2CI, n = 6 vs. CVB3, n = 4). Moreover, E2CI is effectively worked in human iPS (induced pluripotent stem cell) derived cardiomyocytes. CONCLUSION: Enterovirus-2C inhibitor (E2CI) was significantly reduced viral replication, chronic myocardium damage, and CVB3-induced mortality in DBA/2 mice. These results suggested that E2CI is a novel therapeutic agent for the treatment of enterovirus-mediated diseases.


Asunto(s)
Antivirales/farmacología , Infecciones por Coxsackievirus/tratamiento farmacológico , Enterovirus Humano B/enzimología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocarditis/prevención & control , Miocitos Cardíacos/efectos de los fármacos , ARN Helicasas/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Animales , Antivirales/síntesis química , Antivirales/uso terapéutico , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/prevención & control , Enfermedad Crónica , Infecciones por Coxsackievirus/complicaciones , Enterovirus Humano B/efectos de los fármacos , Enterovirus Humano B/fisiología , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/virología , Luciferasas de Renilla/análisis , Masculino , Ratones , Ratones Endogámicos DBA , Miocarditis/etiología , Miocarditis/virología , Miocitos Cardíacos/patología , Miocitos Cardíacos/virología , Oxadiazoles/farmacología , Oxadiazoles/uso terapéutico , Oxazoles/farmacología , Oxazoles/uso terapéutico , Proteínas Recombinantes de Fusión/metabolismo , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/prevención & control , Replicación Viral/efectos de los fármacos
4.
J Virol ; 92(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29437971

RESUMEN

Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cproin vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner.IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection.


Asunto(s)
Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Cisteína Endopeptidasas/metabolismo , Enterovirus Humano B/enzimología , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Poliovirus/enzimología , Proteínas Virales/metabolismo , Proteasas Virales 3C , Células HeLa , Humanos , Marcaje Isotópico/métodos , Especificidad por Sustrato/fisiología
5.
J Virol Methods ; 255: 29-37, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29425680

RESUMEN

Enteroviruses (EVs), such as the Coxsackie B-viruses (CVBs), are common human pathogens, which can cause severe diseases including meningitis, myocarditis and neonatal sepsis. EVs encode two proteases (2Apro and 3Cpro), which perform the proteolytic cleavage of the CVB polyprotein and also cleave host cell proteins to facilitate viral replication. The 2Apro cause direct damage to the infected heart and tools to investigate 2Apro and 3Cpro expression may contribute new knowledge on virus-induced pathologies. Here, we developed new antibodies to CVB-encoded 2Apro and 3Cpro; Two monoclonal 2Apro antibodies and one 3Cpro antibody were produced. Using cells infected with selected viruses belonging to the EV A, B and C species and immunocytochemistry, we demonstrate that the 3Cpro antibody detects all of the EV species B (EV-B) viruses tested and that the 2Apro antibody detects all EV-B viruses apart from Echovirus 9. We furthermore show that the new antibodies work in Western blotting, immunocyto- and immunohistochemistry, and flow cytometry to detect CVBs. Confocal microscopy demonstrated the expression kinetics of 2Apro and 3Cpro, and revealed a preferential cytosolic localization of the proteases in CVB3 infected cells. In summary, the new antibodies detect proteases that belong to EV species B in cells and tissue using multiple applications.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Cisteína Endopeptidasas/inmunología , Enterovirus Humano B/inmunología , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/inmunología , Proteínas Virales/inmunología , Proteasas Virales 3C , Animales , Antígenos Virales/genética , Células Cultivadas , Clonación Molecular , Cisteína Endopeptidasas/genética , Enterovirus Humano B/enzimología , Enterovirus Humano B/genética , Infecciones por Enterovirus/virología , Expresión Génica , Células HeLa , Humanos , Inmunohistoquímica , Ratones , Serogrupo , Proteínas Virales/genética
6.
PLoS Pathog ; 13(12): e1006744, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29220410

RESUMEN

Nuclear factor of activated T cells 5 (NFAT5)/Tonicity enhancer binding protein (TonEBP) is a transcription factor induced by hypertonic stress in the kidney. However, the function of NFAT5 in other organs has rarely been studied, even though it is ubiquitously expressed. Indeed, although NFAT5 was reported to be critical for heart development and function, its role in infectious heart diseases has remained obscure. In this study, we aimed to understand the mechanism by which NFAT5 interferes with infection of Coxsackievirus B3 (CVB3), a major cause of viral myocarditis. Our initial results demonstrated that although the mRNA level of NFAT5 remained constant during CVB3 infection, NFAT5 protein level decreased because the protein was cleaved. Bioinformatic prediction and verification of the predicted site by site-directed mutagenesis experiments determined that the NFAT5 protein was cleaved by CVB3 protease 2A at Glycine 503. Such cleavage led to the inactivation of NFAT5, and the 70-kDa N-terminal cleavage product (p70-NFAT5) exerted a dominant negative effect on the full-length NFAT5 protein. We further showed that elevated expression of NFAT5 to counteract viral protease cleavage, especially overexpression of a non-cleavable mutant of NFAT5, significantly inhibited CVB3 replication. Ectopic expression of NFAT5 resulted in elevated expression of inducible nitric oxide synthase (iNOS), a factor reported to inhibit CVB3 replication. The necessity of iNOS for the anti-CVB3 effect of NFAT5 was supported by the observation that inhibition of iNOS blocked the anti-CVB3 effect of NFAT5. In a murine model of viral myocarditis, we observed that treatment with hypertonic saline or mannitol solution upregulated NFAT5 and iNOS expression, inhibited CVB3 replication and reduced tissue damage in the heart. Taken together, our data demonstrate that the anti-CVB3 activity of NFAT5 is impaired during CVB3 infection due to 2A-mediated cleavage of NFAT5. Thus induction of NFAT5 by hypertonic agents may be a promising strategy for the development of anti-CVB3 therapeutics.


Asunto(s)
Infecciones por Coxsackievirus/virología , Cisteína Endopeptidasas/metabolismo , Enterovirus Humano B/enzimología , Miocarditis/virología , Miocitos Cardíacos/virología , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Infecciones por Coxsackievirus/inmunología , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/patología , Enterovirus Humano B/inmunología , Enterovirus Humano B/fisiología , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos A , Mutación , Miocarditis/inmunología , Miocarditis/metabolismo , Miocarditis/patología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteolisis , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Factores de Transcripción/genética , Replicación Viral
7.
J Virol ; 91(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28381577

RESUMEN

Favipiravir (T-705) is a broad-spectrum antiviral agent that has been approved in Japan for the treatment of influenza virus infections. T-705 also inhibits the replication of various RNA viruses, including chikungunya virus (CHIKV). We demonstrated earlier that the K291R mutation in the F1 motif of the RNA-dependent RNA polymerase (RdRp) of CHIKV is responsible for low-level resistance to T-705. Interestingly, this lysine is highly conserved in the RdRp of positive-sense single-stranded RNA (+ssRNA) viruses. To obtain insights into the unique broad-spectrum antiviral activity of T-705, we explored the role of this lysine using another +ssRNA virus, namely, coxsackievirus B3 (CVB3). Introduction of the corresponding K-to-R substitution in the CVB3 RdRp (K159R) resulted in a nonviable virus. Replication competence of the K159R variant was restored by spontaneous acquisition of an A239G substitution in the RdRp. A mutagenesis analysis at position K159 identified the K159M variant as the only other viable variant which had also acquired the A239G substitution. The K159 substitutions markedly decreased the processivity of the purified viral RdRp, which was restored by the introduction of the A239G mutation. The K159R A239G and K159M A239G variants proved, surprisingly, more susceptible than the wild-type virus to T-705 and exhibited lower fidelity in polymerase assays. Furthermore, the K159R A239G variant was found to be highly attenuated in mice. We thus demonstrate that the conserved lysine in the F1 motif of the RdRp of +ssRNA viruses is involved in the broad-spectrum antiviral activity of T-705 and that it is a key amino acid for the proper functioning of the enzyme.IMPORTANCE In this study, we report the key role of a highly conserved lysine residue of the viral polymerase in the broad-spectrum antiviral activity of favipiravir (T-705) against positive-sense single-stranded RNA viruses. Substitutions of this conserved lysine have a major negative impact on the functionality of the RdRp. Furthermore, we show that this lysine is involved in the fidelity of the RdRp and that the RdRp fidelity influences the sensitivity of the virus for the antiviral efficacy of T-705. Consequently, these results provide insights into the mechanism of the antiviral activity of T-705 and may lay the basis for the design of novel chemical scaffolds that may be endowed with a more potent broad-spectrum antiviral activity than that of T-705.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Enterovirus Humano B/efectos de los fármacos , Enterovirus Humano B/genética , Lisina/metabolismo , Pirazinas/farmacología , ARN Polimerasa Dependiente del ARN/química , Amidas/administración & dosificación , Secuencias de Aminoácidos , Animales , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/genética , Chlorocebus aethiops , Farmacorresistencia Viral/genética , Enterovirus Humano B/enzimología , Japón , Lisina/genética , Ratones , Viabilidad Microbiana/efectos de los fármacos , Mutagénesis , Mutación , Pirazinas/administración & dosificación , ARN Polimerasa Dependiente del ARN/genética , Células Vero , Replicación Viral/efectos de los fármacos
8.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 12): 877-884, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27917835

RESUMEN

Viral proteases are proteolytic enzymes that orchestrate the assembly of viral components during the viral life cycle and proliferation. Here, the expression, purification, crystallization and preliminary X-ray diffraction analysis are presented of protease 3C, the main protease of an emerging enterovirus, coxsackievirus B3, that is responsible for many cases of viral myocarditis. Polycrystalline protein precipitates suitable for X-ray powder diffraction (XRPD) measurements were produced in the presence of 22-28%(w/v) PEG 4000, 0.1 M Tris-HCl, 0.2 M MgCl2 in a pH range from 7.0 to 8.5. A polymorph of monoclinic symmetry (space group C2, unit-cell parameters a = 77.9, b = 65.7, c = 40.6 Å, ß = 115.9°) was identified via XRPD. These results are the first step towards the complete structural determination of the molecule via XRPD and a parallel demonstration of the accuracy of the method.


Asunto(s)
Cisteína Endopeptidasas/química , Enterovirus Humano B/química , Proteínas Virales/química , Proteasas Virales 3C , Secuencia de Aminoácidos , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Enterovirus Humano B/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Plásmidos/química , Plásmidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Difracción de Rayos X
9.
Biochemistry ; 55(28): 3995-4002, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27319576

RESUMEN

The RNA-dependent RNA polymerases from positive-strand RNA viruses, such as picornaviruses and flaviviruses, close their active sites for catalysis via a unique NTP-induced conformational change in the palm domain. Combined with a fully prepositioned templating nucleotide, this mechanism is error-prone and results in a distribution of random mutations in the viral progeny often described as a quasi-species. Here we examine the extent to which noncognate NTPs competitively inhibit single-cycle elongation by coxsackievirus B3 3D(pol), a polymerase that generates three to four mutations per 10 kb of RNA synthesized during viral infection. Using an RNA with a templating guanosine combined with 2-aminopurine fluorescence as a reporter for elongation, we find that the cognate CTP has a Km of 24 µM and the three noncognate nucleotides competitively inhibit the reaction with Kic values of 500 µM for GTP, 1300 µM for ATP, and 3000 µM for UTP. Unexpectedly, ATP also acted as an uncompetitive inhibitor with a Kiu of 1800 µM, resulting in allosteric modulation of 3D(pol) that slowed the polymerase elongation rate ≈4-fold. ATP uncompetitive inhibition required the ß- and γ-phosphates, and its extent was significantly diminished in two previously characterized low-fidelity polymerases. This led to further mutational analysis and the identification of a putative allosteric binding site below the NTP entry channel at the interface of conserved motifs A and D, although cocrystallization failed to reveal any density for bound ATP in this pocket. The potential role of an ATP allosteric effect during the virus life cycle is discussed.


Asunto(s)
Adenosina Trifosfato/farmacología , Enterovirus Humano B/enzimología , Inhibidores Enzimáticos/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Regulación Alostérica/efectos de los fármacos , Secuencia de Bases , Dominio Catalítico , Secuencias Invertidas Repetidas , Cinética , Modelos Moleculares , ARN/genética , ARN/metabolismo , ARN Polimerasa Dependiente del ARN/química
10.
J Biol Chem ; 291(27): 13999-14011, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27137934

RESUMEN

Positive strand RNA viruses replicate via a virally encoded RNA-dependent RNA polymerase (RdRP) that uses a unique palm domain active site closure mechanism to establish the canonical two-metal geometry needed for catalysis. This mechanism allows these viruses to evolutionarily fine-tune their replication fidelity to create an appropriate distribution of genetic variants known as a quasispecies. Prior work has shown that mutations in conserved motif A drastically alter RdRP fidelity, which can be either increased or decreased depending on the viral polymerase background. In the work presented here, we extend these studies to motif D, a region that forms the outer edge of the NTP entry channel where it may act as a nucleotide sensor to trigger active site closure. Crystallography, stopped-flow kinetics, quench-flow reactions, and infectious virus studies were used to characterize 15 engineered mutations in coxsackievirus B3 polymerase. Mutations that interfere with the transport of the metal A Mg(2+) ion into the active site had only minor effects on RdRP function, but the stacking interaction between Phe(364) and Pro(357), which is absolutely conserved in enteroviral polymerases, was found to be critical for processive elongation and virus growth. Mutating Phe(364) to tryptophan resulted in a genetically stable high fidelity virus variant with significantly reduced pathogenesis in mice. The data further illustrate the importance of the palm domain movement for RdRP active site closure and demonstrate that protein engineering can be used to alter viral polymerase function and attenuate virus growth and pathogenesis.


Asunto(s)
Enterovirus Humano B/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Biocatálisis , Cristalización , Enterovirus Humano B/fisiología , Cinética , Modelos Moleculares , Conformación Proteica , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Homología de Secuencia de Aminoácido
11.
Eur J Med Chem ; 120: 202-16, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27191615

RESUMEN

Human coxsackievirus B3 (CVB3) 3C protease plays an essential role in the viral replication of CVB3, which is a non-enveloped and positive single-stranded RNA virus belonging to Picornaviridae family, causing acute viral myocarditis mainly in children. During optimization based on SAR studies of benserazide (3), which was reported as a novel anti-CVB3 3C(pro) agent from a screening of compound libraries, the 2,3,4-trihydroxybenzyl moiety of 3 was identified as a key pharmacophore for inhibitory activity against CVB3 3C(pro). Further optimization was performed by the introduction of various aryl-alkyl substituted hydrazide moieties instead of the serine moiety of 3. Among the optimized compounds, 11Q, a 4-hydroxyphenylpentanehydrazide derivative, showed the most potent inhibitory activity (IC50 = 0.07 µM). Enzyme kinetics studies indicated that 11Q exhibited a mixed inhibitory mechanism of action. The antiviral activity against CVB3 was confirmed using the further derived analogue (14b) with more cell permeable valeryl ester group at the 2,3,4-trihydroxy moiety.


Asunto(s)
Enterovirus Humano B/efectos de los fármacos , Hidrazinas/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteasas Virales 3C , Antivirales/química , Antivirales/farmacología , Derivados del Benceno/química , Derivados del Benceno/farmacología , Niño , Cisteína Endopeptidasas , Enterovirus Humano B/enzimología , Humanos , Hidrazinas/química , Permeabilidad , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
12.
Virus Res ; 208: 22-9, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26052084

RESUMEN

To determine whether 2A protease of the enterovirus genus with type I internal ribosome entry site (IRES) effect on the viral replication of type II IRES, coxsackievirus B3(CVB3)-encoded protease 2A and encephalomyocarditis virus (EMCV) IRES (Type II)-dependent or cap-dependent report gene were transiently co-expressed in eukaryotic cells. We found that CVB3 2A protease not only inhibited translation of cap-dependent reporter genes through the cleavage of eIF4GI, but also conferred high EMCV IRES-dependent translation ability and promoted EMCV replication. Moreover, deletions of short motif (aa13-18 RVVNRH, aa65-70 KNKHYP, or aa88-93 PRRYQSH) resembling the nuclear localization signals (NLS) or COOH-terminal acidic amino acid motif (aa133-147 DIRDLLWLEDDAMEQ) of CVB3 2A protease decreased both its EMCV IRES-dependent translation efficiency and destroy its cleavage on eukaryotic initiation factor 4G (eIF4G) I. Our results may provide better understanding into more effective interventions and treatments for co-infection of viral diseases.


Asunto(s)
Infecciones por Cardiovirus/virología , Cisteína Endopeptidasas/metabolismo , Virus de la Encefalomiocarditis/fisiología , Enterovirus Humano B/enzimología , Infecciones por Enterovirus/virología , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Virus de la Encefalomiocarditis/genética , Enterovirus Humano B/genética , Humanos , Biosíntesis de Proteínas , Proteínas Virales/química , Proteínas Virales/genética
13.
J Virol ; 89(14): 7064-78, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25926642

RESUMEN

UNLABELLED: Picornavirus infection involves a dynamic interplay of host and viral protein interactions that modulates cellular processes to facilitate virus infection and evade host antiviral defenses. Here, using a proteomics-based approach known as TAILS to identify protease-generated neo-N-terminal peptides, we identify a novel target of the poliovirus 3C proteinase, the heterogeneous nuclear ribonucleoproteinM(hnRNP M), a nucleocytoplasmic shuttling RNA-binding protein that is primarily known for its role in pre-mRNA splicing. hnRNPMis cleaved in vitro by poliovirus and coxsackievirus B3 (CVB3) 3C proteinases and is targeted in poliovirus- and CVB3-infected HeLa cells and in the hearts of CVB3-infected mice. hnRNPMrelocalizes from the nucleus to the cytoplasm during poliovirus infection. Finally, depletion of hnRNPMusing small interfering RNA knockdown approaches decreases poliovirus and CVB3 infections in HeLa cells and does not affect poliovirus internal ribosome entry site translation and viral RNA stability. We propose that cleavage of and subverting the function of hnRNPMis a general strategy utilized by picornaviruses to facilitate viral infection. IMPORTANCE: Enteroviruses, a member of the picornavirus family, are RNA viruses that cause a range of diseases, including respiratory ailments, dilated cardiomyopathy, and paralysis. Although enteroviruses have been studied for several decades, the molecular basis of infection and the pathogenic mechanisms leading to disease are still poorly understood. Here, we identify hnRNPMas a novel target of a viral proteinase. We demonstrate that the virus subverts the function of hnRNPMand redirects it to a step in the viral life cycle. We propose that cleavage of hnRNPMis a general strategy that picornaviruses use to facilitate infection.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Enterovirus Humano B/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo M/metabolismo , Interacciones Huésped-Patógeno , Poliovirus/fisiología , Proteínas Virales/metabolismo , Proteasas Virales 3C , Animales , Enterovirus Humano B/enzimología , Infecciones por Enterovirus/patología , Infecciones por Enterovirus/virología , Células HeLa , Corazón/virología , Humanos , Ratones , Miocardio/patología , Poliovirus/enzimología , Proteolisis
14.
FEBS Lett ; 589(15): 1795-801, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26022398

RESUMEN

Coxsackievirus B3 is the main cause of human viral myocarditis and cardiomyopathy. Virally encoded Coxsackievirus 3C protease (3C(pro)) plays an essential role in viral proliferation. Here, benserazide was discovered as a novel inhibitor from a drug library screen targeting Coxsackievirus 3C(pro) using a FRET-based enzyme assay. Benserazide, whose chemical structure has no electrophilic functional groups, was characterized as a non-competitive inhibitor by enzyme kinetic studies. A molecular docking study with benserazide and its analogs indicated that a novel putative allosteric binding site was involved. Specifically, a 2,3,4-trihydroxybenzyl moiety was determined to be a key pharmacophore for the enzyme's inhibitory activity. We suggest that the putative allosteric binding site may be a novel target for future therapeutic strategies.


Asunto(s)
Benserazida/farmacología , Enterovirus Humano B/enzimología , Inhibidores de Proteasas/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteasas Virales 3C , Sitio Alostérico , Cisteína Endopeptidasas/genética , Transferencia Resonante de Energía de Fluorescencia , Simulación del Acoplamiento Molecular , Proteínas Virales/genética
15.
Cell Death Differ ; 22(12): 2087-97, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25976304

RESUMEN

We have previously demonstrated that infection by coxsackievirus B3 (CVB3), a positive-stranded RNA enterovirus, results in the accumulation of insoluble ubiquitin-protein aggregates, which resembles the common feature of neurodegenerative diseases. The importance of protein aggregation in viral pathogenesis has been recognized; however, the underlying regulatory mechanisms remain ill-defined. Transactive response DNA-binding protein-43 (TDP-43) is an RNA-binding protein that has an essential role in regulating RNA metabolism at multiple levels. Cleavage and cytoplasmic aggregation of TDP-43 serves as a major molecular marker for amyotrophic lateral sclerosis and frontotemporal lobar degeneration and contributes significantly to disease progression. In this study, we reported that TDP-43 is translocated from the nucleus to the cytoplasm during CVB3 infection through the activity of viral protease 2A, followed by the cleavage mediated by viral protease 3C. Cytoplasmic translocation of TDP-43 is accompanied by reduced solubility and increased formation of protein aggregates. The cleavage takes place at amino-acid 327 between glutamine and alanine, resulting in the generation of an N- and C-terminal cleavage fragment of ~35 and ~8 kDa, respectively. The C-terminal product of TDP-43 is unstable and quickly degraded through the proteasome degradation pathway, whereas the N-terminal truncation of TDP-43 acts as a dominant-negative mutant that inhibits the function of native TDP-43 in alternative RNA splicing. Lastly, we demonstrated that knockdown of TDP-43 results in an increase in viral titers, suggesting a protective role for TDP-43 in CVB3 infection. Taken together, our findings suggest a novel model by which cytoplasmic redistribution and cleavage of TDP-43 as a consequence of CVB3 infection disrupts the solubility and transcriptional activity of TDP-43. Our results also reveal a mechanism evolved by enteroviruses to support efficient viral infection.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endopeptidasas/metabolismo , Enterovirus Humano B/enzimología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Enterovirus Humano B/fisiología , Células HeLa , Humanos , Masculino , Ratones , Microscopía Fluorescente , Complejo de la Endopetidasa Proteasomal/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Replicación Viral
16.
PLoS Pathog ; 11(3): e1004733, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25799064

RESUMEN

The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site.


Asunto(s)
Antivirales/química , Cardiovirus/enzimología , Enterovirus Humano B/enzimología , Poliovirus/enzimología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Animales , Sitios de Unión , Chlorocebus aethiops , Células HeLa , Humanos , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo
17.
Virus Res ; 199: 1-8, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25485472

RESUMEN

BACKGROUND: Coxsackievirus B3 (CVB3) is a common cause of myocarditis and dilated cardiomyopathy. CVB3 3C protease (3CP) cleaves the viral polyprotein during replication. We tested whether a water soluble 3CP inhibitor (3CPI) had antiviral effects in a chronic myocarditis model. METHODS: Chronic myocarditis was established using DBA/2 strain mice. Starting on post-infection (p.i) day 3, CVB3-infected mice (n=41) were treated with 3CPI by daily intraperitoneal (i.p.) injection at a concentration of 50 µM (1.7 mg/kg/day) per day for 3 consecutive days. Additional mice (n=49) were injected with PBS as a control. RESULTS: The 5-week survival rate was significantly higher with 3CPI treatment (82.3% versus 47.9%; P<0.05). Organ virus titers at day 3 and 7 and myocardial damage were significantly lower in 3CPI-treated mice. Echocardiography at day 31 indicated strong protection of heart function by 3CPI (FS, 51.2±1.5 versus 26.1±1.5%; P<0.001). Hemodynamic measurements indicated that 3CPI treatment markedly reduced CVB3-induced LV dysfunction on day 31 (dP/dTmax, 5302±352 versus 4103±408 mmHg/s, P<0.05; dP/dTmin, -3798±212 versus -2814±206 mmHg/s, P<0.01). CONCLUSIONS: Water soluble 3CPI was delivered through i.p. injection after CVB3 infection. This agent preserved heart function and decreased organ viral titers and myocardial damage. Soluble 3CPI may be beneficial in the treatment of cardiomyopathy associated with enterovirus infection.


Asunto(s)
Antivirales/administración & dosificación , Cardiomiopatías/prevención & control , Infecciones por Coxsackievirus/prevención & control , Enterovirus Humano B/enzimología , Inhibidores de Proteasas/administración & dosificación , Proteínas Virales/antagonistas & inhibidores , Proteasas Virales 3C , Animales , Cisteína Endopeptidasas , Modelos Animales de Enfermedad , Enterovirus Humano B/efectos de los fármacos , Corazón/virología , Pruebas de Función Cardíaca , Masculino , Ratones Endogámicos DBA , Análisis de Supervivencia , Resultado del Tratamiento , Carga Viral
18.
J Virol ; 89(1): 275-86, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25320316

RESUMEN

UNLABELLED: Viral RNA-dependent RNA polymerases are considered to be low-fidelity enzymes, providing high mutation rates that allow for the rapid adaptation of RNA viruses to different host cell environments. Fidelity is tuned to provide the proper balance of virus replication rates, pathogenesis, and tissue tropism needed for virus growth. Using our structures of picornaviral polymerase-RNA elongation complexes, we have previously engineered more than a dozen coxsackievirus B3 polymerase mutations that significantly altered virus replication rates and in vivo fidelity and also provided a set of secondary adaptation mutations after tissue culture passage. Here we report a biochemical analysis of these mutations based on rapid stopped-flow kinetics to determine elongation rates and nucleotide discrimination factors. The data show a spatial separation of fidelity and replication rate effects within the polymerase structure. Mutations in the palm domain have the greatest effects on in vitro nucleotide discrimination, and these effects are strongly correlated with elongation rates and in vivo mutation frequencies, with faster polymerases having lower fidelity. Mutations located at the top of the finger domain, on the other hand, primarily affect elongation rates and have relatively minor effects on fidelity. Similar modulation effects are seen in poliovirus polymerase, an inherently lower-fidelity enzyme where analogous mutations increase nucleotide discrimination. These findings further our understanding of viral RNA-dependent RNA polymerase structure-function relationships and suggest that positive-strand RNA viruses retain a unique palm domain-based active-site closure mechanism to fine-tune replication fidelity. IMPORTANCE: Positive-strand RNA viruses represent a major class of human and animal pathogens with significant health and economic impacts. These viruses replicate by using a virally encoded RNA-dependent RNA polymerase enzyme that has low fidelity, generating many mutations that allow the rapid adaptation of these viruses to different tissue types and host cells. In this work, we use a structure-based approach to engineer mutations in viral polymerases and study their effects on in vitro nucleotide discrimination as well as virus growth and genome replication fidelity. These results show that mutation rates can be drastically increased or decreased as a result of single mutations at several key residues in the polymerase palm domain, and this can significantly attenuate virus growth in vivo. These findings provide a pathway for developing live attenuated virus vaccines based on engineering the polymerase to reduce virus fitness.


Asunto(s)
Enterovirus Humano B/enzimología , Enterovirus Humano B/fisiología , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral , Cristalografía por Rayos X , Análisis Mutacional de ADN , Enterovirus Humano B/genética , Humanos , Cinética , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , ARN Polimerasa Dependiente del ARN/genética
19.
Bioorg Med Chem ; 22(7): 2236-43, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24613627

RESUMEN

The high mutation rate of RNA viruses has resulted in limitation of vaccine effectiveness and increased emergence of drug-resistant viruses. New effective antivirals are therefore needed to control of the highly mutative RNA viruses. The n-butanol fraction of the stem bark of Mangifera indica exhibited inhibitory activity against influenza neuraminidase (NA) and coxsackie virus 3C protease. Bioassay guided phytochemical study of M. indica stem bark afforded two new compounds including one benzophenone C-glycoside (4) and one xanthone dimer (7), together with eleven known compounds. The structures of these isolated compounds were elucidated on the basis of spectroscopic evidences and correlated with known compounds. Anti-influenza and anti-coxsackie virus activities were evaluated by determining the inhibition of anti-influenza neuraminidase (NA) from pandemic A/RI/5+/1957 H2N2 influenza A virus and inhibition of coxsackie B3 virus 3C protease, respectively. The highest anti-influenza activity was observed for compounds 8 and 9 with IC50 values of 11.9 and 9.2µM, respectively. Compounds 8 and 9 were even more potent against coxsackie B3 virus 3C protease, with IC50 values of 1.1 and 2.0µM, respectively. Compounds 8 and 9 showed weak cytotoxic effect against human hepatocellular carcinoma and human epithelial carcinoma cell lines through MTT assay.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antivirales/farmacología , Benzofenonas/farmacología , Taninos Hidrolizables/farmacología , Virus de la Influenza A/efectos de los fármacos , Mangifera/química , Inhibidores de Proteasas/farmacología , Proteasas Virales 3C , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antivirales/química , Antivirales/aislamiento & purificación , Benzofenonas/química , Benzofenonas/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Cisteína Endopeptidasas/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Enterovirus Humano B/enzimología , Células HeLa , Células Hep G2 , Humanos , Taninos Hidrolizables/química , Taninos Hidrolizables/aislamiento & purificación , Estructura Molecular , Corteza de la Planta/química , Tallos de la Planta/química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/aislamiento & purificación , Relación Estructura-Actividad , Células Tumorales Cultivadas , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
20.
J Virol ; 88(6): 3369-78, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24390337

RESUMEN

UNLABELLED: RIG-I-like receptors (RLRs) MDA5 and RIG-I are key players in the innate antiviral response. Upon recognition of viral RNA, they interact with MAVS, eventually inducing type I interferon production. The interferon induction pathway is commonly targeted by viruses. How enteroviruses suppress interferon production is incompletely understood. MDA5 has been suggested to undergo caspase- and proteasome-mediated degradation during poliovirus infection. Additionally, MAVS is reported to be cleaved during infection with coxsackievirus B3 (CVB3) by the CVB3 proteinase 3C(pro), whereas MAVS cleavage by enterovirus 71 has been attributed to 2A(pro). As yet, a detailed examination of the RLR pathway as a whole during any enterovirus infection is lacking. We performed a comprehensive analysis of crucial factors of the RLR pathway, including MDA5, RIG-I, LGP2, MAVS, TBK1, and IRF3, during infection of CVB3, a human enterovirus B (HEV-B) species member. We show that CVB3 inhibits the RLR pathway upstream of TBK1 activation, as demonstrated by limited phosphorylation of TBK1 and a lack of IRF3 phosphorylation. Furthermore, we show that MDA5, MAVS, and RIG-I all undergo proteolytic degradation in CVB3-infected cells through a caspase- and proteasome-independent manner. We convincingly show that MDA5 and MAVS cleavages are both mediated by CVB3 2A(pro), while RIG-I is cleaved by 3C(pro). Moreover, we show that proteinases 2A(pro) and 3C(pro) of poliovirus (HEV-C) and enterovirus 71 (HEV-A) exert the same functions. This study identifies a critical role of 2A(pro) by cleaving MDA5 and MAVS and shows that enteroviruses use a common strategy to counteract the interferon response in infected cells. IMPORTANCE: Human enteroviruses (HEVs) are important pathogens that cause a variety of diseases in humans, including poliomyelitis, hand, foot, and mouth disease, viral meningitis, cardiomyopathy, and more. Like many other viruses, enteroviruses target the host immune pathways to gain replication advantage. The MDA5/MAVS pathway is responsible for recognizing enterovirus infections in the host cell and leads to expression of type I interferons (IFN-I), crucial antiviral signaling molecules. Here we show that three species of HEVs all employ the viral proteinase 2A (2A(pro)) to proteolytically target MDA5 and MAVS, leading to an efficient blockade upstream of IFN-I transcription. These observations suggest that MDA5/MAVS antagonization is an evolutionarily conserved and beneficial mechanism of enteroviruses. Understanding the molecular mechanisms of enterovirus immune evasion strategies will help to develop countermeasures to control infections with these viruses in the future.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cisteína Endopeptidasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Enterovirus Humano B/enzimología , Infecciones por Enterovirus/metabolismo , Proteínas Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Cisteína Endopeptidasas/genética , ARN Helicasas DEAD-box/genética , Enterovirus Humano B/genética , Enterovirus Humano B/fisiología , Infecciones por Enterovirus/enzimología , Infecciones por Enterovirus/genética , Infecciones por Enterovirus/virología , Interacciones Huésped-Patógeno , Humanos , Helicasa Inducida por Interferón IFIH1 , Fosforilación , Proteolisis , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...