Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 86(7): 878-886, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34284711

RESUMEN

The effects of superoxide dismutase (SOD) inhibitors, diethyldithiocarbamate (DDC), triethylenetetramine (trien), and their combination with glucose on cells of the epidermis from pea leaves of different age (rapidly growing young leaves and slowly growing old leaves) was investigated. DDC and trien caused death of the guard cells as determined by destruction of their nuclei. Glucose did not affect destruction of the nuclei induced by SOD inhibitors in the cells from old leaves, but intensified it in the cells from young leaves. 2-Deoxyglucose, an inhibitor of glycolysis, and propyl gallate, SOD-mimic and antioxidant, suppressed destruction of the nuclei that was caused by SOD inhibitors and glucose in cells of the epidermis from the young, but not from the old leaves. Glucose and trien stimulated, and propyl gallate reduced generation of reactive oxygen species (ROS) in the pea epidermis as determined by the fluorescence of 2',7'-dichlorofluorescein (DCF). Carbonyl cyanide m-chlorophenylhydrazone (CCCP), a protonophoric uncoupler of oxidative and photosynthetic phosphorylation, suppressed the DCF fluorescence in the guard cells. Treatment of the cells with CCCP followed by its removal with washing increased destruction of the nuclei caused by SOD inhibitors and glucose. In young leaves, CCCP was less effective than in old ones. The findings demonstrate the effects of SOD inhibitors and glucose on the cell death and generation of ROS and could indicate glycolysis-dependent ROS production.


Asunto(s)
Ditiocarba/farmacología , Glucosa/metabolismo , Pisum sativum/efectos de los fármacos , Epidermis de la Planta/efectos de los fármacos , Especies Reactivas de Oxígeno , Superóxido Dismutasa/antagonistas & inhibidores , Trientina/farmacología , Muerte Celular , Quelantes/farmacología , Inhibidores Enzimáticos/farmacología , Glucosa/farmacología , Pisum sativum/enzimología , Pisum sativum/metabolismo , Pisum sativum/fisiología , Epidermis de la Planta/enzimología , Epidermis de la Planta/metabolismo , Epidermis de la Planta/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
2.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379335

RESUMEN

γ-Aminobutyric acid (GABA) is a widely distributed non-protein amino acid mediated the regulation of nitrate uptake and Al3+ tolerance in plants. However, there are few reports about the involvement of GABA in the regulation of iron (Fe) acquisition and translocation. Here, we show that GABA regulates Fe homeostasis in rice seedlings. Exogenous GABA decreased the chlorophyll concentration in leaves, with or without Fe supply. Over-expression of glutamate decarboxylase (GAD) gene, coding a crucial enzyme of GABA production, elevated endogenous GABA content and caused more leaf chlorosis than wild type (Nipponbare). GABA inhibited Fe transportation from roots to shoots and GABA application elevated the expression levels of Fe deficiency (FD)-related genes under conditions of Fe-sufficiency (FS), suggesting that GABA is a regulator of Fe translocation. Using Perls' blue staining, we found that more ferric iron (Fe3+) was deposited in the epidermal cells of roots treated with GABA compared with control roots. Anatomic section analysis showed that GABA treatment induced more aerenchyma formation compared with the control. Aerenchyma facilitated the oxidization of soluble ferrous iron (Fe2+) into insoluble Fe3+, resulted in Fe precipitation in the epidermis, and inhibited the transportation of Fe from roots to shoots.


Asunto(s)
Hierro/metabolismo , Oryza/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Plantones/metabolismo , Ácido gamma-Aminobutírico/farmacología , Transporte Biológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Homeostasis/efectos de los fármacos , Deficiencias de Hierro , Modelos Biológicos , Oryza/efectos de los fármacos , Oryza/genética , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Transcriptoma/genética
3.
Biomolecules ; 10(4)2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295207

RESUMEN

Previous investigations have shown that the SUPPRESSORS OF MAX2 1-LIKE6, 7 and 8 (SMXL6, 7 and 8) proteins redundantly repress strigolactone (SL) signaling in plant growth and development. Recently, a growing body of evidence indicated that SLs positively regulate plant drought resistance through functional analyses of genes involved in SL biosynthesis and positive regulation of SL signaling. However, the functions of the SL-signaling negative regulators SMXL6, 7 and 8 in drought resistance and the associated mechanisms remain elusive. To reveal the functions of these SMXL proteins, we analyzed the drought-resistant phenotype of the triple smxl6,7,8 mutant plants and studied several drought resistance-related traits. Our results showed that the smxl6,7,8 mutant plants were more resistant to drought than wild-type plants. Physiological investigations indicated that the smxl6,7,8 mutant plants exhibited higher leaf surface temperature, reduced cuticle permeability, as well as decreases in drought-induced water loss and cell membrane damage in comparison with wild-type plants. Additionally, smxl6,7,8 mutant plants displayed an increase in anthocyanin biosynthesis during drought, enhanced detoxification capacity and increased sensitivity to abscisic acid in cotyledon opening and growth inhibition assays. A good correlation between the expression levels of some relevant genes and the examined physiological and biochemical traits was observed. Our findings together indicate that the SMXL6, 7 and 8 act as negative regulators of drought resistance, and that disruption of these SMXL genes in crops may provide a novel way to improve their drought resistance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Co-Represoras/metabolismo , Sequías , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Ácido Abscísico/farmacología , Antocianinas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Co-Represoras/genética , Electrólitos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Marcadores Genéticos , Mutación/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Permeabilidad , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Temperatura , Agua
4.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326540

RESUMEN

Chemical defoliation is an important part of cotton mechanical harvesting, which can effectively reduce the impurity content. Thidiazuron (TDZ) is the most used chemical defoliant on cotton. To better clarify the mechanism of TDZ promoting cotton leaf abscission, a greenhouse experiment was conducted on two cotton cultivars (CRI 12 and CRI 49) by using 100 mg L-1 TDZ at the eight-true-leaf stage. Results showed that TDZ significantly promoted the formation of leaf abscission zone and leaf abscission. Although the antioxidant enzyme activities were improved, the reactive oxygen species and malondialdehyde (MDA) contents of TDZ increased significantly compared with CK (water). The photosynthesis system was destroyed as net photosynthesis (Pn), transpiration rate (Tr), and stomatal conductance (Gs) decreased dramatically by TDZ. Furthermore, comparative RNA-seq analysis of the leaves showed that all of the photosynthetic related genes were downregulated and the oxidation-reduction process participated in leaf shedding caused by TDZ. Consequently, a hypothesis involving possible cross-talk between ROS metabolism and photosynthesis jointly regulating cotton leaf abscission is proposed. Our findings not only provide important insights into leaf shedding-associated changes induced by TDZ in cotton, but also highlight the possibility that the ROS and photosynthesis may play a critical role in the organ shedding process in other crops.


Asunto(s)
Defoliantes Químicos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Gossypium/metabolismo , Compuestos de Fenilurea/farmacología , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/metabolismo , Tiadiazoles/farmacología , Carbohidratos/análisis , Clorofila/análisis , Fibra de Algodón , Defoliantes Químicos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Gossypium/efectos de los fármacos , Gossypium/genética , Malondialdehído/análisis , Microscopía Electrónica de Rastreo , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/ultraestructura , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/ultraestructura , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , RNA-Seq , Especies Reactivas de Oxígeno/metabolismo , Plantones/anatomía & histología , Plantones/crecimiento & desarrollo
5.
Development ; 147(8)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32179566

RESUMEN

Reactive oxygen species (ROS) are signaling molecules produced by tissue-specific respiratory burst oxidase homolog (RBOH) enzymes to drive development. In Arabidopsis thaliana, ROS produced by RBOHC was previously reported to drive root hair elongation. We identified a specific role for one ROS, H2O2, in driving root hair initiation and demonstrated that localized synthesis of flavonol antioxidants control the level of H2O2 and root hair formation. Root hairs form from trichoblast cells that express RBOHC and have elevated H2O2 compared with adjacent atrichoblast cells that do not form root hairs. The flavonol-deficient tt4 mutant has elevated ROS in trichoblasts and elevated frequency of root hair formation compared with the wild type. The increases in ROS and root hairs in tt4 are reversed by genetic or chemical complementation. Auxin-induced root hair initiation and ROS accumulation were reduced in an rbohc mutant and increased in tt4, consistent with flavonols modulating ROS and auxin transport. These results support a model in which localized synthesis of RBOHC and flavonol antioxidants establish patterns of ROS accumulation that drive root hair formation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flavonoles/farmacología , Epidermis de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Aciltransferasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Flavanonas/química , Flavanonas/farmacología , Flavonoles/química , Fluorescencia , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Mutación/genética , Fenotipo , Epidermis de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Quercetina/química , Quercetina/farmacología
6.
J Sci Food Agric ; 100(7): 2911-2921, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32034777

RESUMEN

BACKGROUND: Cherry fruit cracking is a costly problem for cherry growers. The effect of repeated sprayings (gibberellic acid - GA3 ; abscisic acid - ABA; salicylic acid - SA; glycine betaine - GB, and Ascophyllum nodosum - AN) combined with CaCl2 , on 'Sweetheart' cherry fruit-cracking characteristics was investigated. Cracking was quantified in terms of cracking incidence, crack morphology, confocal scanning laser microscopy, cuticular wax content, cell-wall modification, and cuticular wax gene expression. RESULTS: All spray treatments reduced cracking compared with an untreated control (H2 O), with fewer cheek cracks. The least cracking incidence was observed for ABA + CaCl2 - and GB + CaCl2 -treated fruits, indicating an added benefit compared to spraying with CaCl2 alone. In addition, GB + CaCl2 -treated fruits showed higher fruit diameter. ABA + CaCl2 and GB + CaCl2 sprays showed higher wax content and higher cuticle and epidermal thickness compared with the control, including increased expression of wax synthase (ABA + CaCl2 ) and expansin 1 (GB + CaCl2 ). CONCLUSION: In general, factors that improve the cuticle thickness appear to be important at the fruit-coloring stage. At the fruit-ripening stage, larger cell sizes of the epidermis, hypodermis, and parenchyma cells lower cracking incidence, indicating the importance of flexibility and elasticity of the epidermis. © 2020 Society of Chemical Industry.


Asunto(s)
Frutas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Prunus avium/efectos de los fármacos , Cloruro de Calcio/farmacología , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Epidermis de la Planta/efectos de los fármacos , Prunus avium/genética , Prunus avium/fisiología
7.
Planta ; 251(3): 65, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060652

RESUMEN

MAIN CONCLUSION: Swelling of sweet cherry cell walls is a physical process counterbalanced by turgor. Cell turgor prevents swelling in intact cells, whereas loss of turgor allows cell walls to swell. Swelling of epidermal cell walls precedes skin failure in sweet cherry (Prunus avium) cracking. Swollen cell walls lead to diminished cell:cell adhesions. We identify the mechanism of cell wall swelling. Swelling was quantified microscopically on epidermal sections following freeze/thaw treatment or by determining swelling pressure or swelling capacity of cell wall extracts. Releasing turgor by a freeze/thaw treatment increased cell wall thickness 1.6-fold within 2 h. Pressurizing cell wall extracts at > 12 kPa prevented swelling in water, while releasing the pressure increased swelling. The effect was fully reversible. Across cultivars, cell wall thickness before and after turgor release in two subsequent seasons was significantly correlated (before release of turgor: r = 0.71**, n = 14; after release of turgor: r = 0.73**, n = 14) as was the swelling of cell walls upon turgor release (r = 0.71**, n = 14). Close relationships were also identified for cell wall thickness of fruit of the same cultivars grown in the greenhouse and the field (before release of turgor: r = 0.60, n = 10; after release of turgor: r = 0.78**, n = 10). Release of turgor by heating, plasmolysis, incubation in solvents or surfactants resulted in similar swelling (range 2.0-3.1 µm). Cell wall swelling increased from 1.4 to 3.0 µm as pH increased from pH 2.0 to 5.0 but remained nearly constant between pH 5.0 and 8.0. Increasing ethanol concentration decreased swelling. Swelling of sweet cherry cell walls is a physical process counterbalanced by turgor.


Asunto(s)
Pared Celular/metabolismo , Frutas/citología , Prunus avium/citología , Pared Celular/efectos de los fármacos , Frutas/efectos de los fármacos , Jugos de Frutas y Vegetales , Concentración de Iones de Hidrógeno , Ósmosis , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Polietilenglicoles/farmacología , Presión , Prunus avium/efectos de los fármacos , Sacarosa/farmacología , Factores de Tiempo
8.
Plant Cell Environ ; 43(3): 745-759, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31677167

RESUMEN

MATE (multidrug and toxic compound extrusion) transporters play multiple roles in plants including detoxification, secondary metabolite transport, aluminium (Al) tolerance, and disease resistance. Here we identify and characterize the role of the Arabidopsis MATE transporter DETOXIFICATION30. AtDTX30 regulates auxin homeostasis in Arabidopsis roots to modulate root development and Al-tolerance. DTX30 is primarily expressed in roots and localizes to the plasma membrane of root epidermal cells including root hairs. dtx30 mutants exhibit reduced elongation of the primary root, root hairs, and lateral roots. The mutant seedlings accumulate more auxin in their root tips indicating role of DTX30 in maintaining auxin homeostasis in the root. Al induces DTX30 expression and promotes its localization to the distal transition zone. dtx30 seedlings accumulate more Al in their roots but are hyposensitive to Al-mediated rhizotoxicity perhaps due to saturation in root growth inhibition. Increase in expression of ethylene and auxin biosynthesis genes in presence of Al is absent in dtx30. The mutants exude less citrate under Al conditions, which might be due to misregulation of AtSTOP1 and the citrate transporter AtMATE. In conclusion, DTX30 modulates auxin levels in root to regulate root development and in the presence of Al indirectly modulates citrate exudation to promote Al tolerance.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Aluminio/toxicidad , Antiportadores/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Adaptación Fisiológica/genética , Antiportadores/genética , Proteínas de Arabidopsis/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citratos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Gravitropismo/efectos de los fármacos , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantones/efectos de los fármacos , Plantones/metabolismo , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo
9.
Nanotoxicology ; 14(1): 127-144, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31684790

RESUMEN

Copper oxide nanoparticles (CuO NPs) have severe nano-toxic effects on organisms. Limited data is available on influence of CuO NPs on plant cells. Here, the molecular mechanisms involved in the toxicity of CuO NPs are studied. Exposure to CuO NPs significantly increased copper content in roots (0.062-0.325 mg/g FW), but CuO NPs translocation rates from root to shoot were low (1.1-2.8%). Presented data were significant at p < 0.05 compared to control. CuO NPs inhibited longitudinal growth and promoted transverse growth in root tip cells. However, CuO NPs did not affect the leaf cells, implying that the transfer ability of CuO NPs was weak, and toxicity mainly affected roots. CuO NPs can conjugate with actin protein. The actin cytoskeleton experienced reorganization in the presence of CuO NPs. The longitudinal filamentous actin (F-actin) decreased, and the transverse F-actin increased. CuO NPs inhibited actin polymerization and promoted depolymerization. The behavior of individual F-actin was at steady state with time-lapse under CuO NPs treatment by time-lapse reflection fluorescence (TIRF) microscopy. The growth rate of actin filaments was weakened by CuO NPs. CuO NPs disturbed the subcellular localization of PINs and the gradient of auxin distribution in root tips in an actin-dependent manner. In conclusion, CuO NPs conjugated with actin and disturbed F-actin dynamics, triggering abnormal cell growth in the root tip, and findings provide theoretical basis for further study nano-toxicity in plants.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Arabidopsis/efectos de los fármacos , Cobre/toxicidad , Contaminantes Ambientales/toxicidad , Nanopartículas/toxicidad , Raíces de Plantas/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Cobre/química , Cobre/metabolismo , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
10.
Mar Pollut Bull ; 149: 110536, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31543481

RESUMEN

Heavy metal stress changes the morphological and anatomical structure of plant organs. In this study, we determined the anatomical changes and Cd distribution in the roots of Aegiceras corniculatum (L.) Blanco (Black mangrove) under Cd stress. The results showed that Cd levels in A. corniculatum root tissues decreased in the following order: endodermis > pith > xylem > epidermis and exodermis > phloem > cortex. The endodermis secondary casparian strip replaces exodermis casparian strip and plays a role in the "retardation mechanism", which sort of compensates for the missing exodermis retardation effect. The xylem and pith both show high affinity for Cd and contain enriched Cd. This creates a low-Cd environment for phloem and protects the nutrient transport function of the vasculature against Cd toxicity. The present study provides new evidences suggesting that Cd regional enrichment and anatomical structure changes are an adaptive strategy of mangrove plants to HM tolerance.


Asunto(s)
Cadmio/farmacocinética , Cadmio/toxicidad , Raíces de Plantas/efectos de los fármacos , Primulaceae/efectos de los fármacos , Adaptación Biológica/efectos de los fármacos , Cadmio/análisis , Microscopía Electrónica de Rastreo , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Primulaceae/anatomía & histología , Primulaceae/metabolismo , Espectrometría por Rayos X , Estrés Fisiológico , Distribución Tisular , Contaminantes Químicos del Agua/farmacocinética , Contaminantes Químicos del Agua/toxicidad , Humedales , Xilema/efectos de los fármacos , Xilema/metabolismo
11.
Sci Rep ; 9(1): 4724, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886208

RESUMEN

Uptake of water and nutrients by roots affects the ontogenesis of the whole plant. Nanoparticles, e.g. gold nanoparticles, have a broad range of applications in many fields which leads to the transfer of these materials into the environment. Thus, the understanding of their impact on the growth and development of the root system is an emerging issue. During our studies on the effect of positively charged gold nanoparticles on the barley roots, a hairless phenotype was found. We investigated whether this phenotype correlates with changes in symplasmic communication, which is an important factor that regulates, among others, differentiation of the rhizodermis into hair and non-hair cells. The results showed no restriction in symplasmic communication in the treated roots, in contrast to the control roots, in which the trichoblasts and atrichoblasts were symplasmically isolated during their differentiation. Moreover, differences concerning the root morphology, histology, ultrastructure and the cell wall composition were detected between the control and the treated roots. These findings suggest that the harmful effect of nanoparticles on plant growth may, among others, consist in disrupting the symplasmic communication/isolation, which leads to the development of a hairless root phenotype, thus limiting the functioning of the roots.


Asunto(s)
Oro/toxicidad , Hordeum/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Raíces de Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Diferenciación Celular/efectos de los fármacos , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Nutrientes/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Agua/metabolismo
12.
BMC Plant Biol ; 18(1): 165, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097019

RESUMEN

BACKGROUND: Trichoderma fungi live in the soil rhizosphere and are beneficial for plant growth and pathogen resistance. Several species and strains are currently used worldwide in co-cultivation with crops as a biocontrol alternative to chemical pesticides even though little is known about the exact mechanisms of the beneficial interaction. We earlier found alamethicin, a peptide antibiotic secreted by Trichoderma, to efficiently permeabilise cultured tobacco cells. However, pre-treatment with Trichoderma cellulase made the cells resistant to subsequent alamethicin, suggesting a potential mechanism for plant tolerance to Trichoderma, needed for mutualistic symbiosis. RESULTS: We here investigated intact sterile-grown Arabidopsis thaliana seedlings germinated in water or growth medium. These could be permeabilised by alamethicin but not if pretreated with cellulase. By following the fluorescence from the membrane-impermeable DNA-binding probe propidium iodide, we found alamethicin to mainly permeabilise root tips, especially the apical meristem and epidermis cells, but not the root cap and basal meristem cells nor cortex cells. Alamethicin permeabilisation and cellulase-induced resistance were confirmed by developing a quantitative in situ assay based on NADP-isocitrate dehydrogenase accessibility. The combined assays also showed that hyperosmotic treatment after the cellulase pretreatment abolished the induced cellulase resistance. CONCLUSION: We here conclude the presence of cell-specific alamethicin permeabilisation, and cellulase-induced resistance to it, in root tip apical meristem and epidermis of the model organism A. thaliana. We suggest that contact between the plasma membrane and the cell wall is needed for the resistance to remain. Our results indicate a potential mode for the plant to avoid negative effects of alamethicin on plant growth and localises the point of potential damage and response. The results also open up for identification of plant genetic components essential for beneficial effects from Trichoderma on plants.


Asunto(s)
Alameticina/farmacología , Antibacterianos/farmacología , Arabidopsis/efectos de los fármacos , Celulasa/farmacología , Meristema/efectos de los fármacos , Epidermis de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Trichoderma/química , Alameticina/antagonistas & inhibidores , Permeabilidad/efectos de los fármacos , Plantones/efectos de los fármacos
13.
New Phytol ; 219(4): 1421-1432, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29938800

RESUMEN

The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.


Asunto(s)
Pirofosfatasa Inorgánica/metabolismo , Nicotiana/enzimología , Salinidad , Cloruro de Sodio/farmacología , Vacuolas/enzimología , Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Difosfatos/metabolismo , Concentración de Iones de Hidrógeno , Isoenzimas/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/enzimología , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Bombas de Protones/metabolismo , Protones , Estrés Fisiológico/efectos de los fármacos , Nicotiana/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/metabolismo
15.
Plant Physiol ; 176(3): 2040-2051, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29301954

RESUMEN

Biogenesis of the plant secondary cell wall involves many important aspects, such as phenolic compound deposition and often silica encrustation. Previously, we demonstrated the importance of the exocyst subunit EXO70H4 for biogenesis of the trichome secondary cell wall, namely for deposition of the autofluorescent and callose-rich cell wall layer. Here, we reveal that EXO70H4-driven cell wall biogenesis is constitutively active in the mature trichome, but also can be activated elsewhere upon pathogen attack, giving this study a broader significance with an overlap into phytopathology. To address the specificity of EXO70H4 among the EXO70 family, we complemented the exo70H4-1 mutant by 18 different Arabidopsis (Arabidopsis thaliana) EXO70 paralogs subcloned under the EXO70H4 promoter. Only EXO70H4 had the capacity to rescue the exo70H4-1 trichome phenotype. Callose deposition phenotype of exo70H4-1 mutant is caused by impaired secretion of PMR4, a callose synthase responsible for the synthesis of callose in the trichome. PMR4 colocalizes with EXO70H4 on plasma membrane microdomains that do not develop in the exo70H4-1 mutant. Using energy-dispersive x-ray microanalysis, we show that both EXO70H4- and PMR4-dependent callose deposition in the trichome are essential for cell wall silicification.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Subunidades de Proteína/metabolismo , Dióxido de Silicio/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucanos , Mutación/genética , Fenotipo , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Dominios Proteicos , Subunidades de Proteína/química , Tricomas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteínas de Transporte Vesicular/química
16.
Philos Trans R Soc Lond B Biol Sci ; 372(1730)2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28808105

RESUMEN

Concepts of organelle-to-nucleus signalling pathways are largely based on genetic screens involving inhibitors of chloroplast and mitochondrial functions such as norflurazon, lincomycin (LINC), antimycin A (ANT) and salicylhydroxamic acid. These inhibitors favour enhanced cellular oxidation, but their precise effects on the cellular redox state are unknown. Using the in vivo reduction-oxidation (redox) reporter, roGFP2, inhibitor-induced changes in the glutathione redox potentials of the nuclei and cytosol were measured in Arabidopsis thaliana root, epidermal and stomatal guard cells, together with the expression of nuclear-encoded chloroplast and mitochondrial marker genes. All the chloroplast and mitochondrial inhibitors increased the degree of oxidation in the nuclei and cytosol. However, inhibitor-induced oxidation was less marked in stomatal guard cells than in epidermal or root cells. Moreover, LINC and ANT caused a greater oxidation of guard cell nuclei than the cytosol. Chloroplast and mitochondrial inhibitors significantly decreased the abundance of LHCA1 and LHCB1 transcripts. The levels of WHY1, WHY3 and LEA5 transcripts were increased in the presence of inhibitors. Chloroplast inhibitors decreased AOXA1 mRNA levels, while mitochondrial inhibitors had the opposite effect. Inhibitors that are used to characterize retrograde signalling pathways therefore have similar general effects on cellular redox state and gene expression.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Núcleo Celular/metabolismo , Citosol/metabolismo , Transducción de Señal , Antimicina A/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/efectos de los fármacos , Cotiledón/efectos de los fármacos , Cotiledón/metabolismo , Citosol/efectos de los fármacos , Proteínas Fluorescentes Verdes/química , Lincomicina/farmacología , Oxidación-Reducción , Fotosíntesis , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Piridazinas/farmacología
17.
Plant Cell Environ ; 40(9): 1900-1915, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28558173

RESUMEN

Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K+ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations.


Asunto(s)
Atriplex/fisiología , Chenopodium quinoa/fisiología , Epidermis de la Planta/citología , Tolerancia a la Sal/fisiología , Plantas Tolerantes a la Sal/fisiología , Estrés Fisiológico , Atriplex/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Chenopodium quinoa/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Transporte Iónico/efectos de los fármacos , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/metabolismo , Metaboloma , Fenotipo , Epidermis de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Tolerancia a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Sacarosa/farmacología , Ácido gamma-Aminobutírico/farmacología
18.
J Plant Physiol ; 214: 123-133, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28482333

RESUMEN

Cuticular wax is the outermost thin hydrophobic layer covering the surface of aerial plant parts, which provides a primary waterproof barrier and protection against different environmental stresses. The aim of the present study was to investigate the role of ethephon, as an ethylene-releasing compound, in counteracting drought stress by modulating cuticular wax biosynthesis, water balance, and antioxidant regulation in maize seedlings. Our results showed that ethephon significantly increased the ethylene evolution rate, regulate the expression of cuticular wax synthesis regulatory gene ZmERE and the wax biosynthetic genes ZmGL1, ZmGL15, ZmFDH1, and ZmFAE1, and promote cuticular wax accumulation in maize seedlings under normal or drought stress conditions. Moreover, ethephon was shown to might markedly reduce water loss and chlorophyll leaching in leaves, and maintain higher relative water content and leaf water potential under drought stress. Ethephon significantly decreased malondialdehyde and hydrogen peroxide concentrations and electrolyte leakage, but increased the accumulation of proline and the activities of SOD, POD, and CAT. In addition, ethephon resulted in an increase in the ratio of root and shoot under drought stress. These results indicated that ethephon could improve maize performance under drought stress by modulating cuticular wax synthesis to maintain water status and membrane stability for plant growth.


Asunto(s)
Sequías , Compuestos Organofosforados/farmacología , Plantones/metabolismo , Zea mays/metabolismo , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Plantones/efectos de los fármacos , Zea mays/efectos de los fármacos
19.
Plant Physiol ; 174(3): 1384-1398, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28483881

RESUMEN

The expansion of aerial organs in plants is coupled with the synthesis and deposition of a hydrophobic cuticle, composed of cutin and waxes, which is critically important in limiting water loss. While the abiotic stress-related hormone abscisic acid (ABA) is known to up-regulate wax accumulation in response to drought, the hormonal regulation of cuticle biosynthesis during organ ontogeny is poorly understood. To address the hypothesis that ABA also mediates cuticle formation during organ development, we assessed the effect of ABA deficiency on cuticle formation in three ABA biosynthesis-impaired tomato mutants. The mutant leaf cuticles were thinner, had structural abnormalities, and had a substantial reduction in levels of cutin. ABA deficiency also consistently resulted in differences in the composition of leaf cutin and cuticular waxes. Exogenous application of ABA partially rescued these phenotypes, confirming that they were a consequence of reduced ABA levels. The ABA mutants also showed reduced expression of genes involved in cutin or wax formation. This difference was again countered by exogenous ABA, further indicating regulation of cuticle biosynthesis by ABA. The fruit cuticles were affected differently by the ABA-associated mutations, but in general were thicker. However, no structural abnormalities were observed, and the cutin and wax compositions were less affected than in leaf cuticles, suggesting that ABA action influences cuticle formation in an organ-dependent manner. These results suggest dual roles for ABA in regulating leaf cuticle formation: one that is fundamentally associated with leaf expansion, independent of abiotic stress, and another that is drought induced.


Asunto(s)
Ácido Abscísico/farmacología , Vías Biosintéticas/efectos de los fármacos , Epidermis de la Planta/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Frutas/ultraestructura , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/efectos de los fármacos , Lípidos de la Membrana , Mutación/genética , Tamaño de los Órganos , Fenotipo , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/ultraestructura
20.
J Sci Food Agric ; 97(3): 977-983, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27235201

RESUMEN

BACKGROUND: The effect of the application of benzothiadiazole (BTH) and methyl jasmonate (MeJ) at veraison on the phenolic composition of grapes from three varieties (Monastrell, Syrah and Merlot) was studied during the ripening period, using HPLC techniques to measure flavonols, anthocyanins and tannins. RESULTS: The effects of the treatments differed in the three varieties, and the maximum concentration of phenolic compounds was not always reached at the end of the ripening period but some days before harvest. At the end of ripening both treated Syrah grapes only differed from control grapes in the flavonol concentration, whereas MeJ-treated Merlot grapes presented higher anthocyanin and skin tannin contents than the control and BTH-treated grapes. Only the anthocyanin content was significantly higher in treated Monastrell grapes at the moment of harvest. CONCLUSION: The results indicate that the moment of elicitor treatment should be more studied since differences between treated and control grapes were, in general greater several days before harvest in all three varieties. © 2016 Society of Chemical Industry.


Asunto(s)
Acetatos/farmacología , Agroquímicos/farmacología , Antioxidantes/metabolismo , Productos Agrícolas/efectos de los fármacos , Ciclopentanos/farmacología , Frutas/efectos de los fármacos , Oxilipinas/farmacología , Tiadiazoles/farmacología , Vitis/efectos de los fármacos , Aerosoles , Antocianinas/análisis , Antocianinas/biosíntesis , Antioxidantes/análisis , Cromatografía Líquida de Alta Presión , Producción de Cultivos , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Flavonoles/análisis , Flavonoles/biosíntesis , Frutas/química , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Humanos , Valor Nutritivo , Fenoles/análisis , Fenoles/metabolismo , Pigmentos Biológicos/análisis , Pigmentos Biológicos/biosíntesis , Epidermis de la Planta/química , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/metabolismo , España , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta , Taninos/análisis , Taninos/biosíntesis , Vitis/química , Vitis/crecimiento & desarrollo , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA