Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.258
Filtrar
1.
Biol Direct ; 19(1): 35, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715121

RESUMEN

BACKGROUND: Ubiquitin-conjugating enzyme E2 N (UBE2N) is recognized in the progression of some cancers; however, little research has been conducted to describe its role in prostate cancer. The purpose of this paper is to explore the function and mechanism of UBE2N in prostate cancer cells. METHODS: UBE2N expression was detected in Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data, prostate cancer tissue microarrays, and prostate cancer cell lines, respectively. UBE2N knockdown or overexpression was used to analyze its role in cell viability and glycolysis of prostate cancer cells and tumor growth. XAV939 or Axin1 overexpression was co-treated with UBE2N overexpression to detect the involvement of the Wnt/ß-catenin signaling and Axin1 in the UBE2N function. UBE2N interacting with Axin1 was analyzed by co-immunoprecipitation assay. RESULTS: UBE2N was upregulated in prostate cancer and the UBE2N-high expression correlated with the poor prognosis of prostate cancer. UBE2N knockdown inhibited cell viability and glycolysis in prostate cancer cells and restricted tumor formation in tumor-bearing mice. Wnt/ß-catenin inhibition and Axin1 overexpression reversed the promoting viability and glycolysis function of UBE2N. UBE2N promoted Axin1 ubiquitination and decreased Axin1 protein level.


Asunto(s)
Proteína Axina , Supervivencia Celular , Glucólisis , Neoplasias de la Próstata , Enzimas Ubiquitina-Conjugadoras , Ubiquitinación , Animales , Humanos , Masculino , Ratones , Proteína Axina/metabolismo , Proteína Axina/genética , Línea Celular Tumoral , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Vía de Señalización Wnt
2.
BMC Biol ; 22(1): 105, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702628

RESUMEN

BACKGROUND: Histone H3K4 tri-methylation (H3K4me3) catalyzed by Set1/COMPASS, is a prominent epigenetic mark found in promoter-proximal regions of actively transcribed genes. H3K4me3 relies on prior monoubiquitination at the histone H2B (H2Bub) by Rad6 and Bre1. Swd2/Cps35, a Set1/COMPASS component, has been proposed as a key player in facilitating H2Bub-dependent H3K4me3. However, a more comprehensive investigation regarding the relationship among Rad6, Swd2, and Set1 is required to further understand the mechanisms and functions of the H3K4 methylation. RESULTS: We investigated the genome-wide occupancy patterns of Rad6, Swd2, and Set1 under various genetic conditions, aiming to clarify the roles of Set1 and Rad6 for occupancy of Swd2. Swd2 peaks appear on both the 5' region and 3' region of genes, which are overlapped with its tightly bound two complexes, Set1 and cleavage and polyadenylation factor (CPF), respectively. In the absence of Rad6/H2Bub, Set1 predominantly localized to the 5' region of genes, while Swd2 lost all the chromatin binding. However, in the absence of Set1, Swd2 occupancy near the 5' region was impaired and rather increased in the 3' region. CONCLUSIONS: This study highlights that the catalytic activity of Rad6 is essential for all the ways of Swd2's binding to the transcribed genes and Set1 redistributes the Swd2 to the 5' region for accomplishments of H3K4me3 in the genome-wide level.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Metilación , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
3.
BMC Plant Biol ; 24(1): 341, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671351

RESUMEN

BACKGROUND: Ubiquitination is an important regulatory step of selective protein degradation in the plant UPS (ubiquitin-proteasome system), which is involved in various biological processes in eukaryotes. Ubiquitin-conjugating enzymes play an intermediate role in the process of protein ubiquitination reactions and thus play an essential role in regulating plant growth and response to adverse environmental conditions. However, a genome-wide analysis of the UBC gene family in wheat (Triticum aestivum L.) has not yet been performed. RESULTS: In this study, the number, physiochemical properties, gene structure, collinearity, and phylogenetic relationships of TaUBC family members in wheat were analyzed using bioinformatics methods. The expression pattern of TaUBC genes in different tissues/organs and developmental periods, as well as the transcript levels under abiotic stress treatment, were analyzed using RNA-Seq data and qRT-PCR. Meanwhile, favorable haplotypes of TaUBC25 were investigated based on wheat resequencing data of 681 wheat cultivars from the Wheat Union Database. The analyses identified a total of 93 TaUBC family members containing a UBC domain in wheat genome. These genes were unevenly distributed across 21 chromosomes, and numerous duplication events were observed between gene members. Based on phylogenetic analysis, the TaUBC family was divided into 13 E2 groups and a separate UEV group. We investigated the expression of TaUBC family genes under different tissue/organ and stress conditions by quantitative real-time PCR (qRT-PCR) analysis. The results showed that some TaUBC genes were specifically expressed in certain tissues/organs and that most TaUBC genes responded to NaCl, PEG6000, and ABA treatment with different levels of expression. In addition, we performed association analysis for the two haplotypes based on key agronomic traits such as thousand-kernel weight (TKW), kernel length (KL), kernel weight (KW), and kernel thickness (KT), examining 122 wheat accessions at three environmental sites. The results showed that TaUBC25-Hap II had significantly higher TKW, KL, KW, and KT than TaUBC25-Hap I. The distribution analysis of haplotypes showed that TaUBC25-Hap II was preferred in the natural population of wheat. CONCLUSION: Our results identified 93 members of the TaUBC family in wheat, and several genes involved in grain development and abiotic stress response. Based on the SNPs detected in the TaUBC sequence, two haplotypes, TaUBC25-Hap I and TaUBC25-Hap II, were identified among wheat cultivars, and their potential value for wheat breeding was validated by association analysis. The above results provide a theoretical basis for elucidating the evolutionary relationships of the TaUBC gene family and lay the foundation for studying the functions of family members in the future.


Asunto(s)
Familia de Multigenes , Filogenia , Triticum , Enzimas Ubiquitina-Conjugadoras , Triticum/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Estrés Fisiológico/genética , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estudio de Asociación del Genoma Completo , Perfilación de la Expresión Génica
4.
Front Biosci (Landmark Ed) ; 29(4): 134, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682180

RESUMEN

BACKGROUND: Immune escape is a key factor influencing survival rate of lung adenocarcinoma (LUAD) patients, but molecular mechanism of ubiquitin binding enzyme E2T (UBE2T) affecting immune escape of LUAD remains unclear. The objective was to probe role of UBE2T in LUAD. METHODS: Bioinformatics means were adopted for analyzing UBE2T and forkhead box A1 (FOXA1) expression in LUAD tissues, the gene binding sites, the pathway UBE2T regulates, and the correlation between UBE2T and glycolysis genes. Dual luciferase and chromatin immunoprecipitation (ChIP) assays were conducted for validating the binding relationship between the two genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were employed to evaluate UBE2T, FOXA1, and programmed death ligand 1 (PD-L1) levels in cancer cells. MTT assay was conducted for detecting cell viability. Cytotoxicity assay detected CD8+T cell toxicity. Cytokine expression was assayed by enzyme linked immunosorbent assay (ELISA). Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were assayed by extracellular flow analyzer. Glycolytic gene expression was analyzed by qRT-PCR, and glycolysis-related indicators were detected by ELISA. Immunohistochemistry (IHC) detected CD8+T cell infiltration in tumor tissues. RESULTS: FOXA1 and UBE2T were up-regulated in LUAD, and a binding site existed between UBE2T and FOXA1. Overexpressing UBE2T could increase PD-L1 expression and inhibit toxicity of CD8+T cells to LUAD cells. Overexpressing UBE2T repressed CD8+T cell activity in LUAD by activating the glycolysis pathway, and the addition of glycolysis inhibitor 2-deoxy-d-glucose (2-DG) reversed the above results. Mechanistically, FOXA1 promoted the immune escape of LUAD by up-regulating UBE2T and thus mediating glycolysis. In vivo experiments revealed that UBE2T knockdown hindered tumor growth, inhibited PD-L1 expression, and facilitated CD8+T cell infiltration. CONCLUSION: FOXA1 up-regulated the expression of UBE2T, which activated glycolysis, and thus inhibited activity of CD8+T cells, causing immune escape of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Linfocitos T CD8-positivos , Glucólisis , Factor Nuclear 3-alfa del Hepatocito , Neoplasias Pulmonares , Enzimas Ubiquitina-Conjugadoras , Humanos , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Ratones , Ratones Desnudos , Escape del Tumor/genética , Femenino , Masculino
5.
J Cancer Res Clin Oncol ; 150(4): 210, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656363

RESUMEN

PURPOSE: Gastric cancer (GC) is prevalent as one of the most common malignant tumors globally, with a particularly high incidence in China. The role of UBE2L3 in the initiation and progression of various cancers has been well documented, but its specific significance in GC is not yet fully elucidated. The objective of this study is to examine the expression and importance of UBE2L3 in human gastric cancer tissues. METHODS: Immunohistochemical staining and survival analysis were conducted on 125 cases of GC. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to assess the expression of UBE2L3 in GC cell lines. Cell lines with UBE2L3 knockdown and overexpression were cultured through lentivirus transfection and subsequently assessed using Western blot analysis. The involvement of UBE2L3 in the proliferation, invasion, and apoptosis of GC cells was confirmed through in vitro experiments, and its capacity to facilitate tumor growth was also validated in in vivo studies. RESULTS: The up-regulation of UBE2L3 expression was observed in GC, and its high expression was found to be significantly associated with the degree of differentiation (χ2 = 6.153, P = 0.0131), TNM stage (χ2 = 6.216, P = 0.0447), and poor overall survival. In vitro, UBE2L3 has been shown to enhance functions in GC cell lines, such as promoting proliferation and invasion, and inhibiting apoptosis. In vivo experiments have validated the role of UBE2L3 in promoting tumor growth. CONCLUSIONS: The findings of our study demonstrate the significant involvement of UBE2L3 in the pathogenesis and advancement of gastric cancer, suggesting its potential as a therapeutic target.


Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias Gástricas , Enzimas Ubiquitina-Conjugadoras , Humanos , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Animales , Línea Celular Tumoral , Ratones , Ratones Desnudos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Regulación Neoplásica de la Expresión Génica , Anciano , Ratones Endogámicos BALB C , Relevancia Clínica
6.
Cancer Rep (Hoboken) ; 7(4): e2032, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577722

RESUMEN

BACKGROUND: The diverse and complex attributes of cancer have made it a daunting challenge to overcome globally and remains to endanger human life. Detection of critical cancer-related gene alterations in solid tumor samples better defines patient diagnosis and prognosis, and indicates what targeted therapies must be administered to improve cancer patients' outcome. MATERIALS AND METHODS: To identify genes that have aberrant expression across different cancer types, differential expressed genes were detected within the TCGA datasets. Subsequently, the DEGs common to all pan cancers were determined. Furthermore, various methods were employed to gain genetic alterations, co-expression genes network and protein-protein interaction (PPI) network, pathway enrichment analysis of common genes. Finally, the gene regulatory network was constructed. RESULTS: Intersectional analysis identified UBE2C as a common DEG between all 28 types of studied cancers. Upregulated UBE2C expression was significantly correlated with OS and DFS of 10 and 9 types of cancer patients. Also, UBE2C can be a diagnostic factor in CESC, CHOL, GBM, and UCS with AUC = 100% and diagnose 19 cancer types with AUC ≥90%. A ceRNA network constructed including UBE2C, 41 TFs, 10 shared miRNAs, and 21 circRNAs and 128 lncRNAs. CONCLUSION: In summary, UBE2C can be a theranostic gene, which may serve as a reliable biomarker in diagnosing cancers, improving treatment responses and increasing the overall survival of cancer patients and can be a promising gene to be target by cancer drugs in the future.


Asunto(s)
Biomarcadores , Neoplasias , Enzimas Ubiquitina-Conjugadoras , Humanos , Biomarcadores/metabolismo , Biología Computacional/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Pronóstico , Mapas de Interacción de Proteínas/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
7.
Nat Commun ; 15(1): 2211, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480722

RESUMEN

Low-temperature germination (LTG) is an important agronomic trait for rice (Oryza sativa). Japonica rice generally has greater capacity for germination at low temperatures than the indica subpopulation. However, the genetic basis and molecular mechanisms underlying this complex trait are poorly understood. Here, we report that OsUBC12, encoding an E2 ubiquitin-conjugating enzyme, increases low-temperature germinability in japonica, owing to a transposon insertion in its promoter enhancing its expression. Natural variation analysis reveals that transposon insertion in the OsUBC12 promoter mainly occurs in the japonica lineage. The variation detected in eight representative two-line male sterile lines suggests the existence of this allele introgression by indica-japonica hybridization breeding, and varieties carrying the japonica OsUBC12 locus (transposon insertion) have higher low-temperature germinability than varieties without the locus. Further molecular analysis shows that OsUBC12 negatively regulate ABA signaling. OsUBC12-regulated seed germination and ABA signaling mainly depend on a conserved active site required for ubiquitin-conjugating enzyme activity. Furthermore, OsUBC12 directly associates with rice SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 1.1 (OsSnRK1.1), promoting its degradation. OsSnRK1.1 inhibits LTG by enhancing ABA signaling and acts downstream of OsUBC12. These findings shed light on the underlying mechanisms of UBC12 regulating LTG and provide genetic reference points for improving LTG in indica rice.


Asunto(s)
Germinación , Oryza , Germinación/genética , Oryza/metabolismo , Sitios de Carácter Cuantitativo/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Fitomejoramiento , Frío
8.
Exp Gerontol ; 188: 112391, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437929

RESUMEN

Diabetic retinopathy (DR) is the most common ocular fundus disease in diabetic patients. Chronic hyperglycemia not only promotes the development of diabetes and its complications, but also aggravates the occurrence of senescence. Previous studies have shown that DR is associated with senescence, but the specific mechanism has not been fully elucidated. Here, we first detected the differentially expressed genes (DEGs) and cellular senescence level of db/db mouse retinas by bulk RNA sequencing. Then, we used single-cell sequencing (scRNA-seq) to identify the main cell types in the retina and analyzed the DEGs in each cluster. We demonstrated that p53 expression was significantly increased in retinal endothelial cell cluster of db/db mice. Inhibition of p53 can reduce the expression of SA-ß-Gal and the senescence-associated secretory phenotype (SASP) in HRMECs. Finally, we found that p53 can promote FoxO3a ubiquitination and degradation by increasing the expression of the ubiquitin-conjugating enzyme UBE2L6. Overall, our results demonstrate that p53 can accelerate the senescence process of endothelial cells and aggravate the development of DR. These data reveal new targets and insights that may be used to treat DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Humanos , Ratones , Senescencia Celular/genética , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Retina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
9.
FEBS Lett ; 598(6): 702-715, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439679

RESUMEN

Ubiquitination is a cascade reaction involving E1, E2, and E3 enzymes. The orthogonal ubiquitin transfer (OUT) method has been previously established to identify potential substrates of E3 ligases. In this study, we verified the ubiquitination of five substrates mediated by the E3 ligases CHIP and E4B. To further explore the activity of U-box domains of E3 ligases, two mutants with the U-box domains interchanged between CHIP and E4B were generated. They exhibited a significantly reduced ubiquitination ability. Additionally, different E3s recruited similar E2 ubiquitin-conjugating enzymes when ubiquitinating the same substrates, highlighting that U-box domains determined the E2 recruitment, while the substrate determined the E2 selectivity. This study reveals the influence of substrates and U-box domains on E2 recruitment, providing a novel perspective on the function of U-box domains of E3 ligases.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
10.
Commun Biol ; 7(1): 382, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553562

RESUMEN

Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.


Asunto(s)
Autofagosomas , Autofagia , Proteína 7 Relacionada con la Autofagia/genética , Autofagosomas/metabolismo , Autofagia/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
11.
EMBO J ; 43(7): 1273-1300, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448672

RESUMEN

MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Antígeno Nuclear de Célula en Proliferación/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Péptidos/metabolismo , Daño del ADN
12.
Sci Adv ; 10(13): eadh0123, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536929

RESUMEN

E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Procesamiento Proteico-Postraduccional
13.
Mol Biochem Parasitol ; 258: 111619, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38556171

RESUMEN

In eukaryotic cells, molecular fate and cellular responses are shaped by multicomponent enzyme systems which reversibly attach ubiquitin and ubiquitin-like modifiers to target proteins. The extent of the ubiquitin proteasome system in Leishmania mexicana and its importance for parasite survival has recently been established through deletion mutagenesis and life-cycle phenotyping studies. The ubiquitin conjugating E2 enzyme UBC2, and the E2 enzyme variant UEV1, with which it forms a stable complex in vitro, were shown to be essential for the differentiation of promastigote parasites to the infectious amastigote form. To investigate further, we used immunoprecipitation of Myc-UBC2 or Myc-UEV1 to identify interacting proteins in L. mexicana promastigotes. The interactome of UBC2 comprises multiple ubiquitin-proteasome components including UEV1 and four RING E3 ligases, as well as potential substrates predicted to have roles in carbohydrate metabolism and intracellular trafficking. The smaller UEV1 interactome comprises six proteins, including UBC2 and shared components of the UBC2 interactome consistent with the presence of intracellular UBC2-UEV1 complexes. Recombinant RING1, RING2 and RING4 E3 ligases were shown to support ubiquitin transfer reactions involving the E1, UBA1a, and UBC2 to available substrate proteins or to unanchored ubiquitin chains. These studies define additional components of a UBC2-dependent ubiquitination pathway shown previously to be essential for promastigote to amastigote differentiation.


Asunto(s)
Leishmania mexicana , Proteínas Protozoarias , Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Leishmania mexicana/genética , Leishmania mexicana/enzimología , Leishmania mexicana/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Inmunoprecipitación
14.
Biomed Pharmacother ; 173: 116240, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401512

RESUMEN

Abnormally high expression of lysine-specific demethylase 1 A (LSD1) and DCN1 plays a vital role in the occurrence, development, and poor prognosis of non-small cell lung cancer (NSCLC). Accumulating evidence has shown that the development of small-molecule inhibitors dually targeting LSD1 and the DCN1-UBC12 interaction probably have therapeutic promise for cancer therapy. This work reported that WS-384 dually targeted LSD1 and DCN1-UBC12 interactions and evaluated its antitumor effects in vitro and in vivo. Specifically, WS-384 inhibited A549 and H1975 cells viability and decreased colony formation and EdU incorporation. WS-384 could also trigger cell cycle arrest, DNA damage, and apoptosis. Moreover, WS-384 significantly decreased tumor weight and volume in A549 xenograft mice. Mechanistically, WS-384 increased the gene and protein level of p21 by suppressing the neddylation of cullin 1 and decreasing H3K4 demethylation at the CDKN1A promoter. The synergetic upregulation of p21 contributed to cell cycle arrest and the proapoptotic effect of WS-384 in NSCLC cells. Taken together, our proof of concept studies demonstrated the therapeutic potential of dual inhibition of LSD1 and the DCN1-UBC12 interaction for the treatment of NSCLC. WS-384 could be used as a lead compound to develop new dual LSD1/DCN1 inhibitors for the treatment of human diseases in which LSD1 and DCN1 are dysregulated.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular , Enzimas Ubiquitina-Conjugadoras/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Histona Demetilasas , Línea Celular Tumoral
15.
Vet Microbiol ; 291: 110012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387235

RESUMEN

The ubiquitin-binding enzyme E2J1 is located on the endoplasmic reticulum membrane. It plays a role in transport throughout the process of ubiquitination. In mammals, UBE2J1 can promote RNA virus replication. However, the biological function of chicken UBE2J1 is unclear. In this study, chicken UBE2J1 was cloned for the first time, and UBE2J1 overexpression and shRNA knockdown plasmids were constructed. In chicken embryo fibroblasts, overexpression of UBE2J1 promoted the replication of subtype A avian leukosis virus, while knockdown of UBE2J1 inhibited the replication of ALV-A virus. In addition, we divided virus replication into virus adsorption and invasion into DF-1 cells, synthesis of proviral DNA, and release of viral particles. UBE2J1 promoted the replication of ALV-A virus by promoting the synthesis of proviral DNA. This result was caused by UBE2J1 inhibiting the production of interferon by inhibiting the STAT3/IRF1 pathway. We mutated ser at position 184 of UBE2J1 to Gly and found that this site plays a role as the phosphorylation site of UBE2J1. We confirmed that UBE2J1 promotes ALV-A replication in chicken embryo fibroblasts by inhibiting the STAT3/IRF1 pathway. This study provides new ideas and insights into ubiquitin-related proteins and antiviral immunity.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Animales , Embrión de Pollo , Virus de la Leucosis Aviar/genética , Virus de la Leucosis Aviar/metabolismo , Pollos , Mamíferos , Provirus , Transducción de Señal , Ubiquitinas , Factor de Transcripción STAT3/metabolismo , Factores Reguladores del Interferón/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
16.
PeerJ ; 12: e16975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38406276

RESUMEN

Background: The coexistence of diabetes mellitus (DM) and atherosclerosis (AS) is widespread, although the explicit metabolism and metabolism-associated molecular patterns (MAMPs) responsible for the correlation are still unclear. Methods: Twenty-four genetically wild-type male Ba-Ma mini pigs were randomly divided into five groups distinguished by different combinations of 90 mg/kg streptozotocin (STZ) intravenous injection and high-cholesterol/lipid (HC) or high-lipid (HL) diet feeding for 9 months in total. Pigs in the STZ+HC and STZ+HL groups were injected with STZ first and then fed the HC or HL diet for 9 months. In contrast, pigs in the HC+STZ and HL+STZ groups were fed the HC or HL diet for 9 months and injected with STZ at 3 months. The controls were only fed a regular diet for 9 months. The blood glucose and abdominal aortic plaque observed through oil red O staining were used as evaluation indicators for successful modelling of DM and AS. A microarray gene expression analysis of all subjects was performed. Results: Atherosclerotic lesions were observed only in the HC+STZ and STZ+HC groups. A total of 103 differentially expressed genes (DEGs) were identified as common between them. The most significantly enriched pathways of 103 common DEGs were influenza A, hepatitis C, and measles. The global and internal protein-protein interaction (PPI) networks of the 103 common DEGs consisted of 648 and 14 nodes, respectively. The top 10 hub proteins, namely, ISG15, IRG6, IRF7, IFIT3, MX1, UBE2L6, DDX58, IFIT2, USP18, and IFI44L, drive aspects of DM and AS. MX1 and UBE2L6 were the intersection of internal and global PPI networks. The expression of MX1 and UBE2L6 was 507.22 ± 342.56 and 96.99 ± 49.92 in the HC+STZ group, respectively, which was significantly higher than others and may be linked to the severity of hyperglycaemia-related atherosclerosis. Further PPI network analysis of calcium/micronutrients, including MX1 and UBE2L6, consisted of 58 and 18 nodes, respectively. The most significantly enriched KEGG pathways were glutathione metabolism, pyrimidine metabolism, purine metabolism, and metabolic pathways. Conclusions: The global and internal PPI network of the 103 common DEGs consisted of 648 and 14 nodes, respectively. The intersection of the nodes of internal and global PPI networks was MX1 and UBE2L6, suggesting their key role in the comorbidity mechanism of DM and AS. This inference was partly verified by the overexpression of MX1 and UBE2L6 in the HC+STZ group but not others. Further calcium- and micronutrient-related enriched KEGG pathway analysis supported that MX1 and UBE2L6 may affect the inflammatory response through micronutrient metabolic pathways, conceptually named metaflammation. Collectively, MX1 and UBE2L6 may be potential common biomarkers for DM and AS that may reveal metaflammatory aspects of the pathological process, although proper validation is still needed to determine their contribution to the detailed mechanism.


Asunto(s)
Aterosclerosis , Diabetes Mellitus , Animales , Masculino , Aterosclerosis/genética , Diabetes Mellitus/patología , Lípidos , Micronutrientes , Proteínas de Resistencia a Mixovirus/metabolismo , Estreptozocina , Porcinos , Porcinos Enanos/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
17.
J Biol Chem ; 300(3): 105753, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354782

RESUMEN

Ubiquitination often generates lysine 48-linked polyubiquitin chains that signal proteolytic destruction of the protein target. A significant subset of ubiquitination proceeds by a priming/extending mechanism, in which a substrate is first monoubiquitinated with a priming E2-conjugating enzyme or a set of E3 ARIH/E2 enzymes specific for priming. This is then followed by ubiquitin (Ub) chain extension catalyzed by an E2 enzyme capable of elongation. This report provides further insights into the priming/extending mechanism. We employed reconstituted ubiquitination systems of substrates CK1α (casein kinase 1α) and ß-catenin by Cullin-RING E3 Ub ligases (CRLs) CRL4CRBN and CRL1ßTrCP, respectively, in the presence of priming E2 UbcH5c and elongating E2 Cdc34b (cell division cycle 34b). We have established a new "apyrase chase" strategy that uncouples priming from chain elongation, which allows accurate measurement of the decay rates of the ubiquitinated substrate with a defined chain length. Our work has revealed highly robust turnover of monoubiquitinated ß-catenin that empowers efficient polyubiquitination. The results of competition experiments suggest that the interactions between the ubiquitinated ß-catenin and CRL1ßTrCP are highly dynamic. Moreover, ubiquitination of the Ub-modified ß-catenin appeared more resistant to inhibition by competitors than the unmodified substrate, suggesting tighter binding with CRL1ßTrCP. These findings support a role for conjugated Ub in enhancing interactions with E3.


Asunto(s)
Ubiquitina , Ubiquitinación , beta Catenina , beta Catenina/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
18.
Nat Commun ; 15(1): 1266, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341401

RESUMEN

Ubiquitination, catalyzed usually by a three-enzyme cascade (E1, E2, E3), regulates various eukaryotic cellular processes. E3 ligases are the most critical components of this catalytic cascade, determining both substrate specificity and polyubiquitination linkage specificity. Here, we reveal the mechanism of a naturally occurring E3-independent ubiquitination reaction of a unique human E2 enzyme UBE2E1 by solving the structure of UBE2E1 in complex with substrate SETDB1-derived peptide. Guided by this peptide sequence-dependent ubiquitination mechanism, we developed an E3-free enzymatic strategy SUE1 (sequence-dependent ubiquitination using UBE2E1) to efficiently generate ubiquitinated proteins with customized ubiquitinated sites, ubiquitin chain linkages and lengths. Notably, this strategy can also be used to generate site-specific branched ubiquitin chains or even NEDD8-modified proteins. Our work not only deepens the understanding of how an E3-free substrate ubiquitination reaction occurs in human cells, but also provides a practical approach for obtaining ubiquitinated proteins to dissect the biochemical functions of ubiquitination.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Humanos , Péptidos/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Ingeniería de Proteínas
19.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397039

RESUMEN

Human brain development involves a tightly regulated sequence of events that starts shortly after conception and continues up to adolescence. Before birth, neurogenesis occurs, implying an extensive differentiation process, sustained by changes in the gene expression profile alongside proteome remodeling, regulated by the ubiquitin proteasome system (UPS) and autophagy. The latter processes rely on the selective tagging with ubiquitin of the proteins that must be disposed of. E3 ubiquitin ligases accomplish the selective recognition of the target proteins. At the late stage of neurogenesis, the brain starts to take shape, and neurons migrate to their designated locations. After birth, neuronal myelination occurs, and, in parallel, neurons form connections among each other throughout the synaptogenesis process. Due to the malfunctioning of UPS components, aberrant brain development at the very early stages leads to neurodevelopmental disorders. Through deep data mining and analysis and by taking advantage of machine learning-based models, we mapped the transcriptomic profile of the genes encoding HECT- and ring-between-ring (RBR)-E3 ubiquitin ligases as well as E2 ubiquitin-conjugating and E1 ubiquitin-activating enzymes during human brain development, from early post-conception to adulthood. The inquiry outcomes unveiled some implications for neurodevelopment-related disorders.


Asunto(s)
Enzimas Activadoras de Ubiquitina , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Encéfalo/metabolismo
20.
Nat Struct Mol Biol ; 31(2): 378-389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326650

RESUMEN

E3 ubiquitin ligases, in collaboration with E2 ubiquitin-conjugating enzymes, modify proteins with poly-ubiquitin chains. Cullin-RING ligase (CRL) E3s use Cdc34/UBE2R-family E2s to build Lys48-linked poly-ubiquitin chains to control an enormous swath of eukaryotic biology. Yet the molecular mechanisms underlying this exceptional linkage specificity and millisecond kinetics of poly-ubiquitylation remain unclear. Here we obtain cryogenic-electron microscopy (cryo-EM) structures that provide pertinent insight into how such poly-ubiquitin chains are forged. The CRL RING domain not only activates the E2-bound ubiquitin but also shapes the conformation of a distinctive UBE2R2 loop, positioning both the ubiquitin to be transferred and the substrate-linked acceptor ubiquitin within the active site. The structures also reveal how the ubiquitin-like protein NEDD8 uniquely activates CRLs during chain formation. NEDD8 releases the RING domain from the CRL, but unlike previous CRL-E2 structures, does not contact UBE2R2. These findings suggest how poly-ubiquitylation may be accomplished by many E2s and E3s.


Asunto(s)
Proteínas Cullin , Enzimas Ubiquitina-Conjugadoras , Proteínas Cullin/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Poliubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA