Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.641
Filtrar
1.
Food Res Int ; 186: 114161, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729685

RESUMEN

In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, ß-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.


Asunto(s)
Antioxidantes , Caseínas , Enzimas Inmovilizadas , Glutaral , Cabras , Iridoides , Pepsina A , Péptidos , Antioxidantes/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Caseínas/química , Animales , Pepsina A/metabolismo , Pepsina A/química , Glutaral/química , Péptidos/química , Iridoides/química , Hidrólisis , Carbón Orgánico/química
2.
Biomolecules ; 14(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785941

RESUMEN

Only a few halophilic archaea producing carboxylesterases have been reported. The limited research on biocatalytic characteristics of archaeal esterases is primarily due to their very low production in native organisms. A gene encoding carboxylesterase from Halobacterium salinarum NRC-1 was cloned and successfully expressed in Haloferax volcanii. The recombinant carboxylesterase (rHsEst) was purified by affinity chromatography with a yield of 81%, and its molecular weight was estimated by SDS-PAGE (33 kDa). The best kinetic parameters of rHsEst were achieved using p-nitrophenyl valerate as substrate (KM = 78 µM, kcat = 0.67 s-1). rHsEst exhibited great stability to most metal ions tested and some solvents (diethyl ether, n-hexane, n-heptane). Purified rHsEst was effectively immobilized using Celite 545. Esterase activities of rHsEst were confirmed by substrate specificity studies. The presence of a serine residue in rHsEst active site was revealed through inhibition with PMSF. The pH for optimal activity of free rHsEst was 8, while for immobilized rHsEst, maximal activity was at a pH range between 8 to 10. Immobilization of rHsEst increased its thermostability, halophilicity and protection against inhibitors such as EDTA, BME and PMSF. Remarkably, immobilized rHsEst was stable and active in NaCl concentrations as high as 5M. These biochemical characteristics of immobilized rHsEst reveal its potential as a biocatalyst for industrial applications.


Asunto(s)
Carboxilesterasa , Clonación Molecular , Halobacterium salinarum , Proteínas Recombinantes , Carboxilesterasa/genética , Carboxilesterasa/metabolismo , Carboxilesterasa/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Halobacterium salinarum/enzimología , Halobacterium salinarum/genética , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Concentración de Iones de Hidrógeno , Cinética , Estabilidad de Enzimas , Proteínas Arqueales/genética , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Temperatura
3.
ACS Sens ; 9(5): 2662-2672, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38689483

RESUMEN

Dopamine (DA) signaling is critically important in striatal function, and this metabolically demanding process is fueled largely by glucose. However, DA and glucose are typically studied independently and, as such, the precise relationship between DA release and glucose availability remains unclear. Fast-scan cyclic voltammetry (FSCV) is commonly coupled with carbon-fiber microelectrodes to study DA transients. These microelectrodes can be modified with glucose oxidase (GOx) to generate microbiosensors capable of simultaneously quantifying real-time and physiologically relevant fluctuations of glucose, a nonelectrochemically active substrate, and DA, which is readily oxidized and reduced at the electrode surface. A chitosan hydrogel can be electrodeposited to entrap the oxidase enzyme on the sensor surface for stable, sensitive, and selective codetection of glucose and DA using FSCV. This strategy can also be used to entrap lactate oxidase on the carbon-fiber surface for codetection of lactate and DA. However, these custom probes are individually fabricated by hand, and performance is variable. This study characterizes the physical nature of the hydrogel and its effects on the acquired electrochemical data in the detection of glucose (2.6 mM) and DA (1 µM). The results demonstrate that the electrodeposition of the hydrogel membrane is improved using a linear potential sweep rather than a direct step to the target potential. Electrochemical impedance spectroscopy data relate information on the physical nature of the electrode/solution interface to the electrochemical performance of bare and enzyme-modified carbon-fiber microelectrodes. The electrodeposition waveform and scan rate were characterized for optimal membrane formation and performance. Finally, codetection of both DA/glucose and DA/lactate was demonstrated in intact rat striatum using probes fabricated according to the optimized protocol. Overall, this work improves the reliable fabrication of carbon-fiber microbiosensors for codetection of DA and important energetic substrates that are locally delivered to the recording site to meet metabolic demand.


Asunto(s)
Técnicas Biosensibles , Fibra de Carbono , Dopamina , Glucosa Oxidasa , Glucosa , Microelectrodos , Dopamina/análisis , Glucosa/análisis , Fibra de Carbono/química , Técnicas Biosensibles/métodos , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Animales , Carbono/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Hidrogeles/química , Ratas , Ratas Sprague-Dawley , Encéfalo/metabolismo , Quitosano/química , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
4.
Int J Biol Macromol ; 268(Pt 2): 131939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692555

RESUMEN

Human tyrosine hydroxylase (hTH) has key role in the production of catecholamine neurotransmitters. The structure, function and regulation of hTH has been extensively researched area and the possibility of enzyme replacement therapy (ERT) involving hTH through nanocarriers has been raised as well. However, our understanding on how hTH may interact with nanocarriers is still lacking. In this work, we attempted to investigate the immobilization of hTH on magnetic nanoparticles (MNPs) with various surface linkers in quantitative and mechanistic detail. Our results showed that the activity of hTH was retained after immobilization via secondary and covalent interactions as well. The colloidal stability of hTH could be also enhanced proved by Dynamic light scattering and Zeta potential analysis and a homogenous enzyme layer could be achieved, which was investigated by Raman mapping. The covalent attachment of hTH on MNPs via aldehyde or epoxy linkers provide irreversible immobilization and 38.1 % and 16.5 % recovery (ER). The hTH-MNPs catalyst had 25 % ER in average in simulated nasal electrolyte solution (SNES). This outcome highlights the relevance of immobilization applying MNPs as a potential formulation tool of sensitive therapeutic enzymes offering new opportunities for ERT related to neurodegenerative disorders.


Asunto(s)
Enzimas Inmovilizadas , Nanopartículas de Magnetita , Tirosina 3-Monooxigenasa , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Humanos , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/química , Nanopartículas de Magnetita/química , Estabilidad de Enzimas
5.
Bioelectrochemistry ; 158: 108725, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38714062

RESUMEN

An enzymatic amperometric uric acid (UA) biosensor was successfully developed by modifying a screen-printed carbon electrode (SPCE) with Prussian blue-poly(3,4-ethylene dioxythiophene) polystyrene sulfonate composite (PB-PEDOT:PSS). The modified SPCE was coated with gold nanoparticles-graphene oxide-chitosan composite cryogel (AuNPs-GO-CS cry). Uricase (UOx) was directly immobilized via chemisorption on AuNPs. The nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. The electrochemical characterization of the modified electrode was performed by cyclic voltammetry and electrochemical impedance spectroscopy. UA was determined using amperometric detection based on the reduction current of PB which was correlated with the amount of H2O2 produced during the enzymatic reaction. Under optimal conditions, the fabricated UA biosensor in a flow injection analysis (FIA) system produced a linear range from 5.0 to 300 µmol L-1 with a detection limit of 1.88 µmol L-1. The proposed sensor was stable for up to 221 cycles of detection and analysis was rapid (2 min), with good reproducibility (RSDs < 2.90 %, n = 6), negligible interferences, and recoveries from 94.0 ± 3.9 to 101.1 ± 2.6 %. The results of UA detection in blood plasma were in agreement with the enzymatic colorimetric method (P > 0.05).


Asunto(s)
Técnicas Biosensibles , Criogeles , Electrodos , Oro , Grafito , Límite de Detección , Nanopartículas del Metal , Ácido Úrico , Técnicas Biosensibles/métodos , Ácido Úrico/sangre , Ácido Úrico/análisis , Oro/química , Grafito/química , Criogeles/química , Nanopartículas del Metal/química , Carbono/química , Polímeros/química , Porosidad , Análisis de Inyección de Flujo , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Quitosano/química , Poliestirenos/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Humanos , Urato Oxidasa/química , Técnicas Electroquímicas/métodos , Nanocompuestos/química , Ferrocianuros/química
6.
Langmuir ; 40(19): 10261-10269, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38693862

RESUMEN

Carnosine is a natural bioactive dipeptide with important physiological functions widely used in food and medicine. Dipeptidase (PepD) from Serratia marcescens can catalyze the reverse hydrolytic reaction of ß-alanine with l-histidine to synthesize carnosine in the presence of Mn2+. However, it remains challenging to practice carnosine biosynthesis due to the low activity and high cost of the enzyme. Therefore, the development of biocatalysts with high activity and stability is of significance for carnosine synthesis. Here, we proposed to chelate Mn2+ to polyethylenimine (PEI) that induced rapid formation of calcium phosphate nanocrystals (CaP), and Mn-PEI@CaP was used for PepD immobilization via electrostatic interaction. Mn-PEI@CaP as the carrier enhanced the stability of the immobilized enzyme. Moreover, Mn2+ loaded in the carrier acted as an in situ activator of the immobilized PepD for facilitating the biocatalytic process of carnosine synthesis. The as-prepared immobilized enzyme (PepD-Mn-PEI@CaP) kept similar activity with free PepD plus Mn2+ (activity recovery, 102.5%), while exhibiting elevated thermal stability and pH tolerance. Moreover, it exhibited about two times faster carnosine synthesis than the free PepD system. PepD-Mn-PEI@CaP retained 86.8% of the original activity after eight cycles of batch catalysis without the addition of free Mn2+ ions during multiple cycles. This work provides a new strategy for the co-immobilization of PepD and Mn2+, which greatly improves the operability of the biocatalysis and demonstrates the potential of the immobilized PepD system for efficient carnosine synthesis.


Asunto(s)
Fosfatos de Calcio , Carnosina , Dipeptidasas , Enzimas Inmovilizadas , Manganeso , Nanopartículas , Polietileneimina , Carnosina/química , Carnosina/metabolismo , Polietileneimina/química , Manganeso/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Fosfatos de Calcio/química , Nanopartículas/química , Dipeptidasas/metabolismo , Dipeptidasas/química , Serratia marcescens/enzimología , Biocatálisis
7.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731512

RESUMEN

Bioremediation uses the degradation abilities of microorganisms and other organisms to remove harmful pollutants that pollute the natural environment, helping return it to a natural state that is free of harmful substances. Organism-derived enzymes can degrade and eliminate a variety of pollutants and transform them into non-toxic forms; as such, they are expected to be used in bioremediation. However, since enzymes are proteins, the low operational stability and catalytic efficiency of free enzyme-based degradation systems need improvement. Enzyme immobilization methods are often used to overcome these challenges. Several enzyme immobilization methods have been applied to improve operational stability and reduce remediation costs. Herein, we review recent advancements in immobilized enzymes for bioremediation and summarize the methods for preparing immobilized enzymes for use as catalysts and in pollutant degradation systems. Additionally, the advantages, limitations, and future perspectives of immobilized enzymes in bioremediation are discussed.


Asunto(s)
Biodegradación Ambiental , Contaminantes Ambientales , Enzimas Inmovilizadas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/química , Reactores Biológicos , Sustancias Peligrosas/metabolismo
8.
Molecules ; 29(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38792242

RESUMEN

The development of immobilized enzymes with high activity and stability is critical. Metal-organic frameworks (MOFs) have attracted much academic and industrial interest in the field of enzyme immobilization due to their unique properties. In this study, the amino-functionalized ionic liquid (NIL)-modified metal-organic framework (UiO-66-NH2) was prepared to immobilize Candida rugosa lipase (CRL), using dialdehyde starch (DAS) as the cross-linker. The results of the Fourier transform infrared (FT-IR) spectra, X-ray powder diffraction (XRD), and scanning electronic microscopy (SEM) confirmed that the NIL was successfully grafted to UiO-66-NH2. The CRL immobilized on NIL-modified UiO-66-NH2 (UiO-66-NH2-NIL-DAS@CRL) exhibited satisfactory activity recovery (79.33%), stability, reusability, and excellent organic solvent tolerance. The research results indicated that ionic liquid-modified UiO-66-NH2 had practical potential for application in enzyme immobilization.


Asunto(s)
Enzimas Inmovilizadas , Líquidos Iónicos , Lipasa , Estructuras Metalorgánicas , Lipasa/química , Lipasa/metabolismo , Líquidos Iónicos/química , Enzimas Inmovilizadas/química , Estructuras Metalorgánicas/química , Estabilidad de Enzimas , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Almidón/química , Almidón/análogos & derivados , Saccharomycetales/enzimología , Ácidos Ftálicos
9.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791124

RESUMEN

The use of lipase immobilized on an octyl-agarose support to obtain the optically pure enantiomers of chiral drugs in reactions carried out in organic solvents is a great challenge for chemical and pharmaceutical sciences. Therefore, it is extremely important to develop optimal procedures to achieve a high enantioselectivity of the biocatalysts in the organic medium. Our paper describes a new approach to biocatalysis performed in an organic solvent with the use of CALB-octyl-agarose support including the application of a polypropylene reactor, an appropriate buffer for immobilization (Tris base-pH 9, 100 mM), a drying step, and then the storage of immobilized lipases in a climatic chamber or a refrigerator. An immobilized lipase B from Candida antarctica (CALB) was used in the kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification with methanol, reaching a high enantiomeric excess (eep = 89.6 ± 2.0%). As part of the immobilization optimization, the influence of different buffers was investigated. The effect of the reactor material and the reaction medium on the lipase activity was also studied. Moreover, the stability of the immobilized lipases: lipase from Candida rugosa (CRL) and CALB during storage in various temperature and humidity conditions (climatic chamber and refrigerator) was tested. The application of the immobilized CALB in a polypropylene reactor allowed for receiving over 9-fold higher conversion values compared to the results achieved when conducting the reaction in a glass reactor, as well as approximately 30-fold higher conversion values in comparison with free lipase. The good stability of the CALB-octyl-agarose support was demonstrated. After 7 days of storage in a climatic chamber or refrigerator (with protection from humidity) approximately 60% higher conversion values were obtained compared to the results observed for the immobilized form that had not been stored. The new approach involving the application of the CALB-octyl-agarose support for reactions performed in organic solvents indicates a significant role of the polymer reactor material being used in achieving high catalytic activity.


Asunto(s)
Biocatálisis , Enzimas Inmovilizadas , Proteínas Fúngicas , Lipasa , Sefarosa , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Sefarosa/química , Propionatos/química , Estereoisomerismo , Cinética , Esterificación , Temperatura , Estabilidad de Enzimas , Candida/enzimología , Solventes/química , Saccharomycetales
10.
Inorg Chem ; 63(21): 9801-9808, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38743640

RESUMEN

Enzyme immobilization within metal-organic frameworks (MOFs) is a promising solution to avoid denaturation and thereby utilize the desirable properties of enzymes outside of their native environments. The biomimetic mineralization strategy employs biomacromolecules as nucleation agents to promote the crystallization of MOFs in water at room temperature, thus overcoming pore size limitations presented by traditional postassembly encapsulation. Most biomimetic crystallization studies reported to date have employed zeolitic imidazole frameworks (ZIFs). Herein, we expand the library of MOFs suitable for biomimetic mineralization to include zinc(II) MOFs incorporating functionalized terephthalic acid linkers and study the catalytic performance of the enzyme@MOFs. Amine functionalization of terephthalic acids is shown to accelerate the formation of crystalline MOFs enabling new enzyme@MOFs to be synthesized. The structure and morphology of the enzyme@MOFs were characterized by PXRD, FTIR, and SEM-EDX, and the catalytic potential was evaluated. Increasing the linker length while retaining the amino moiety gave rise to a family of linkers; however, MOFs generated with the 2,2'-aminoterephthalic acid linker displayed the best catalytic performance. Our data also illustrate that the pH of the reaction mixture affects the crystal structure of the MOF and that this structural transformation impacts the catalytic performance of the enzyme@MOF.


Asunto(s)
Ácidos Carboxílicos , Cristalización , Estructuras Metalorgánicas , Temperatura , Agua , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Ácidos Carboxílicos/química , Agua/química , Ácidos Ftálicos/química , Materiales Biomiméticos/química , Materiales Biomiméticos/síntesis química , Estructura Molecular , Zinc/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Aminas/química , Catálisis
11.
Food Chem ; 451: 139496, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703729

RESUMEN

Ochratoxin A (OTA) is a mycotoxin that globally contaminates fruits and their products. Since OTA have a huge negative impact on health hazards and economic losses, it is imperative to establish an effective and safe strategy for detoxification. Here, pancreatin was immobilized on the surface of polydopamine functionalized magnetic porous chitosan (MPCTS@ PDA) for the degradation of OTA. Compared with free pancreatin, MPCTS@ PDA@ pancreatin displayed excellent thermal stability, acid resistance, storage stability and OTA detoxification in wine (>58%). Moreover, the MPCTS@ PDA@ pancreatin retained 43% initial activity after 8 reuse cycles. There was no significant change in the quality of wine after MPCTS@ PDA@ pancreatin treatment. Moreover, it did not exhibit cytotoxicity which facilitated its application in wine. These results demonstrated that MPCTS@ PDA@ pancreatin can be used as a highly effective biocatalysate for OTA detoxification in wine.


Asunto(s)
Quitosano , Contaminación de Alimentos , Indoles , Ocratoxinas , Pancreatina , Polímeros , Vino , Ocratoxinas/química , Ocratoxinas/análisis , Vino/análisis , Indoles/química , Polímeros/química , Quitosano/química , Porosidad , Pancreatina/química , Pancreatina/metabolismo , Contaminación de Alimentos/análisis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
12.
Int J Biol Macromol ; 269(Pt 2): 132196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723818

RESUMEN

Enzymatic synthesis of biochemicals in vitro is vital in synthetic biology for its efficiency, minimal by-products, and easy product separation. However, challenges like enzyme preparation, stability, and reusability persist. Here, we introduced a protein scaffold and biosilicification coupled system, providing a singular process for the purification and immobilization of multiple enzymes. Using d-mannitol as a model, we initially constructed a self-assembling EE/KK protein scaffold for the co-immobilization of glucose dehydrogenase and mannitol dehydrogenase. Under an enzyme-to-scaffold ratio of 1:8, a d-mannitol yield of 0.692 mol/mol was achieved within 4 h, 2.16-fold higher than the free enzymes. The immobilized enzymes retained 70.9 % of the initial joint activity while the free ones diminished nearly to inactivity after 8 h. Furthermore, we incorporated the biosilicification peptide CotB into the EE/KK scaffold, inducing silica deposition, which enabled the one-step purification and immobilization process assisted by Spy/Snoop protein-peptide pairs. The coupled system demonstrated a comparable d-mannitol yield to that of EE/KK scaffold and 1.34-fold higher remaining activities after 36 h. Following 6 cycles of reaction, the immobilized system retained the capability to synthesize 56.4 % of the initial d-mannitol titer. The self-assembly co-immobilization platform offers an effective approach for enzymatic synthesis of d-mannitol and other biochemicals.


Asunto(s)
Enzimas Inmovilizadas , Manitol , Manitol/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa 1-Deshidrogenasa/metabolismo , Glucosa 1-Deshidrogenasa/química , Manitol Deshidrogenasas/metabolismo , Manitol Deshidrogenasas/química
13.
Int J Biol Macromol ; 269(Pt 1): 132021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697441

RESUMEN

Challenges in enzyme and product recovery are currently intriguing in modern biotechnology. Coping enzyme stability, shelf life and efficiency, nanomaterials-based immobilization were epitomized of industrial practice. Herein, a α-amylase from Geobacillus thermoleovorans was purified and bound effectively on to a modified 3-Aminopropyltriethoxysilane (APTES)-Fe3O4 nanoparticle. It was revealed that the carrier-bound enzyme catalysis (pH 8 and 60 °C) was significant in contrast to the free enzyme (pH 7.5 and 55 °C). Furthermore, Zn2+ and Cu2+ were shown to cause inhibitory effects in both enzyme states. Unlike chloroform, toluene, benzene, and butanol, minimal effects were observed with ethanol, acetone, and hexane. The bound enzyme retained 27.4 % of its initial activity after being stored for 36 days. In addition, the reusability of the bound enzyme showed a gradual decline in activity after the first cycle; however, after 13 cycles, its residual activity at 53 % was observed. These data proved significant enough to use this enzyme for industrial starch and analogous substrate bio-processing.


Asunto(s)
Estabilidad de Enzimas , Enzimas Inmovilizadas , Propilaminas , alfa-Amilasas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Propilaminas/química , Silanos/química , Geobacillus/enzimología , Temperatura , Concentración de Iones de Hidrógeno , Biocatálisis , Catálisis , Nanopartículas de Magnetita/química , Almidón/química
14.
Microb Cell Fact ; 23(1): 155, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802857

RESUMEN

BACKGROUND: Rhizomucor miehei (RM) lipase is a regioselective lipase widely used in food, pharmaceutical and biofuel industries. However, the high cost and low purity of the commercial RM lipase limit its industrial applications. Therefore, it is necessary to develop cost-effective strategies for large-scale preparation of this lipase. The present study explored the high-level expression of RM lipase using superfolder green fluorescent protein (sfGFP)-mediated Escherichia coli secretion system. RESULTS: The sfGFP(-15) mutant was fused to the C-terminus of RM lipase to mediate its secretion expression. The yield of the fusion protein reached approximately 5.1 g/L with high-density fermentation in 5-L fermentors. Unlike conventional secretion expression methods, only a small portion of the target protein was secreted into the cell culture while majority of the fusion protein was still remained in the cytoplasm. However, in contrast to intracellular expression, the target protein in the cytoplasm could be transported efficiently to the supernatant through a simple washing step with equal volume of phosphate saline (PBS), without causing cell disruption. Hence, the approach facilitated the downstream purification step of the recombinant RM lipase. Moreover, contamination or decline of the engineered strain and degradation or deactivation of the target enzyme can be detected efficiently because they exhibited bright green fluorescence. Next, the target protein was immobilized with anion-exchange and macropore resins. Diethylaminoethyl sepharose (DEAE), a weak-basic anion-exchange resin, exhibited the highest bind capacity but inhibited the activity of RM lipase dramatically. On the contrary, RM lipase fixed with macropore resin D101 demonstrated the highest specific activity. Although immobilization with D101 didn't improve the activity of the enzyme, the thermostability of the immobilized enzyme elevated significantly. The immobilized RM lipase retained approximately 90% of its activity after 3-h incubation at 80 °C. Therefore, D101 was chosen as the supporting material of the target protein. CONCLUSION: The present study established a highly efficient strategy for large-scale preparation of RM lipase. This innovative technique not only provides high-purity RM lipase at a low cost but also has great potential as a platform for the preparation of lipases in the future.


Asunto(s)
Escherichia coli , Lipasa , Rhizomucor , Lipasa/genética , Lipasa/metabolismo , Lipasa/química , Rhizomucor/enzimología , Rhizomucor/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/química , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/biosíntesis , Fermentación
15.
Int J Biol Macromol ; 269(Pt 1): 132075, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705317

RESUMEN

Carbonic anhydrase (CA) has a promising application as a green and efficient biocatalyst for CO2 capture, and many successful cases of immobilizing CA have been reported. However, CA antifouling coatings on metal for CO2 sequestration have rarely been reported. Herein, dimeric CA from Sulfurihydrogenibium azorense (SazCA) with a ferritin tag, which was prepared by low-speed centrifugation with high yield, was adopted as a free enzyme and encapsulated in the sol-gel silica. The silica-immobilized CAs were dispersed into the commercialized metal-antifouling epoxy resin paint to obtain CA coated nickel foams, which had excellent stability, with 90 % and 67 % residual activity after 28 days of incubation at 30 °C and 60 °C, respectively. The CA coated nickel foams remained 60 % original activity after 6 cycles of use within 28 days. Then, a CA-microalgae carbon capture device was constructed using the CA coated nickel foams and Chlorella. The growth rate of Chlorella was significantly increased and the biomass of Chlorella increased by 29 % compared with control after 7 days of incubation. Due to the simple and cost-effective preparation process, sustainable and efficient CO2 absorption, this easy-to-scale up CA coated nickel foam has great potential in CA assisted microalgae-based CO2 capture and carbon neutrality.


Asunto(s)
Dióxido de Carbono , Anhidrasas Carbónicas , Enzimas Inmovilizadas , Microalgas , Dióxido de Silicio , Dióxido de Carbono/química , Dióxido de Silicio/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/química , Níquel/química , Resinas Epoxi/química , Incrustaciones Biológicas/prevención & control
16.
Sci Rep ; 14(1): 8820, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627424

RESUMEN

Zinc ferrite nanoparticles (ZnF NPs) were synthesized by a green method using Psidium guava Leaves extract and characterized via structural and optical properties. The surface of ZnF NPs was stabilized with citric acid (CA) by a direct addition method to obtain (ZnF-CA NPs), and then lipase (LP) enzyme was immobilized on ZnF-CA NPs to obtain a modified ZnF-CA-LP nanocomposite (NCs). The prepared sample's photocatalytic activity against Methylene blue dye (MB) was determined. The antioxidant activity of ZnF-CA-LP NCs was measured using 1,1-diphenyl-2-picryl hydrazyl (DPPH) as a source of free radicals. In addition, the antibacterial and antibiofilm capabilities of these substances were investigated by testing them against gram-positive Staphylococcus aureus (S. aureus ATCC 25923) and gram-negative Escherichia coli (E. coli ATCC 25922) bacterial strains. The synthesized ZnF NPs were discovered to be situated at the core of the material, as determined by XRD, HRTEM, and SEM investigations, while the CA and lipase enzymes were coated in this core. The ZnF-CA-LP NCs crystallite size was around 35.0 nm at the (311) plane. Results obtained suggested that 0.01 g of ZnF-CA-LP NCs achieved 96.0% removal of 5.0 ppm of MB at pH 9.0. In-vitro zone of inhibition (ZOI) and minimum inhibitory concentration (MIC) results verified that ZnF-CA-LP NCs exhibited its encouraged antimicrobial activity against S. aureus and E. coli (20.0 ± 0.512, and 27.0 ± 0.651 mm ZOI, respectively) & (1.25, and 0.625 µg/ml MIC, respectively). ZnF-CA-LP NPs showed antibiofilm percentage against S. aureus (88.4%) and E. coli (96.6%). Hence, ZnF-CA-LP NCs are promising for potential applications in environmental and biomedical uses.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas del Metal , Psidium , Nanopartículas del Metal/química , Enzimas Inmovilizadas , Lipasa , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
17.
Int J Biol Macromol ; 268(Pt 2): 131787, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657939

RESUMEN

Chitin oligosaccharides (CTOS) possess potential applications in food, medicine, and agriculture. However, lower mass transfer and catalytic efficiency are the main kinetic limitations for the production of CTOS from shrimp shell waste (SSW) and crystalline chitin. Chemical or physical methods are usually used for pretreatment to improve chitinase hydrolysis efficiency, but this is not eco-friendly and cost-effective. To address this challenge, a chitinase nanoreactor with the liquid-solid system (BcChiA1@ZIF-8) was manufactured to boost the one-step degradation of SSW and crystalline chitin. Compared with free enzyme, the catalytic efficiency of BcChiA1@ZIF-8 on colloidal chitin was significantly improved to 142 %. SSW and crystalline chitin can be directly degraded by BcChiA1@ZIF-8 without any pretreatments. The yield of N, N'-diacetylchitobiose [(GlcNAc)2] from SSW and N-acetyl-D-glucosamine (GlcNAc) from crystalline chitin was 2 times and 3.1 times than that of free enzyme, respectively. The reason was that BcChiA1@ZIF-8 with a liquid-solid system enlarged the interface area, increased the collision frequency between enzyme and substrate, and improved the large-substrates binding activity of chitinase. Moreover, the biphasic system exhibited excellent stability, and the design showed universal applicability. This strategy provided novel guidance for other polysaccharide biosynthesis and the conversion of environmental waste into carbohydrates.


Asunto(s)
Exoesqueleto , Quitina , Quitinasas , Oligosacáridos , Quitina/química , Quitina/metabolismo , Animales , Quitinasas/metabolismo , Quitinasas/química , Oligosacáridos/química , Exoesqueleto/química , Hidrólisis , Reactores Biológicos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Crustáceos , Cinética , Residuos , Penaeidae/enzimología
18.
Int J Biol Macromol ; 268(Pt 2): 131697, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688333

RESUMEN

Immobilization technology plays an important role in enhancing enzyme stability and environmental adaptability. Despite its rapid development, this technology still encounters many challenges such as enzyme leakage, difficulties in large-scale implementation, and limited reusability. Drawing inspiration from natural paired molecules, this study aimed to establish a method for immobilized α-glucosidase using artificial antibody-antigen interaction. The proposed method consists of three main parts: synthesis of artificial antibodies, synthesis of artificial antigens, and assembly of the artificial antibody-antigen complex. The critical step in this method involves selecting a pair of structurally similar compounds: catechol as a template for preparing artificial antibodies and protocatechualdehyde for modifying the enzyme to create the artificial antigens. By utilizing the same functional groups in these compounds, specific recognition of the antigen by the artificial antibody can be achieved, thereby immobilizing the enzymes. The results demonstrated that the immobilization amount, specific activity, and enzyme activity of the immobilized α-glucosidase were 25.09 ± 0.10 mg/g, 5.71 ± 0.17 U/mgprotein and 143.25 ± 1.71 U/gcarrier, respectively. The immobilized α-glucosidase not only exhibited excellent reusability but also demonstrated remarkable performance in catalyzing the hydrolysis of 4-methylumbelliferyl-α-D-glucopyranoside.


Asunto(s)
Enzimas Inmovilizadas , Himecromona , alfa-Glucosidasas , Enzimas Inmovilizadas/química , alfa-Glucosidasas/química , alfa-Glucosidasas/inmunología , Himecromona/química , Himecromona/análogos & derivados , Biocatálisis , Estabilidad de Enzimas , Hidrólisis , Biomimética/métodos , Cinética , Anticuerpos/química , Anticuerpos/inmunología , Materiales Biomiméticos/química , Complejo Antígeno-Anticuerpo/química , Concentración de Iones de Hidrógeno
19.
Talanta ; 274: 126042, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583326

RESUMEN

This work emphasizes the utilization of biochar, a renewable material, as an interesting platform for anchoring redox mediators and bioreceptors in the development of economic, environmentally friendly biosensors. In this context, Fe(III) ions were preconcentrated on highly functionalized activated biochar, allowing the stable synthesis of Prussian blue nanostructures with an average size of 58.3 nm. The determination of glucose was carried out by indirectly monitoring the hydrogen peroxide generated through the enzymatic reaction, followed by its subsequent redox reaction with reduced Prussian blue (also known as Prussian white) in a typical electrochemical-chemical mechanism. The EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-Hydroxysuccinimide) pair was employed for the stable covalent immobilization of the enzyme on biochar. The biosensor demonstrated good enzyme-substrate affinity, as evidenced by the Michaelis-Menten apparent kinetic constant (4.16 mmol L-1), and analytical performance with a wide linear dynamic response range (0.05-5.0 mmol L-1), low limits of detection (0.94 µmol L-1) and quantification (3.13 µmol L-1). Additionally, reliable repeatability, reproducibility, stability, and selectivity were obtained for the detection of glucose in both real and spiked human saliva and blood serum samples.


Asunto(s)
Técnicas Biosensibles , Carbón Orgánico , Ferrocianuros , Glucosa , Nanoestructuras , Ferrocianuros/química , Técnicas Biosensibles/métodos , Nanoestructuras/química , Carbón Orgánico/química , Glucosa/análisis , Glucosa/química , Humanos , Enzimas Inmovilizadas/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Glucemia/análisis , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Límite de Detección
20.
Talanta ; 274: 126007, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583331

RESUMEN

Hypoxanthine (Hx), produced by adenosine triphosphate (ATP) metabolism, is a valuable indicator that determines the quality and degradation status of meat products and is also an important biochemical marker to certain diseases such as gout. The rapid emergence of paper-based enzyme biosensors has already revolutionized its on-site determination. But it is still limited by the complex patterning and fabrication, unstable enzyme and uneven coloration. This work aims to develop an eco-friendly method to construct engineered paper microfluidic, which seeks to produce reaction and non-reaction zones without any patterning procedure. Chito-oligosaccharide (COS), derived from shrimp shells, was used to modify nitrocellulose membranes and immobilize xanthine oxidase (XOD) and chromogenic agent of nitro blue tetrazolium chloride (NBT). After modification, micro fluids could converge into the modification area and Hx could be detected by XOD-catalyzed conversion. Due to the positively charged cationic basic properties of COS, the enzyme storage stability and the color homogeneity could be greatly strengthened through the electrostatic attraction between COS and XOD and formazan product. The detection limit (LOD) is 2.30 µM; the linear range is 0.05-0.35 mM; the complete test time can be as short as 5 min. The COS-based biosensor shows high specificity and can be used directly for Hx in complex samples such as fish and shrimp samples, and different broths. This biosensor is eco-friendly, nontechnical, economical and therefore a compelling platform for on-site or home-based detection of food freshness.


Asunto(s)
Técnicas Biosensibles , Colodión , Hipoxantina , Oligosacáridos , Xantina Oxidasa , Animales , Oligosacáridos/química , Oligosacáridos/análisis , Técnicas Biosensibles/métodos , Hipoxantina/análisis , Hipoxantina/química , Colodión/química , Xantina Oxidasa/química , Xantina Oxidasa/metabolismo , Peces , Quitina/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Tecnología Química Verde/métodos , Propiedades de Superficie , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA