Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34298989

RESUMEN

Cancer is a serious health problem with a high mortality rate worldwide. Given the relevance of mitochondria in numerous physiological and pathological mechanisms, such as adenosine triphosphate (ATP) synthesis, apoptosis, metabolism, cancer progression and drug resistance, mitochondrial genome (mtDNA) analysis has become of great interest in the study of human diseases, including cancer. To date, a high number of variants and mutations have been identified in different types of tumors, which coexist with normal alleles, a phenomenon named heteroplasmy. This mechanism is considered an intermediate state between the fixation or elimination of the acquired mutations. It is suggested that mutations, which confer adaptive advantages to tumor growth and invasion, are enriched in malignant cells. Notably, many recent studies have reported a heteroplasmy-shifting phenomenon as a potential shaper in tumor progression and treatment response, and we suggest that each cancer type also has a unique mitochondrial heteroplasmy-shifting profile. So far, a plethora of data evidencing correlations among heteroplasmy and cancer-related phenotypes are available, but still, not authentic demonstrations, and whether the heteroplasmy or the variation in mtDNA copy number (mtCNV) in cancer are cause or consequence remained unknown. Further studies are needed to support these findings and decipher their clinical implications and impact in the field of drug discovery aimed at treating human cancer.


Asunto(s)
Heteroplasmia/genética , Mitocondrias/genética , Neoplasias/sangre , Neoplasias/genética , Alelos , Biomarcadores/sangre , Enzimas de Restricción del ADN/uso terapéutico , Progresión de la Enfermedad , Epigénesis Genética , Terapia Genética/métodos , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Neoplasias/metabolismo , Neoplasias/patología , Microambiente Tumoral/genética
2.
Front Biosci (Landmark Ed) ; 22(6): 991-1010, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27814659

RESUMEN

Mitochondrial disease is a multifactorial disorder involving both nuclear and mitochondrial genomes. Over the past 20 years, great progress was achieved in the field of gene editing which raised the possibility of partial or complete elimination of mutant mtDNA that causes disease phenotypes. Each cell contains thousands of copies of mtDNA which can be either wild-type (WT) or mutant, a condition called heteroplasmy. As there are multiple copies of mtDNA inside a cell, the percentage of mutant mtDNA can vary and a directional shift in the heteroplasmy ratio towards an increase of WT mtDNA copies would have therapeutic value. Gene editing tools have been adapted to translocate to mitochondria and were able to change heteroplasmy in a predictable manner. These include mitochondrial targeted restriction endonucleases, Zinc-finger nucleases, and TAL-effector nucleases. These procedures could also be adapted to reduce the levels of mutant mtDNA in embryos, offering an option to the controversial mitochondrial replacement techniques during in vitro fertilization. The current strategies to induce heteroplasmy shift of mtDNA and its implications will be comprehensively discussed.


Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Mutación , Animales , Enzimas de Restricción del ADN/uso terapéutico , Metabolismo Energético/genética , Femenino , Edición Génica , Mutación de Línea Germinal , Humanos , Masculino , Herencia Materna/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Mitosis/genética , Modelos Genéticos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/uso terapéutico , Dedos de Zinc
3.
Protein Eng Des Sel ; 24(1-2): 27-31, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21047873

RESUMEN

Meganucleases (MNs) are highly specific enzymes that can induce homologous recombination in different types of cells, including mammalian cells. Consequently, these enzymes are used as scaffolds for the development of custom gene-targeting tools for gene therapy or cell-line development. Over the past 15 years, the high resolution X-ray structures of several MNs from the LAGLIDADG family have improved our understanding of their protein-DNA interaction and mechanism of DNA cleavage. By developing and utilizing high-throughput screening methods to test a large number of variant-target combinations, we have been able to re-engineer scores of I-CreI derivatives into custom enzymes that target a specific DNA sequence of interest. Such customized MNs, along with wild-type ones, have allowed for exploring a large range of biotechnological applications, including protein-expression cell-line development, genetically modified plants and animals and therapeutic applications such as targeted gene therapy as well as a novel class of antivirals.


Asunto(s)
Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/uso terapéutico , Ingeniería de Proteínas/métodos , Animales , ADN/metabolismo , Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/metabolismo , Terapia Genética , Humanos , Modelos Moleculares , Levaduras/enzimología
4.
Proc Natl Acad Sci U S A ; 102(40): 14392-7, 2005 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-16179392

RESUMEN

Frequently, mtDNA with pathogenic mutations coexist with wild-type genomes (mtDNA heteroplasmy). Mitochondrial dysfunction and disease ensue only when the proportion of mutated mtDNAs is high, thus a reduction in this proportion should provide an effective therapy for these disorders. We developed a system to decrease specific mtDNA haplotypes by expressing a mitochondrially targeted restriction endonuclease, ApaLI, in cells of heteroplasmic mice. These mice have two mtDNA haplotypes, of which only one contains an ApaLI site. After transfection of cultured hepatocytes with mitochondrially targeted ApaLI, we found a rapid, directional, and complete shift in mtDNA heteroplasmy (2-6 h). We tested the efficacy of this approach in vivo, by using recombinant viral vectors expressing the mitochondrially targeted ApaLI. We observed a significant shift in mtDNA heteroplasmy in muscle and brain transduced with recombinant viruses. This strategy could prevent disease onset or reverse clinical symptoms in patients harboring certain heteroplasmic pathogenic mutations in mtDNA.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , ADN Mitocondrial/genética , Marcación de Gen/métodos , Terapia Genética/métodos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Mutación/genética , Adenoviridae , Animales , Southern Blotting , Línea Celular , Enzimas de Restricción del ADN/uso terapéutico , Femenino , Vectores Genéticos/genética , Haplotipos/genética , Ratones , Ratones Endogámicos NZB , Polimorfismo de Longitud del Fragmento de Restricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...