Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 916
Filtrar
1.
Cell Commun Signal ; 22(1): 259, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715050

RESUMEN

Ubiquitination and deubiquitination are important forms of posttranslational modification that govern protein homeostasis. Deubiquitinating enzymes (DUBs), a protein superfamily consisting of more than 100 members, deconjugate ubiquitin chains from client proteins to regulate cellular homeostasis. However, the dysregulation of DUBs is reportedly associated with several diseases, including cancer. The tumor microenvironment (TME) is a highly complex entity comprising diverse noncancerous cells (e.g., immune cells and stromal cells) and the extracellular matrix (ECM). Since TME heterogeneity is closely related to tumorigenesis and immune evasion, targeting TME components has recently been considered an attractive therapeutic strategy for restoring antitumor immunity. Emerging studies have revealed the involvement of DUBs in immune modulation within the TME, including the regulation of immune checkpoints and immunocyte infiltration and function, which renders DUBs promising for potent cancer immunotherapy. Nevertheless, the roles of DUBs in the crosstalk between tumors and their surrounding components have not been comprehensively reviewed. In this review, we discuss the involvement of DUBs in the dynamic interplay between tumors, immune cells, and stromal cells and illustrate how dysregulated DUBs facilitate immune evasion and promote tumor progression. We also summarize potential small molecules that target DUBs to alleviate immunosuppression and suppress tumorigenesis. Finally, we discuss the prospects and challenges regarding the targeting of DUBs in cancer immunotherapeutics and several urgent problems that warrant further investigation.


Asunto(s)
Enzimas Desubicuitinizantes , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Enzimas Desubicuitinizantes/metabolismo , Animales , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/enzimología , Neoplasias/metabolismo , Escape del Tumor , Ubiquitinación , Evasión Inmune
2.
Cell Biochem Funct ; 42(4): e4020, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702967

RESUMEN

The regulatory potential of long noncoding RNA (lncRNA) FBXL19-AS1 has been highlighted in various cancers, but its effect on triple-negative breast cancer (TNBC) remains unclear. Here, we aimed to elucidate the role of FBXL19-AS1 in TNBC and its underlying mechanism. RT-qPCR was employed to detect the expressions of FBXL19-AS1 and miR-378a-3p in tissues and cells. Immunohistochemical staining and western blot were utilized to detect the expression levels of proteins. Cell activities were detected using flow cytometry, CCK-8, and transwell assay. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were deployed to investigate interactions of different molecules. Protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathways were used to analyze the downstream pathway. In vivo xenograft model was conducted to detect the effect of FBXL19-AS1 on tumor growth. FBXL19-AS1 was overexpressed in TNBC tissues and cell lines compared with counterparts. FBXL19-AS1 knockdown suppressed TNBC cell activities, whereas its overexpression exhibited the opposite effect. Mechanistically, FBXL19-AS1 was found to interact with miR-378a-3p. Further analysis revealed that miR-378a-3p exerted tumor-suppressive effects in TNBC cells. Additionally, miR-378a-3p targeted and downregulated the expression of ubiquitin aldehyde binding 2 (OTUB2), a deubiquitinase associated with TNBC progression. In vivo experiments substantiated the inhibitory effects of FBXL19-AS1 knockdown on TNBC tumorigenesis, and a miR-378a-3p inhibitor partially rescued these effects. The downstream pathway of the miR-378a-3p/OTUB2 axis was explored, revealing connections with proteins involved in modifying other proteins, removing ubiquitin molecules, and influencing signaling pathways, including the Hippo signaling pathway. Western blot analysis confirmed changes in YAP and TAZ expression levels, indicating a potential regulatory network. In summary, FBXL19-AS1 promotes exacerbation in TNBC by suppressing miR-378a-3p, leading to increased OTUB2 expression. The downstream mechanism may be related to the Hippo signaling pathway. These findings propose potential therapeutic targets for TNBC treatment.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Enzimas Desubicuitinizantes/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética
3.
Virus Res ; 344: 199368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588924

RESUMEN

Several viruses are now known to code for deubiquitinating proteases in their genomes. Ubiquitination is an essential post-translational modification of cellular substrates involved in many processes in the cell, including in innate immune signalling. This post-translational modification is regulated by the ubiquitin conjugation machinery, as well as various host deubiquitinating enzymes. The conjugation of ubiquitin chains to several innate immune related factors is often needed to induce downstream signalling, shaping the antiviral response. Viral deubiquitinating proteins, besides often having a primary function in the viral replication cycle by cleaving the viral polyprotein, are also able to cleave ubiquitin chains from such host substrates, in that way exerting a function in innate immune evasion. The presence of viral deubiquitinating enzymes has been firmly established for numerous animal-infecting viruses, such as some well-researched and clinically important nidoviruses, and their presence has now been confirmed in several plant viruses as well. Viral proteases in general have long been highlighted as promising drug targets, with a current focus on small molecule inhibitors. In this review, we will discuss the range of viral deubiquitinating proteases known to date, summarise the various avenues explored to inhibit such proteases and discuss novel strategies and models intended to inhibit and study these specific viral enzymes.


Asunto(s)
Enzimas Desubicuitinizantes , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/antagonistas & inhibidores , Enzimas Desubicuitinizantes/genética , Humanos , Proteasas Virales/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinación , Animales , Replicación Viral , Antivirales/farmacología , Inhibidores de Proteasas/farmacología , Virus/efectos de los fármacos , Virus/enzimología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Ubiquitina/metabolismo , Inmunidad Innata
4.
J Exp Med ; 221(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38630025

RESUMEN

OTU deubiquitinase with linear linkage specificity (OTULIN) regulates inflammation and cell death by deubiquitinating linear ubiquitin chains generated by the linear ubiquitin chain assembly complex (LUBAC). Biallelic loss-of-function mutations causes OTULIN-related autoinflammatory syndrome (ORAS), while OTULIN haploinsuffiency has not been associated with spontaneous inflammation. However, herein, we identify two patients with the heterozygous mutation p.Cys129Ser in OTULIN. Consistent with ORAS, we observed accumulation of linear ubiquitin chains, increased sensitivity to TNF-induced death, and dysregulation of inflammatory signaling in patient cells. While the C129S mutation did not affect OTULIN protein stability or binding capacity to LUBAC and linear ubiquitin chains, it did ablate OTULIN deubiquitinase activity. Loss of activity facilitated the accumulation of autoubiquitin chains on LUBAC. Altered ubiquitination of LUBAC inhibits its recruitment to the TNF receptor signaling complex, promoting TNF-induced cell death and disease pathology. By reporting the first dominant negative mutation driving ORAS, this study expands our clinical understanding of OTULIN-associated pathology.


Asunto(s)
Inflamación , Ubiquitina , Humanos , Muerte Celular , Membrana Celular , Enzimas Desubicuitinizantes , Inflamación/genética , Síndrome , Complejos de Ubiquitina-Proteína Ligasa
5.
Aging (Albany NY) ; 16(7): 6613-6626, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38613804

RESUMEN

Ubiquitination of the proteins is crucial for governing protein degradation and regulating fundamental cellular processes. Deubiquitinases (DUBs) have emerged as significant regulators of multiple pathways associated with cancer and other diseases, owing to their capacity to remove ubiquitin from target substrates and modulate signaling. Consequently, they represent potential therapeutic targets for cancer and other life-threatening conditions. USP43 belongs to the DUBs family involved in cancer development and progression. This review aims to provide a comprehensive overview of the existing scientific evidence implicating USP43 in cancer development. Additionally, it will investigate potential small-molecule inhibitors that target DUBs that may have the capability to function as anti-cancer medicines.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Ubiquitinación , Endopeptidasas/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Transducción de Señal , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
6.
Biol Direct ; 19(1): 31, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658981

RESUMEN

BACKGROUND: Deubiquitinating enzymes (DUBs) cleave ubiquitin on substrate molecules to maintain protein stability. DUBs reportedly participate in the tumorigenesis and tumour progression of hepatocellular carcinoma (HCC). OTU deubiquitinase 5 (OTUD5), a DUB family member, has been recognized as a critical regulator in bladder cancer, breast cancer and HCC. However, the expression and biological function of OTUD5 in HCC are still controversial. RESULTS: We determined that the expression of OTUD5 was significantly upregulated in HCC tissues. High levels of OTUD5 were also detected in most HCC cell lines. TCGA data analysis demonstrated that high OTUD5 expression indicated poorer overall survival in HCC patients. OTUD5 silencing prominently suppressed HCC cell proliferation, while its overexpression markedly enhanced the proliferation of HCC cells. Mass spectrometry analysis revealed solute carrier family 38 member 1 (SLC38A1) as a candidate downstream target protein of OTUD5. Coimmunoprecipitation analysis confirmed the interaction between OTUD5 and SLC38A1. OTUD5 knockdown reduced and OTUD5 overexpression increased SLC38A1 protein levels in HCC cells. However, OTUD5 alteration had no effect on SLC38A1 mRNA expression. OTUD5 maintained SLC38A1 stability by preventing its ubiquitin-mediated proteasomal degradation. SLC38A1 silencing prominently attenuated the OTUD5-induced increase in HCC cell proliferation. Finally, OTUD5 knockdown markedly suppressed the growth of HCC cells in vivo. CONCLUSIONS: OTUD5 is an oncogene in HCC. OTUD5 contributes to HCC cell proliferation by deubiquitinating and stabilizing SLC38A1. These results may provide a theoretical basis for the development of new anti-HCC drugs.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ubiquitinación
7.
Mol Cancer ; 23(1): 86, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685067

RESUMEN

BACKGROUND: CDC6 is an oncogenic protein whose expression level fluctuates during the cell cycle. Although several E3 ubiquitin ligases responsible for the ubiquitin-mediated proteolysis of CDC6 have been identified, the deubiquitination pathway for CDC6 has not been investigated. METHODS: The proteome-wide deubiquitinase (DUB) screening was used to identify the potential regulator of CDC6. Immunofluorescence, protein half-life and deubiquitination assays were performed to determine the protein stability of CDC6. Gain- and loss-of-function experiments were implemented to analyse the impacts of OUTD6A-CDC6 axis on tumour growth and chemosensitivity in vitro. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced conditional Otud6a knockout (CKO) mouse model and tumour xenograft model were performed to analyse the role of OTUD6A-CDC6 axis in vivo. Tissue specimens were used to determine the association between OTUD6A and CDC6. RESULTS: OTUD6A interacts with, depolyubiquitinates and stabilizes CDC6 by removing K6-, K33-, and K48-linked polyubiquitination. Moreover, OTUD6A promotes cell proliferation and decreases sensitivity to chemotherapy by upregulating CDC6. CKO mice are less prone to BCa tumorigenesis induced by BBN, and knockdown of OTUD6A inhibits tumour progression in vivo. Furthermore, OTUD6A protein level has a positive correlation with CDC6 protein level, and high protein levels of OTUD6A and CDC6 are associated with poor prognosis in patients with bladder cancer. CONCLUSIONS: We reveal an important yet missing piece of novel DUB governing CDC6 stability. In addition, our findings propose a model for the OTUD6A-CDC6 axis that provides novel insights into cell cycle and chemosensitivity regulation, which may become a potential biomarker and promising drug target for cancer treatment.


Asunto(s)
Proteínas de Ciclo Celular , Resistencia a Antineoplásicos , Proteínas Nucleares , Ubiquitinación , Animales , Humanos , Ratones , Resistencia a Antineoplásicos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Ratones Noqueados , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/genética , Modelos Animales de Enfermedad
8.
Int Immunopharmacol ; 132: 112026, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583240

RESUMEN

Ubiquitination (Ub) and deubiquitination are crucial post-translational modifications (PTMs) that precisely regulate protein degradation. Under the catalysis of a cascade of E1-E2-E3 ubiquitin enzymes, ubiquitination extensively regulates protein degradation exerting direct impact on various cellular processes, while deubiquitination opposes the effect of ubiquitination and prevents proteins from degradation. Notably, such dynamic modifications have been widely investigated to be implicated in cell cycle, transcriptional regulation, apoptosis and so on. Therefore, dysregulation of ubiquitination and deubiquitination could lead to certain diseases through abnormal protein accumulation and clearance. Increasing researches have revealed that the dysregulation of catalytic regulators of ubiquitination and deubiquitination triggers imbalance of cartilage homeostasis that promotes osteoarthritis (OA) progression. Hence, it is now believed that targeting on Ub enzymes and deubiquitinating enzymes (DUBs) would provide potential therapeutic pathways. In the following sections, we will summarize the biological role of Ub enzymes and DUBs in the development and progression of OA by focusing on the updating researches, with the aim of deepening our understanding of the underlying molecular mechanism of OA pathogenesis concerning ubiquitination and deubiquitination, so as to explore novel potential therapeutic targets of OA treatment.


Asunto(s)
Osteoartritis , Ubiquitinación , Humanos , Osteoartritis/metabolismo , Animales , Enzimas Desubicuitinizantes/metabolismo , Procesamiento Proteico-Postraduccional
9.
Genes Genomics ; 46(5): 637-646, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38470543

RESUMEN

BACKGROUND: Breast cancer type 1 susceptibility protein/breast cancer type 2 susceptibility protein-containing complex subunit 3 (BRCC3), a deubiquitinase (DUBs), is overexpressed in various cancers. However, the underlying biological roles of BRCC3 in adenocarcinoma colon (COAD) have yet to be decrypted. OBJECTIVE: In this work, we explored the potential biological function of BRCC3 in the natural process of COAD cells. METHODS: The expression levels of BRCC3 in COAD tissues and cell lines were investigated via quantitative real time polymerase chain reaction and western blotting analyses. Meanwhile, short hairpin RNAs targeting BRCC3 (sh-BRCC3) or mesenchymal-epithelial transition factor (MET) (sh-MET) were used to investigate the biological function, including proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT) progression in COAD cells. Furthermore, the expression levels of EMT-related biomarkers were detected with western blotting analysis. Furthermore, we also performed Co-IP assay to identify the correlation between BRCC3 and MET. RESULTS: BRCC3 expression was increased in COAD tissues and cell lines. ShRNA-mediated downmodulation of BRCC3 in COAD cell lines induced EMT progression. BRCC3 knockdown resulted in decreased migration as well as invasion and increased apoptosis of SW480 and Lovo cells. Besides, MET was regulated by BRCC3 and involved in the migration, invasion, and EMT in SW480 and Lovo cells. Finally, we uncovered that the overexpressed MET reversed the effects of BRCC3 knockdown in COAD cell development. CONCLUSIONS: BRCC3 acted as a critical factor in the development of COAD by deubiquitinating and stabilizing MET, which might provide an emerging biomarker for the therapeutic and diagnosis strategy of COAD.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , ARN Interferente Pequeño/genética , Enzimas Desubicuitinizantes/genética
10.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 564-575, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38449391

RESUMEN

Triple negative breast cancer (TNBC) has a high recurrence rate, metastasis rate and mortality rate. The aim of this study is to identify new targets for the treatment of TNBC. Clinical samples are used for screening deubiquitinating enzymes (DUBs). MDA-MB-231 cells and a TNBC mouse model are used for in vitro and in vivo experiments, respectively. Western blot analysis is used to detect the protein expressions of DUBs, zinc finger E-box binding homeobox 1 (ZEB1), and epithelial-mesenchymal transition (EMT)-related markers. Colony formation and transwell assays are used to detect the proliferation, migration and invasion of TNBC cells. Wound healing assay is used to detect the mobility of TNBC cells. Immunoprecipitation assay is used to detect the interaction between breast cancer susceptibility gene 1/2-containing complex subunit 3 (BRCC3) and ZEB1. ZEB1 ubiquitination levels, protein stability, and protein degradation are also examined. Pathological changes in the lung tissues are detected via HE staining. Our results show a significant positive correlation between the expressions of BRCC3 and ZEB1 in clinical TNBC tissues. Interference with BRCC3 inhibits TNBC cell proliferation, migration, invasion and EMT. BRCC3 interacts with ZEB1 and interferes with BRCC3 to inhibit ZEB1 expression by increasing ZEB1 ubiquitination. Interference with BRCC3 inhibits TNBC cell tumorigenesis and lung metastasis in vivo. In all, this study demonstrates that BRCC3 can increase the stability of ZEB1, upregulate ZEB1 expression, and promote the proliferation, migration, invasion, EMT, and metastasis of TNBC cells, providing a new direction for cancer therapy.


Asunto(s)
Neoplasias de la Mama , Enzimas Desubicuitinizantes , Neoplasias de la Mama Triple Negativas , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Mama Triple Negativas/patología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
11.
Cell Mol Life Sci ; 81(1): 137, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478109

RESUMEN

Improving the function of the blood-spinal cord barrier (BSCB) benefits the functional recovery of mice following spinal cord injury (SCI). The death of endothelial cells and disruption of the BSCB at the injury site contribute to secondary damage, and the ubiquitin-proteasome system is involved in regulating protein function. However, little is known about the regulation of deubiquitinated enzymes in endothelial cells and their effect on BSCB function after SCI. We observed that Sox17 is predominantly localized in endothelial cells and is significantly upregulated after SCI and in LPS-treated brain microvascular endothelial cells. In vitro Sox17 knockdown attenuated endothelial cell proliferation, migration, and tube formation, while in vivo Sox17 knockdown inhibited endothelial regeneration and barrier recovery, leading to poor functional recovery after SCI. Conversely, in vivo overexpression of Sox17 promoted angiogenesis and functional recovery after injury. Additionally, immunoprecipitation-mass spectrometry revealed the interaction between the deubiquitinase UCHL1 and Sox17, which stabilized Sox17 and influenced angiogenesis and BSCB repair following injury. By generating UCHL1 conditional knockout mice and conducting rescue experiments, we further validated that the deubiquitinase UCHL1 promotes angiogenesis and restoration of BSCB function after injury by stabilizing Sox17. Collectively, our findings present a novel therapeutic target for treating SCI by revealing a potential mechanism for endothelial cell regeneration and BSCB repair after SCI.


Asunto(s)
Células Endoteliales , Traumatismos de la Médula Espinal , Animales , Ratones , Ratas , Angiogénesis , Barrera Hematoencefálica/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Células Endoteliales/metabolismo , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacología , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Factores de Transcripción SOXF/genética , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
12.
Cancer Lett ; 589: 216836, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556105

RESUMEN

Despite the approval of immune checkpoint blockade (ICB) therapy for various tumor types, its effectiveness is limited to only approximately 15% of patients with microsatellite instability-high (MSI-H) or mismatch repair deficiency (dMMR) colorectal cancer (CRC). Approximately 80%-85% of CRC patients have a microsatellite stability (MSS) phenotype, which features a rare T-cell infiltration. Thus, elucidating the mechanisms underlying resistance to ICB in patients with MSS CRC is imperative. In this study, we demonstrate that ubiquitin-specific peptidase 4 (USP4) is upregulated in MSS CRC tumors and negatively regulates the immune response against tumors in CRC. Additionally, USP4 represses the cellular interferon (IFN) response and antigen presentation and impairs PRR signaling-mediated cell death. Mechanistically, USP4 impedes the nuclear localization of interferon regulator Factor 3 (IRF3) by deubiquitinating the K63-polyubiquitin chain of TRAF6 and IRF3. Knockdown of USP4 enhances the infiltration of T cells in CRC tumors and overcomes ICB resistance in an MC38 syngeneic mouse model. Moreover, published datasets revealed that patients showing higher USP4 expression exhibited decreased responsiveness to anti-PD-L1 therapy. These findings highlight an essential role of USP4 in the suppression of antitumor immunity in CRC.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Interferones , Síndromes Neoplásicos Hereditarios , Animales , Ratones , Humanos , Interferones/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Inestabilidad de Microsatélites , Enzimas Desubicuitinizantes/genética , Factor 3 Regulador del Interferón/genética , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
13.
Front Endocrinol (Lausanne) ; 15: 1302667, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487343

RESUMEN

Introduction: Corticotroph pituitary neuroendocrine tumors (PitNETs) develop from ACTH-producing cells. They commonly cause Cushing's disease (CD), however, some remain clinically silent. Recurrent USP8, USP48, BRAF and TP53 mutations occur in corticotroph PitNETs. The aim of our study was to determine frequency and relevance of these mutations in a possibly large series of corticotroph PitNETs. Methods: Study included 147 patients (100 CD and 47 silent tumors) that were screened for hot-spot mutations in USP8, USP48 and BRAF with Sanger sequencing, while 128 of these patients were screened for TP53 mutations with next generation sequencing and immunohistochemistry. Results: USP8 mutations were found in 41% CD and 8,5% silent tumors, while USP48 mutations were found in 6% CD patients only. Both were more prevalent in women. They were related to higher rate of biochemical remission, non-invasive tumor growth, its smaller size and densely granulated histology, suggesting that these mutation may be favorable clinical features. Multivariate survival analyses did not confirm possible prognostic value of mutation in protein deubiquitinases. No BRAF mutations were found. Four TP53 mutations were identified (2 in CD, 2 in silent tumors) in tumors with size >10mm including 3 invasive ones. They were found in Crooke's cell and sparsely granulated tumors. Tumors with missense TP53 mutations had higher TP53 immunoreactivity score than wild-type tumors. Tumor with frameshift TP53 variant had low protein expression. TP53 mutation was a poor prognostic factor in CD according to uni- and multivariate survival analyses in spite of low mutations frequency. Conclusions: We confirmed high prevalence of USP8 mutations and low incidence of USP48 and TP53 mutations. Changes in protein deubiquitinases genes appear to be favorable prognostic factors in CD. TP53 mutations are rare, occur in both functioning and silent tumors and are related to poor clinical outcome in CD.


Asunto(s)
Adenoma Hipofisario Secretor de ACTH , Adenoma , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Neoplasias Hipofisarias , Humanos , Femenino , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Corticotrofos/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Endopeptidasas/genética , Adenoma Hipofisario Secretor de ACTH/metabolismo , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/metabolismo , Mutación , Adenoma/genética , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Sci Rep ; 14(1): 7290, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538704

RESUMEN

Bone destruction, a major source of morbidity, is mediated by heightened differentiation and activity of osteoclasts (OC), highly specialized multinucleated myeloid cells endowed with unique bone-resorptive capacity. The molecular mechanisms regulating OC differentiation in the bone marrow are still partly elusive. Here, we aimed to identify new regulatory circuits and actionable targets by comprehensive proteomic characterization of OCgenesis from mouse bone marrow monocytes, adopting two parallel unbiased comparative proteomic approaches. This work disclosed an unanticipated protein signature of OCgenesis, with most gene products currently unannotated in bone-related functions, revealing broad structural and functional cellular reorganization and divergence from macrophagic immune activity. Moreover, we identified the deubiquitinase UCHL1 as the most upregulated cytosolic protein in differentiating OCs. Functional studies proved it essential, as UCHL1 genetic and pharmacologic inhibition potently suppressed OCgenesis. Furthermore, proteomics and mechanistic dissection showed that UCHL1 supports OC differentiation by restricting the anti-OCgenic activity of NRF2, the transcriptional activator of the canonical antioxidant response, through redox-independent stabilization of the NRF2 inhibitor, KEAP1. Besides offering a valuable experimental framework to dissect OC differentiation, our study discloses the essential role of UCHL1, exerted through KEAP1-dependent containment of NRF2 anti-OCgenic activity, yielding a novel potential actionable pathway against bone loss.


Asunto(s)
Resorción Ósea , Osteólisis , Animales , Ratones , Resorción Ósea/metabolismo , Diferenciación Celular/genética , Enzimas Desubicuitinizantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Osteoclastos/metabolismo , Osteólisis/metabolismo , Proteómica , Ligando RANK/metabolismo
15.
World J Gastroenterol ; 30(6): 565-578, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38463028

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with limited treatment options. Deubiquitinases (DUBs) have been confirmed to play a crucial role in the development of malignant tumors. JOSD2 is a DUB involved in controlling protein deubiquitination and influencing critical cellular processes in cancer. AIM: To investigate the impact of JOSD2 on the progression of ESCC. METHODS: Bioinformatic analyses were employed to explore the expression, prognosis, and enriched pathways associated with JOSD2 in ESCC. Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines (KYSE30 and KYSE150). Functional assays, including cell proliferation, colony formation, drug sensitivity, migration, and invasion, were performed, revealing the impact of JOSD2 on ESCC cell lines. JOSD2's role in xenograft tumor growth and drug sensitivity in vivo was also assessed. The proteins that interacted with JOSD2 were identified using mass spectrometry. RESULTS: Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues, which was associated with poor prognosis. Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells. JOSD2 knockdown inhibited ESCC cell activity, including proliferation and colony-forming ability. Moreover, JOSD2 knockdown decreased the drug resistance and migration of ESCC cells, while JOSD2 overexpression enhanced these phenotypes. In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC. Mechanistically, JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways. Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2, which identified the four primary proteins that bind to JOSD2, namely USP47, IGKV2D-29, HSP90AB1, and PRMT5. CONCLUSION: JOSD2 plays a crucial role in enhancing the proliferation, migration, and drug resistance of ESCC, suggesting that JOSD2 is a potential therapeutic target in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Enzimas Desubicuitinizantes/genética , Regulación Neoplásica de la Expresión Génica , Proteína-Arginina N-Metiltransferasas
16.
J Med Virol ; 96(3): e29523, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483060

RESUMEN

Tight control of the type I interferon (IFN) signaling pathway is critical for maintaining host innate immune responses, and the ubiquitination and deubiquitination of signaling molecules are essential for signal transduction. Deubiquitinase ubiquitin-specific protein 19 (USP19) is known to be involved in deubiquitinating Beclin1, TRAF3, and TRIF for downregulation of the type I IFN signaling. Here, we show that SIAH1, a cellular E3 ubiquitin ligase that is involved in multicellular pathway, is a potent positive regulator of virus-mediated type I IFN signaling that maintains homeostasis within the antiviral immune response by targeting USP19. In the early stages of virus infection, stabilized SIAH1 directly interacts with the USP19 and simultaneously mediates K27-linked ubiquitination of 489, 490, and 610 residues of USP19 for proteasomal degradation. Additionally, we found that USP19 specifically interacts with MAVS and deubiquitinates K63-linked ubiquitinated MAVS for negative regulation of type I IFN signaling. Ultimately, we identified that SIAH1-mediated degradation of USP19 reversed USP19-mediated deubiquitination of MAVS, Beclin1, TRAF3, and TRIF, resulting in the activation of antiviral immune responses. Taken together, these findings provide new insights into the molecular mechanism of USP19 and SIAH1, and suggest a critical role of SIAH1 in antiviral immune response and homeostasis.


Asunto(s)
Interferón Tipo I , Ubiquitina , Humanos , Ubiquitina/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Beclina-1 , Ubiquitinación , Inmunidad Innata , Interferón Tipo I/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Endopeptidasas/genética , Endopeptidasas/metabolismo
17.
Int Immunopharmacol ; 131: 111819, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38460305

RESUMEN

Mitochondria serve as a platform for innate immune signaling transduction, and mitochondrial antiviral signaling protein (MAVS) is essential for interferon-ß (IFN-ß) production and innate antiviral immunity against RNA viruses. Here, we identified zinc finger-containing ubiquitin peptidase 1 (ZUFSP/ZUP1) as a MAVS-interacting protein by using proximity-based labeling technology in HEK293T and found it could act as a positive regulator of the retinoic acid-inducible gene-I (RIG-I)-like receptors(RLRs), including RIG-I and interferon-induced helicase C domain-containing protein 1 (MDA5). ZUFSP deficiency markedly inhibited RNA virus-triggered induction of downstream antiviral genes, and Zufsp-deficient mice were more susceptible to RNA virus infection. After RNA virus infection,ZUFSP was translocated from cytoplasm to nucleus and interacted with chromatin remodeling complex to facilitate the opening of IFN-stimulated gene (ISG) loci for transcription. This study provides a critical mechanistic basis for MAVS-regulated chromatin remodeling to promote interferon signaling.


Asunto(s)
Cromatina , Enzimas Desubicuitinizantes , Infecciones por Virus ARN , Animales , Humanos , Ratones , Células HEK293 , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferones , Transducción de Señal , Enzimas Desubicuitinizantes/metabolismo
18.
J Biol Chem ; 300(4): 107152, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462165

RESUMEN

Prostate cancer is a leading cause of cancer-related mortality in males. Dysregulation of RNA adenine N-6 methylation (m6A) contributes to cancer malignancy. m6A on mRNA may affect mRNA splicing, turnover, transportation, and translation. m6A exerts these effects, at least partly, through dedicated m6A reader proteins, including YTH domain-containing family protein 2 (YTHDF2). YTHDF2 is necessary for development while its dysregulation is seen in various cancers, including prostate cancer. However, the mechanism underlying the dysregulation and function of YTHDF2 in cancer remains elusive. Here, we find that the deubiquitinase OUT domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) increases YTHDF2 protein stability by inhibiting its ubiquitination. With in vivo and in vitro ubiquitination assays, OTUB1 is shown to block ubiquitin transfer to YTHDF2 independent of its deubiquitinase activity. Furthermore, analysis of functional transcriptomic data and m6A-sequencing data identifies PRSS8 as a potential tumor suppressor gene. OTUB1 and YTHDF2 decrease mRNA and protein levels of PRSS8, which is a trypsin-like serine protease. Mechanistically, YTHDF2 binds PRSS8 mRNA and promotes its degradation in an m6A-dependent manner. Further functional study on cellular and mouse models reveals PRSS8 is a critical downstream effector of the OTUB1-YTHDF2 axis in prostate cancer. We find in prostate cancer cells, PRSS8 decreases nuclear ß-catenin level through E-cadherin, which is independent of its protease activity. Collectively, our study uncovers a key regulator of YTHDF2 protein stability and establishes a functional OTUB1-YTHDF2-PRSS8 axis in prostate cancer.


Asunto(s)
Proliferación Celular , Enzimas Desubicuitinizantes , Neoplasias de la Próstata , Proteínas de Unión al ARN , Serina Endopeptidasas , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Proliferación Celular/genética , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Estabilidad Proteica , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Serina Endopeptidasas/metabolismo , Ubiquitinación
19.
J Obstet Gynaecol Res ; 50(5): 864-872, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38480480

RESUMEN

BACKGROUND: Ovarian cancer (OVCA) is prevalent in female reproductive organs. Despite recent advances, clinical outcomes remain poor, warranting fresh treatment avenues. Honokiol has an inhibitory effect on proliferation, invasion, and survival of cancer cells in vitro and in vivo. Therefore, this study intended to explore specific molecular mechanism by which honokiol affected OVCA progression. METHODS: Bioinformatics analyzed the drug honokiol that bound to OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2). Cellular thermal shift assay (CETSA) verified the binding relationship between honokiol and OTUB2. Cell counting kit 8 (CCK-8) tested the IC50 value and cell viability of OVCA cells after honokiol treatment. Corresponding assay kits determined malonic dialdehyde (MDA) and Fe2+ levels in OVCA cells. Flow cytometry measured reactive oxygen species levels. Western blot detected OTUB2, SLC7A11, and transcriptional co-activators Yes-associated protein (YAP) expression, and quantitative polymerase chain reaction (qPCR) detected OTUB2 expression. Immunohistochemistry (IHC) detected the expression level of Ki67 protein in tumor tissues. RESULTS: Honokiol was capable of inducing ferroptosis in OVCA cells. CETSA confirmed that honokiol could bind to OTUB2. Further cell functional and molecular experiments revealed that honokiol induced ferroptosis in OVCA cells via repression of YAP signaling pathway through binding to OTUB2. In addition, in vivo experiments have confirmed that honokiol could inhibit the growth of OVCA. CONCLUSION: Honokiol induced ferroptosis in OVCA cells via repression of YAP signaling pathway through binding to OTUB2, implicating that OTUB2 may be an effective target for OVCA treatment, and our study results may provide new directions for development of more effective OVCA treatment strategies.


Asunto(s)
Compuestos Alílicos , Compuestos de Bifenilo , Ferroptosis , Lignanos , Neoplasias Ováricas , Fenoles , Humanos , Femenino , Lignanos/farmacología , Ferroptosis/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
20.
Expert Rev Mol Med ; 26: e3, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38525836

RESUMEN

Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.


Asunto(s)
Infarto del Miocardio , Ubiquitina , Humanos , Ubiquitina/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Enzimas Desubicuitinizantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA