Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Virol ; 95(12): e29275, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38054556

RESUMEN

HH-120, an IgM-like angiotensin converting enzyme 2 (ACE2) fusion protein, has been developed as a nasal spray against Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently undergoing human trials. HH-120 nasal spray was assessed for postexposure prophylaxis (PEP) in two investigator-initiated (NS01 and NS02) trials with different risk levels of SARS-CoV-2 exposure. NS01 enrolled family caregiver participants who had continuous contacts with laboratory-confirmed index cases; NS02 enrolled participants who had general contacts (Part 1) or close contacts (Part 2) with index cases. The primary endpoints were safety and laboratory-confirmed and/or symptomatic SARS-CoV-2 infection. In NS01 trial (14 participants), the SARS-CoV-2 infection rates were 25% in the HH-120 group and 83.3% in the external control group (relative risk reduction [RRR]: 70.0%). In NS02-Part 1 (193 participants), the infection rates were 4% (HH-120) versus 11.3% (placebo), symptomatic infection rates were 0.8% versus 3.5%, hence with a RRR of 64.6% and 77.1%, respectively. In Part 2 (76 participants), the infection rates were 17.1% (HH-120) versus 30.4% (placebo), symptomatic infection rates were 7.5% versus 27.3%, with a RRR of 43.8% and 72.5%, respectively. No HH-120-related serious adverse effects were observed. The HH-120 nasal spray used as PEP was safe and effective in preventing laboratory-confirmed and symptomatic SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Proteínas Recombinantes de Fusión , Humanos , Enzima Convertidora de Angiotensina 2/uso terapéutico , COVID-19/prevención & control , Inmunoglobulina M , Rociadores Nasales , SARS-CoV-2 , Proteínas Recombinantes de Fusión/uso terapéutico , Profilaxis Posexposición
2.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139269

RESUMEN

Pulmonary arterial hypertension (PAH) is a debilitating progressive disease characterized by excessive pulmonary vasoconstriction and abnormal vascular remodeling processes that lead to right-ventricular heart failure and, ultimately, death. Although our understanding of its pathophysiology has advanced and several treatment modalities are currently available for the management of PAH patients, none are curative and the prognosis remains poor. Therefore, further research is required to decipher the molecular mechanisms associated with PAH. Angiotensin-converting enzyme 2 (ACE2) plays an important role through its vasoprotective functions in cardiopulmonary homeostasis, and accumulating preclinical and clinical evidence shows that the upregulation of the ACE2/Angiotensin-(1-7)/MAS1 proto-oncogene, G protein-coupled receptor (Mas 1 receptor) signaling axis is implicated in the pathophysiology of PAH. Herein, we highlight the molecular mechanisms of ACE2 signaling in PAH and discuss its potential as a therapeutic target.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Enzima Convertidora de Angiotensina 2/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Peptidil-Dipeptidasa A/metabolismo , Hipertensión Pulmonar Primaria Familiar , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina I/metabolismo , Fragmentos de Péptidos/metabolismo , Sistema Renina-Angiotensina
3.
Can J Cardiol ; 39(12): 1900-1912, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37348757

RESUMEN

Despite the availability of various therapeutic classes of antihypertensive drugs, hypertension remains poorly controlled, in part because of poor adherence. Hence, there is a need for the development of antihypertensive drugs acting on new targets to improve control of blood pressure. This review discusses novel insights (including the data of recent clinical trials) with regard to interference with the renin-angiotensin system, focusing on the enzymes aminopeptidase A and angiotensin-converting enzyme 2 (ACE2) in the brain, as well as the substrate of renin- angiotensinogen-in the liver. It raises the possibility that centrally acting amino peptidase A inhibitors (eg, firibastat), preventing the conversion of angiotensin II to angiotensin III in the brain, might be particularly useful in African Americans and patients with obesity. Firibastat additionally upregulates brain ACE2, allowing the conversion of angiotensin II to its protective metabolite angiotensin-(1-7). Furthermore, antisense oligonucleotides or small interfering ribonucleic acids suppress hepatic angiotensinogen for weeks to months after 1 injection and thus could potentially overcome adherence issues. Finally, interference with ACE2 ubiquitination is emerging as a future option for the treatment of neurogenic hypertension, given that ubiquitination resistance might upregulate ACE2 activity.


Asunto(s)
Hipertensión , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiología , Antihipertensivos/uso terapéutico , Glutamil Aminopeptidasa , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/farmacología , Enzima Convertidora de Angiotensina 2/uso terapéutico , Angiotensinógeno/metabolismo , Angiotensinógeno/farmacología , Angiotensinógeno/uso terapéutico , Angiotensina II/metabolismo , Encéfalo/metabolismo
4.
Commun Biol ; 6(1): 513, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173421

RESUMEN

SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a 'decoy' to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/uso terapéutico , Anticuerpos Monoclonales , SARS-CoV-2/genética , Ingeniería de Proteínas
5.
Neurotox Res ; 41(5): 408-430, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37086338

RESUMEN

Memory impairment is a result of multiple factors including amyloid-beta (Aß) accumulation. Several receptors are mediated for Aß transport and signaling. Moreover, blood lipids are involved in Aß signaling pathway through these receptors. Mediated blood lipid level by statins aims to regulate Aß signaling cascade. First, the structure of receptors was taken from the RCSB PDB database and prepared with MGLTools and AutoDock tool 4. Second, the ligand was prepared for docking through AutoDock Vina. The binding affinity was calculated, and the binding sites were determined through LigPlot+ software. Besides, pharmacokinetic properties were calculated through multiple software. Finally, a molecular dynamics (MD) simulation was conducted to evaluate ligands stability along with clustering analysis to evaluate proteins connection. Our molecular docking and dynamic analyses revealed silymarin as a potential inhibitor of acetylcholinesterase (AChE), P-glycoprotein, and angiotensin-converting enzyme 2 (ACE2) with 0.704, 0.85, and 0.83 Å for RMSD along with -114.27, -107.44, and -122.51 kcal/mol for free binding energy, respectively. Moreover, rosuvastatin and quercetin have more stability compared to silymarin and donepezil in complex with P-glycoprotein and ACE2, respectively. Eventually, based on clustering and pharmacokinetics analysis, silymarin, rosuvastatin, and quercetin are suggested to be involved in peripheral clearance of Aß. The bioactivity effects of mentioned statins and antioxidants are predicted to be helpful in treating memory impairment in Alzheimer's disease (AD). Nevertheless, mentioned drug effect could be improved by nanoparticles to facilitate penetration of the blood-brain barrier (BBB).


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Silimarina , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/uso terapéutico , Simulación del Acoplamiento Molecular , Acetilcolinesterasa/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Rosuvastatina Cálcica/uso terapéutico , Quercetina/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Silimarina/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/uso terapéutico
7.
Fundam Clin Pharmacol ; 37(2): 235-244, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36300543

RESUMEN

The present study investigated the effect of diminazene, lisinopril, or valsartan on adenine-induced chronic kidney disease (CKD) in rats. The animals were divided into five groups (n = 6). The first and second groups received normal diet and adenine in the feed at a dose of 0.25% w/w for 35 days, respectively. The third, fourth, and fifth groups were treated as the second group but also received diminazene (15 mg/kg/day), lisinopril (10 mg/kg/day), and valsartan (30 mg/kg/day), respectively, for 35 days. Adenine significantly increased plasma urea, creatinine, neutrophil gelatinase-associated lipocalin (NGAL), calcium, phosphorus, and uric acid. In addition, adenine increased urinary albumin/creatinine ratio and N-Acetyl-ß-D-glucosaminidase (NAG)/creatinine ratio and reduced creatinine clearance. Adenine also significantly increased the plasma concentrations of inflammatory cytokines (plasma tumor necrosis factor-alpha [TNF-α] and interleukin-1beta [IL-1ß]) and significantly reduced antioxidant indices (catalase, glutathione reductase [GR], and superoxide dismutase [SOD]). Histopathologically, renal tissue from adenine-treated rats showed necrosis of renal tubules, tubular casts, shrunken glomeruli, and increased renal fibrosis. All drugs ameliorated adenine-induced biochemical and histopathological changes. The protective effect of the three drugs used is, at least partially, due to their anti-inflammatory and antioxidant effects. Our results show that administration of diminazene, lisinopril, or valsartan had a comparable effect on the reversal of the biochemical and histopathological indices of adenine-induced CKD in rats.


Asunto(s)
Diminazeno , Insuficiencia Renal Crónica , Ratas , Animales , Diminazeno/efectos adversos , Adenina/toxicidad , Creatinina , Enzima Convertidora de Angiotensina 2/farmacología , Enzima Convertidora de Angiotensina 2/uso terapéutico , Lisinopril/efectos adversos , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/tratamiento farmacológico , Riñón , Antioxidantes/farmacología
8.
Clin Exp Med ; 23(4): 1325-1330, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36344782

RESUMEN

Kawasaki disease (KD) has replaced rheumatic fever as the main cause of acquired heart disease in Japanese, American, and Chinese children. Polymorphisms in angiotensin-converting enzyme may be associated with susceptibility to KD, but the association of angiotensin-converting enzyme 2 (ACE2) with vascular endothelial injury in KD and the possibility for prognosis of vascular injury in KD by evaluating changes in serum ACE2 have not yet been assessed. Thus, this study aimed to investigate ACE2 levels in patients with KD to further explore the relationship between ACE2 and vascular injury in KD. Blood samples were collected from 49 children with KD before intravenous immunoglobulin treatment and 28 healthy children in the same period as the control group. Clinical data were collected from the patients and serum ACE2 levels of all participants were measured using an enzyme-linked immunosorbent assay. Serum ACE2 levels were significantly higher in the KD group than in the control group, and were negatively correlated with platelet levels in patients with KD. Serum ACE2 levels are related to the pathogenesis of KD and may be used as a potential serum marker for KD diagnosis.


Asunto(s)
Síndrome Mucocutáneo Linfonodular , Lesiones del Sistema Vascular , Humanos , Niño , Síndrome Mucocutáneo Linfonodular/complicaciones , Enzima Convertidora de Angiotensina 2/uso terapéutico , Lesiones del Sistema Vascular/complicaciones , Lesiones del Sistema Vascular/tratamiento farmacológico , Inmunoglobulinas Intravenosas/uso terapéutico , Ensayo de Inmunoadsorción Enzimática
9.
Cell Biol Toxicol ; 39(4): 1181-1201, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35622184

RESUMEN

Among epithelial ovarian cancers, ovarian clear cell carcinoma (OCCC) remains markedly resistant to platinum-based chemotherapy, leading to poor clinical outcomes. In response to xenobiotic insults, caveolar platforms play crucial roles in modulating stress signaling responses in cancer cells. It has been hypothesized that caveolin-1 (Cav-1), a main component of the lipid raft, may regulate the response to platinum-based treatment in OCCC. The clinical transcriptomic evaluation demonstrated that high Cav-1 expression was positively associated with a favorable prognosis in patients with ovarian cancer. Cav-1 overexpression enhanced sensitivity to cisplatin (CDDP) treatment, whereas Cav-1 deficiency promoted chemoresistance in OCCC cells. Mechanistically, although Cav-1 counteracted angiotensin-converting enzyme 2 (ACE2) expression, ACE2 positively facilitated resistance to CDDP in OCCC cells. Furthermore, ACE2 restricted aryl hydrocarbon receptor expression and subsequent transcription of drug-metabolizing enzymes. Of note, ACE2 positively regulated the expression of the platinum-clearing enzyme CYP3A4. These findings suggest that the Cav-1-ACE2 axis modulates xenobiotic metabolism-linked chemoresistance in OCCC, predicting potential roles for the stress sentinel networks in oncogenic processes.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Femenino , Humanos , Caveolina 1/genética , Caveolina 1/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/uso terapéutico , Resistencia a Antineoplásicos , Xenobióticos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Cisplatino/farmacología , Carcinoma/patología
10.
Crit Care ; 26(1): 171, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681221

RESUMEN

BACKGROUND: SARS-CoV-2 infection leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Both clinical data and animal experiments suggest that the renin-angiotensin system (RAS) is involved in the pathogenesis of SARS-CoV-2-induced ALI. Angiotensin-converting enzyme 2 (ACE2) is the functional receptor for SARS-CoV-2 and a crucial negative regulator of RAS. Recombinant ACE2 protein (rACE2) has been demonstrated to play protective role against SARS-CoV and avian influenza-induced ALI, and more relevant, rACE2 inhibits SARS-CoV-2 proliferation in vitro. However, whether rACE2 protects against SARS-CoV-2-induced ALI in animal models and the underlying mechanisms have yet to be elucidated. METHODS AND RESULTS: Here, we demonstrated that the SARS-CoV-2 spike receptor-binding domain (RBD) protein aggravated lipopolysaccharide (LPS)-induced ALI in mice. SARS-CoV-2 spike RBD protein directly binds and downregulated ACE2, leading to an elevation in angiotensin (Ang) II. AngII further increased the NOX1/2 through AT1R, subsequently causing oxidative stress and uncontrolled inflammation and eventually resulting in ALI/ARDS. Importantly, rACE2 remarkably reversed SARS-CoV-2 spike RBD protein-induced ALI by directly binding SARS-CoV-2 spike RBD protein, cleaving AngI or cleaving AngII. CONCLUSION: This study is the first to prove that rACE2 plays a protective role against SARS-CoV-2 spike RBD protein-aggravated LPS-induced ALI in an animal model and illustrate the mechanism by which the ACE2-AngII-AT1R-NOX1/2 axis might contribute to SARS-CoV-2-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Enzima Convertidora de Angiotensina 2 , COVID-19 , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/prevención & control , Lesión Pulmonar Aguda/virología , Angiotensina II , Enzima Convertidora de Angiotensina 2/uso terapéutico , Animales , COVID-19/complicaciones , Humanos , Lipopolisacáridos , Ratones , Proteínas Recombinantes/uso terapéutico , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
11.
J Am Soc Nephrol ; 33(7): 1293-1307, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35236774

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2) as a main receptor to enter target cells. The goal of this study was to demonstrate the preclinical efficacy of a novel soluble ACE2 protein with increased duration of action and binding capacity in a lethal mouse model of COVID-19. METHODS: A human soluble ACE2 variant fused with an albumin binding domain (ABD) was linked via a dimerization motif hinge-like 4-cysteine dodecapeptide (DDC) to improve binding capacity to SARS-CoV-2. This novel soluble ACE2 protein (ACE2-1-618-DDC-ABD) was then administered intranasally and intraperitoneally to mice before intranasal inoculation of SARS-CoV-2 and then for two additional days post viral inoculation. RESULTS: Untreated animals became severely ill, and all had to be humanely euthanized by day 6 or 7 and had pulmonary alveolar hemorrhage with mononuclear infiltrates. In contrast, all but one mouse infected with a lethal dose of SARS-CoV-2 that received ACE2-1-618-DDC-ABD survived. In the animals inoculated with SARS-CoV-2 that were untreated, viral titers were high in the lungs and brain, but viral titers were absent in the kidneys. Some untreated animals, however, had variable degrees of kidney proximal tubular injury as shown by attenuation of the proximal tubular brush border and increased NGAL and TUNEL staining. Viral titers in the lung and brain were reduced or nondetectable in mice that received ACE2-1-618-DDC-ABD, and the animals developed only moderate disease as assessed by a near-normal clinical score, minimal weight loss, and improved lung and kidney injury. CONCLUSIONS: This study demonstrates the preclinical efficacy of a novel soluble ACE2 protein, termed ACE2-1-618-DDC-ABD, in a lethal mouse model of SARS-CoV-2 infection that develops severe lung injury and variable degrees of moderate kidney proximal tubular injury.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/uso terapéutico , Animales , COVID-19/terapia , Riñón/virología , Pulmón/virología , Ratones , SARS-CoV-2
12.
Viruses ; 13(11)2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34835049

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells mainly by the angiotensin converting enzyme 2 (ACE2) receptor, which can recognize the spike (S) protein by its extracellular domain. Previously, recombinant soluble ACE2 (sACE2) has been clinically used as a therapeutic treatment for cardiovascular diseases. Recent data demonstrated that sACE2 can also be exploited as a decoy to effectively inhibit the cell entry of SARS-CoV-2, through blocking SARS-CoV-2 binding to membrane-anchored ACE2. In this study, we summarized the current findings on the optimized sACE2-based strategies as a therapeutic agent, including Fc fusion to prolong the half-life of sACE2, deep mutagenesis to create high-affinity decoys for SARS-CoV-2, or designing the truncated functional fragments to enhance its safety, among others. Considering that COVID-19 patients are often accompanied by manifestations of cardiovascular complications, we think that administration of sACE2 in COVID-19 patients may be a promising therapeutic strategy to simultaneously treat both cardiovascular diseases and SARS-CoV-2 infection. This review would provide insights for the development of novel therapeutic agents against the COVID-19 pandemic.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Enfermedades Cardiovasculares/tratamiento farmacológico , Proteínas Recombinantes de Fusión/uso terapéutico , SARS-CoV-2 , Animales , COVID-19/complicaciones , Enfermedades Cardiovasculares/complicaciones , Humanos , Peptidil-Dipeptidasa A , Unión Proteica , Ingeniería de Proteínas , Receptores Virales/metabolismo , Receptores Virales/uso terapéutico , Glicoproteína de la Espiga del Coronavirus
13.
Antiviral Res ; 196: 105197, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774603

RESUMEN

SARS-CoV-2 enters host cells after binding through its spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor. Soluble ACE2 ectodomains bind and neutralize the virus, yet their short in vivo half-live limits their therapeutic use. This limitation can be overcome by fusing the fragment crystallizable (Fc) part of human immunoglobulin G (IgG) to the ACE2 ectodomain, but this bears the risk of Fc-receptor activation and antibody-dependent cellular cytotoxicity. Here, we describe optimized ACE2-IgG4-Fc fusion constructs that avoid Fc-receptor activation, preserve the desired ACE2 enzymatic activity and show promising pharmaceutical properties. The engineered ACE2-IgG4-Fc fusion proteins neutralize the original SARS-CoV, pandemic SARS-CoV-2 as well as the rapidly spreading SARS-CoV-2 alpha, beta and delta variants of concern. Importantly, these variants of concern are inhibited at picomolar concentrations proving that ACE2-IgG4 maintains - in contrast to therapeutic antibodies - its full antiviral potential. Thus, ACE2-IgG4-Fc fusion proteins are promising candidate anti-antivirals to combat the current and future pandemics.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Antivirales/síntesis química , Tratamiento Farmacológico de COVID-19 , Inmunoglobulina G , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/uso terapéutico , Antivirales/uso terapéutico , Humanos , Unión Proteica , SARS-CoV-2/efectos de los fármacos
14.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R833-R843, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668428

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is a membrane-bound protein containing 805 amino acids. ACE2 shows approximately 42% sequence similarity to somatic ACE but has different biochemical activities. The key role of ACE2 is to catalyze the vasoconstrictor peptide angiotensin (ANG) II to Ang-(1-7), thus regulating the two major counterbalancing pathways of the renin-angiotensin system (RAS). In this way, ACE2 plays a protective role in end-organ damage by protecting tissues from the proinflammatory actions of ANG II. The circulating RAS is activated in normal pregnancy and is essential for maintaining fluid and electrolyte homeostasis and blood pressure. Renin-angiotensin systems are also found in the conceptus. In this review, we summarize the current knowledge on the regulation and function of circulating and uteroplacental ACE2 in uncomplicated and complicated pregnancies, including those affected by preeclampsia and fetal growth restriction. Since ACE2 is the receptor for SARS-CoV-2, and COVID-19 in pregnancy is associated with more severe disease and increased risk of abnormal pregnancy outcomes, we also discuss the role of ACE2 in mediating some of these adverse consequences. We propose that dysregulation of ACE2 plays a critical role in the development of preeclampsia, fetal growth restriction, and COVID-19-associated pregnancy pathologies and suggest that human recombinant soluble ACE2 could be a novel therapeutic to treat and/or prevent these pregnancy complications.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Placenta/enzimología , Complicaciones del Embarazo/enzimología , Sistema Renina-Angiotensina , Útero/enzimología , Enzima Convertidora de Angiotensina 2/uso terapéutico , Animales , Presión Sanguínea , COVID-19/enzimología , COVID-19/fisiopatología , COVID-19/virología , Femenino , Retardo del Crecimiento Fetal/enzimología , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Mediadores de Inflamación/metabolismo , Placenta/fisiopatología , Preeclampsia/enzimología , Preeclampsia/fisiopatología , Embarazo , Complicaciones del Embarazo/tratamiento farmacológico , Complicaciones del Embarazo/fisiopatología , Complicaciones Infecciosas del Embarazo/enzimología , Complicaciones Infecciosas del Embarazo/fisiopatología , Complicaciones Infecciosas del Embarazo/virología , SARS-CoV-2/patogenicidad , Útero/fisiopatología , Equilibrio Hidroelectrolítico
15.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502086

RESUMEN

In recent years, enzymes have risen as promising therapeutic tools for different pathologies, from metabolic deficiencies, such as fibrosis conditions, ocular pathologies or joint problems, to cancer or cardiovascular diseases. Treatments based on the catalytic activity of enzymes are able to convert a wide range of target molecules to restore the correct physiological metabolism. These treatments present several advantages compared to established therapeutic approaches thanks to their affinity and specificity properties. However, enzymes present some challenges, such as short in vivo half-life, lack of targeted action and, in particular, patient immune system reaction against the enzyme. For this reason, it is important to monitor serum immune response during treatment. This can be achieved by conventional techniques (ELISA) but also by new promising tools such as microarrays. These assays have gained popularity due to their high-throughput analysis capacity, their simplicity, and their potential to monitor the immune response of patients during enzyme therapies. In this growing field, research is still ongoing to solve current health problems such as COVID-19. Currently, promising therapeutic alternatives using the angiotensin-converting enzyme 2 (ACE2) are being studied to treat COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Terapia Enzimática/métodos , Proteínas Recombinantes/uso terapéutico , Enzima Convertidora de Angiotensina 2/farmacología , Ensayos Clínicos Fase II como Asunto , Composición de Medicamentos/métodos , Estabilidad de Enzimas , Terapia Enzimática/historia , Terapia Enzimática/tendencias , Semivida , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Proteínas Recombinantes/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Resultado del Tratamiento , Internalización del Virus/efectos de los fármacos
16.
Aging Cell ; 20(10): e13480, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34529881

RESUMEN

Brain renin-angiotensin (Ang) system (RAS) is implicated in neuroinflammation, a major characteristic of aging process. Angiotensin (Ang) II, produced by angiotensin-converting enzyme (ACE), activates immune system via angiotensin type 1 receptor (AT1), whereas Ang(1-7), generated by ACE2, binds with Mas receptor (MasR) to restrain excessive inflammatory response. Therefore, the present study aims to explore the relationship between RAS and neuroinflammation. We found that repeated lipopolysaccharide (LPS) treatment shifted the balance between ACE/Ang II/AT1 and ACE2/Ang(1-7)/MasR axis to the deleterious side and treatment with either MasR agonist, AVE0991 (AVE) or ACE2 activator, diminazene aceturate, exhibited strong neuroprotective actions. Mechanically, activation of ACE2/Ang(1-7)/MasR axis triggered the Forkhead box class O1 (FOXO1)-autophagy pathway and induced superoxide dismutase (SOD) and catalase (CAT), the FOXO1-targeted antioxidant enzymes. Meanwhile, knockdown of MasR or FOXO1 in BV2 cells, or using the selective FOXO1 inhibitor, AS1842856, in animals, suppressed FOXO1 translocation and compromised the autophagic process induced by MasR activation. We further used chloroquine (CQ) to block autophagy and showed that suppressing either FOXO1 or autophagy abrogated the anti-inflammatory action of AVE. Likewise, Ang(1-7) also induced FOXO1 signaling and autophagic flux following LPS treatment in BV2 cells. Cotreatment with AS1842856 or CQ all led to autophagic inhibition and thereby abolished Ang(1-7)-induced remission on NLRP3 inflammasome activation caused by LPS exposure, shifting the microglial polarization from M1 to M2 phenotype. Collectively, these results firstly illustrated the mechanism of ACE2/Ang(1-7)/MasR axis in neuroinflammation, strongly indicating the involvement of FOXO1-mediated autophagy in the neuroimmune-modulating effects triggered by MasR activation.


Asunto(s)
Angiotensina I/uso terapéutico , Enzima Convertidora de Angiotensina 2/uso terapéutico , Autofagia/efectos de los fármacos , Microglía/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fragmentos de Péptidos/uso terapéutico , Angiotensina I/farmacología , Enzima Convertidora de Angiotensina 2/farmacología , Animales , Humanos , Ratones , Enfermedades Neuroinflamatorias/genética , Fragmentos de Péptidos/farmacología , Transducción de Señal , Transfección
17.
Naunyn Schmiedebergs Arch Pharmacol ; 394(7): 1589-1593, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34151392

RESUMEN

In March 2019, the global COVID-19 pandemic caused by the novel SARS-CoV-2 coronavirus began. The first cases of SARS-CoV-2 infection occurred in November 19 in Wuhan, China. Preventive measures taken have not prevented the rapid spread of the virus to countries around the world. To date, there are approximately 3 million deaths, and a massive worldwide vaccination campaign has recently begun. SARS-CoV-2 uses the ACE-2 protein as an intracellular carrier. ACE-2 is a key component of the renin-angiotensin system (RAS), a key regulator of cardiovascular function. Considering the key role of ACE-2 in COVID-19 infection, both as an entry receptor and as a protective role, especially for the respiratory tract, and considering the variations of ACE-2 during the phases of viral infection, it is clear the important role that pharmacological regulation of RAS and ACE-2 may take. In this article, we describe the importance of ACE-2 in COVID-19 infection, the pharmacological aspects of a modulation with RAS-modifying agents, new therapeutic strategies, trying to provide a deep understanding and explanation of the complex mechanisms underlying the relationship between the virus and ACE-2, providing opinions and personal hypotheses on the best strategies of therapeutic intervention.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/uso terapéutico , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Sistema Renina-Angiotensina/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , COVID-19/enzimología , COVID-19/virología , Interacciones Huésped-Patógeno , Humanos , Proteínas Recombinantes/uso terapéutico , SARS-CoV-2/patogenicidad
18.
Pharmacol Rep ; 73(6): 1539-1550, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34176080

RESUMEN

Angiotensin-converting enzyme (ACE) and its homologue, ACE2, are commonly allied with hypertension, renin-angiotensin-aldosterone system pathway, and other cardiovascular system disorders. The recent pandemic of COVID-19 has attracted the attention of numerous researchers on ACE2 receptors, where the causative viral particle, SARS-CoV-2, is established to exploit these receptors for permitting their entry into the human cells. Therefore, studies on the molecular origin and pathophysiology of the cell response in correlation to the role of ACE2 receptors to these viruses are bringing novel theories. The varying level of manifestation and importance of ACE proteins, underlying irregularities and disorders, intake of specific medications, and persistence of assured genomic variants at the ACE genes are potential questions raising nowadays while observing the marked alteration in response to the SARS-CoV-2-infected patients. Therefore, the present review has focused on several raised opinions associated with the role of the ACE2 receptor and its impact on COVID-19 pathogenesis.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/farmacología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/patogenicidad , Lesión Pulmonar Aguda , Enzima Convertidora de Angiotensina 2/deficiencia , Enzima Convertidora de Angiotensina 2/uso terapéutico , Humanos , Hipertensión/tratamiento farmacológico , Glicoproteína de la Espiga del Coronavirus/metabolismo
19.
Cardiovasc Toxicol ; 21(6): 498-503, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33835386

RESUMEN

In March 2019 began the global pandemic COVID-19 caused by the new Coronavirus SARS-CoV-2. The first cases of SARS-CoV-2 infection occurred in November-19 in Wuhan, China. The preventive measures taken did not prevent the rapid spread of the virus to all countries around the world. To date, there are about 2.54 million deaths, effective vaccines are in clinical trials. SARS-CoV-2 uses the ACE-2 protein as an intracellular gateway. ACE-2 is a key component of the Renin Angiotensin (RAS) system, a key regulator of cardiovascular function. Considering the key role of ACE-2 in COVID-19 infection, both as an entry receptor and as a protective role, especially for the respiratory tract, and considering the variations of ACE-2 and ACE during the stages of viral infection, it is clear the important role that the pharmacological regulation of RAS and ACE-2 can assume. This biological knowledge suggests different pharmacological approaches to treat COVID-19 by modulating RAS, ACE-2 and the ACE/ACE2 balance that we describe in this article.


Asunto(s)
Antagonistas de Receptores de Angiotensina/uso terapéutico , Enzima Convertidora de Angiotensina 2/uso terapéutico , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Pulmón/efectos de los fármacos , Receptores Virales/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , Antivirales/efectos adversos , COVID-19/enzimología , COVID-19/virología , Interacciones Huésped-Patógeno , Humanos , Pulmón/enzimología , Pulmón/virología , Proteínas Recombinantes/uso terapéutico , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Internalización del Virus
20.
Sci Adv ; 7(8)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33597251

RESUMEN

The spike S of SARS-CoV-2 recognizes ACE2 on the host cell membrane to initiate entry. Soluble decoy receptors, in which the ACE2 ectodomain is engineered to block S with high affinity, potently neutralize infection and, because of close similarity with the natural receptor, hold out the promise of being broadly active against virus variants without opportunity for escape. Here, we directly test this hypothesis. We find that an engineered decoy receptor, sACE22v2.4, tightly binds S of SARS-associated viruses from humans and bats, despite the ACE2-binding surface being a region of high diversity. Saturation mutagenesis of the receptor-binding domain followed by in vitro selection, with wild-type ACE2 and the engineered decoy competing for binding sites, failed to find S mutants that discriminate in favor of the wild-type receptor. We conclude that resistance to engineered decoys will be rare and that decoys may be active against future outbreaks of SARS-associated betacoronaviruses.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Tratamiento Farmacológico de COVID-19 , Ingeniería de Proteínas , SARS-CoV-2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/uso terapéutico , Animales , Línea Celular , Quirópteros , Humanos , Mutagénesis , Dominios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA