Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 683
Filtrar
1.
Neurology ; 102(12): e209451, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38820468

RESUMEN

BACKGROUND AND OBJECTIVES: Postoperative seizure control in drug-resistant temporal lobe epilepsy (TLE) remains variable, and the causes for this variability are not well understood. One contributing factor could be the extensive spread of synchronized ictal activity across networks. Our study used novel quantifiable assessments from intracranial EEG (iEEG) to test this hypothesis and investigated how the spread of seizures is determined by underlying structural network topological properties. METHODS: We evaluated iEEG data from 157 seizures in 27 patients with TLE: 100 seizures from 17 patients with postoperative seizure control (Engel score I) vs 57 seizures from 10 patients with unfavorable surgical outcomes (Engel score II-IV). We introduced a quantifiable method to measure seizure power dynamics within anatomical regions, refining existing seizure imaging frameworks and minimizing reliance on subjective human decision-making. Time-frequency power representations were obtained in 6 frequency bands ranging from theta to gamma. Ictal power spectrums were normalized against a baseline clip taken at least 6 hours away from ictal events. Electrodes' time-frequency power spectrums were then mapped onto individual T1-weighted MRIs and grouped based on a standard brain atlas. We compared spatiotemporal dynamics for seizures between groups with favorable and unfavorable surgical outcomes. This comparison included examining the range of activated brain regions and the spreading rate of ictal activities. We then evaluated whether regional iEEG power values were a function of fractional anisotropy (FA) from diffusion tensor imaging across regions over time. RESULTS: Seizures from patients with unfavorable outcomes exhibited significantly higher maximum activation sizes in various frequency bands. Notably, we provided quantifiable evidence that in seizures associated with unfavorable surgical outcomes, the spread of beta-band power across brain regions is significantly faster, detectable as early as the first second after seizure onset. There was a significant correlation between beta power during seizures and FA in the corresponding areas, particularly in the unfavorable outcome group. Our findings further suggest that integrating structural and functional features could improve the prediction of epilepsy surgical outcomes. DISCUSSION: Our findings suggest that ictal iEEG power dynamics and the structural-functional relationship are mechanistic factors associated with surgical outcomes in TLE.


Asunto(s)
Epilepsia Refractaria , Electroencefalografía , Epilepsia del Lóbulo Temporal , Humanos , Masculino , Femenino , Adulto , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Resultado del Tratamiento , Persona de Mediana Edad , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/diagnóstico por imagen , Adulto Joven , Imagen por Resonancia Magnética , Convulsiones/cirugía , Convulsiones/fisiopatología , Encéfalo/fisiopatología , Encéfalo/cirugía , Encéfalo/diagnóstico por imagen , Electrocorticografía/métodos , Adolescente
2.
Adv Tech Stand Neurosurg ; 49: 291-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38700689

RESUMEN

Pediatric epilepsy has a worldwide prevalence of approximately 1% (Berg et al., Handb Clin Neurol 111:391-398, 2013) and is associated with not only lower quality of life but also long-term deficits in executive function, significant psychosocial stressors, poor cognitive outcomes, and developmental delays (Schraegle and Titus, Epilepsy Behav 62:20-26, 2016; Puka and Smith, Epilepsia 56:873-881, 2015). With approximately one-third of patients resistant to medical control, surgical intervention can offer a cure or palliation to decrease the disease burden and improve neurological development. Despite its potential, epilepsy surgery is drastically underutilized. Even today only 1% of the millions of epilepsy patients are referred annually for neurosurgical evaluation, and the average delay between diagnosis of Drug Resistant Epilepsy (DRE) and surgical intervention is approximately 20 years in adults and 5 years in children (Solli et al., Epilepsia 61:1352-1364, 2020). It is still estimated that only one-third of surgical candidates undergo operative intervention (Pestana Knight et al., Epilepsia 56:375, 2015). In contrast to the stable to declining rates of adult epilepsy surgery (Englot et al., Neurology 78:1200-1206, 2012; Neligan et al., Epilepsia 54:e62-e65, 2013), rates of pediatric surgery are rising (Pestana Knight et al., Epilepsia 56:375, 2015). Innovations in surgical approaches to epilepsy not only minimize potential complications but also expand the definition of a surgical candidate. In this chapter, three alternatives to classical resection are presented. First, laser ablation provides a minimally invasive approach to focal lesions. Next, both central and peripheral nervous system stimulation can interrupt seizure networks without creating permanent lesions. Lastly, focused ultrasound is discussed as a potential new avenue not only for ablation but also modulation of small, deep foci within seizure networks. A better understanding of the potential surgical options can guide patients and providers to explore all treatment avenues.


Asunto(s)
Epilepsia , Procedimientos Neuroquirúrgicos , Niño , Humanos , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia/cirugía , Terapia por Láser/métodos , Procedimientos Neuroquirúrgicos/métodos
3.
Hum Brain Mapp ; 45(7): e26691, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703114

RESUMEN

Verbal memory decline is a significant concern following temporal lobe surgeries in patients with epilepsy, emphasizing the need for precision presurgical verbal memory mapping to optimize functional outcomes. However, the inter-individual variability in functional networks and brain function-structural dissociations pose challenges when relying solely on group-level atlases or anatomical landmarks for surgical guidance. Here, we aimed to develop and validate a personalized functional mapping technique for verbal memory using precision resting-state functional MRI (rs-fMRI) and neurosurgery. A total of 38 patients with refractory epilepsy scheduled for surgical interventions were enrolled and 28 patients were analyzed in the study. Baseline 30-min rs-fMRI scanning, verbal memory and language assessments were collected for each patient before surgery. Personalized verbal memory networks (PVMN) were delineated based on preoperative rs-fMRI data for each patient. The accuracy of PVMN was assessed by comparing post-operative functional impairments and the overlapping extent between PVMN and surgical lesions. A total of 14 out of 28 patients experienced clinically meaningful declines in verbal memory after surgery. The personalized network and the group-level atlas exhibited 100% and 75.0% accuracy in predicting postoperative verbal memory declines, respectively. Moreover, six patients with extra-temporal lesions that overlapped with PVMN showed selective impairments in verbal memory. Furthermore, the lesioned ratio of the personalized network rather than the group-level atlas was significantly correlated with postoperative declines in verbal memory (personalized networks: r = -0.39, p = .038; group-level atlas: r = -0.19, p = .332). In conclusion, our personalized functional mapping technique, using precision rs-fMRI, offers valuable insights into individual variability in the verbal memory network and holds promise in precision verbal memory network mapping in individuals.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Adulto , Adulto Joven , Mapeo Encefálico/métodos , Trastornos de la Memoria/etiología , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/fisiopatología , Persona de Mediana Edad , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Adolescente , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/cirugía , Complicaciones Posoperatorias/diagnóstico por imagen , Procedimientos Neuroquirúrgicos , Aprendizaje Verbal/fisiología , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/fisiopatología
4.
World Neurosurg ; 186: e707-e712, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616023

RESUMEN

BACKGROUND: There is an emerging role for minimally invasive magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) in the treatment of pediatric epilepsy refractory to medication. To date, predictors of MRgLITT success have not been established in a sizeable singular experience. Correspondingly, the aim of this study was to elucidate if previous surgical history predicts MRgLITT success in this setting. METHODS: A retrospective review was conducted of our MRgLITT procedures for pediatric (patient age <19 years) epilepsy from 2011 to 2020 with documented seizure outcomes at 1 and 2 years after procedure. Categorical and continuous data were compared using χ2 and Student's t test, respectively. RESULTS: A total of 41 patients satisfied all criteria with 16 (39%) female and 25 (61%) male patients. Following MRgLITT, seizure-freedom at 1-year was achieved in 15 (37%) patients. In the cohort, there were 14 (34%) patients who had undergone previous open surgery for epilepsy at mean age of 9.4 ± 5.5 years. Patients with a previous open surgery history were found to statistically experience longer length of hospitalization after MRgLITT (P = 0.04) with a statistically lower proportion of seizure-freedom at 1-year after MRgLITT (14% vs. 48%, P = 0.03). However, there was no difference in the rate of seizure-freedom at 2 years (29% vs. 41%, P = 0.44), as well as no difference in subsequent surgical interventions for seizure management between groups. CONCLUSIONS: Based on our institutional experience, patients with previous open surgery history may experience longer length of hospitalization after MRgLITT for pediatric epilepsy and lesser response in seizure-freedom within the first year but with non-inferior seizure freedom by the second year.


Asunto(s)
Terapia por Láser , Humanos , Masculino , Femenino , Niño , Terapia por Láser/métodos , Estudios Retrospectivos , Adolescente , Resultado del Tratamiento , Preescolar , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Imagen por Resonancia Magnética , Epilepsia/cirugía , Epilepsia/diagnóstico por imagen , Procedimientos Neuroquirúrgicos/métodos , Cirugía Asistida por Computador/métodos
5.
Neurol Res ; 46(7): 653-661, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38602305

RESUMEN

OBJECTIVE: We aimed to compare outcomes including seizure-free status at the last follow-up in adult patients with medically refractory focal epilepsy identified as lesional vs. non-lesional based on their magnetic resonance imaging (MRI) findings who underwent invasive evaluation followed by subsequent resection or thermal ablation (LiTT). METHODS: We identified 88 adult patients who underwent intracranial monitoring between 2014 and 2021. Of those, 40 received resection or LiTT, and they were dichotomized based on MRI findings, as lesional (N = 28) and non-lesional (N = 12). Patient demographics, seizure characteristics, non-invasive interventions, intracranial monitoring, and surgical variables were compared between the groups. Postsurgical seizure outcome at the last follow-up was rated according to the Engel classification, and postoperative seizure freedom was determined by Kaplan-Meyer survival analysis. Statistical analyses employed Fisher's exact test to compare categorical variables, while a t-test was used for continuous variables. RESULTS: There were no differences in baseline characteristics between groups except for more often noted PET abnormality in the lesional group (p = 0.0003). 64% of the lesional group and 57% of the non-lesional group received surgical resection or LiTT (p = 0.78). At the last follow-up, 78.5% of the patients with lesional MRI findings achieved Engel I outcomes compared to 66.7% of non-lesional patients (p = 0.45). Kaplan-Meier curves did not show a significant difference in seizure-free duration between both groups after surgical intervention (p = 0.49). SIGNIFICANCE: In our sample, the absence of lesion on brain MRI was not associated with worse seizure outcomes in adult patients who underwent invasive intracranial monitoring followed by resection or thermal ablation.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Resultado del Tratamiento , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Procedimientos Neuroquirúrgicos/métodos , Estudios Retrospectivos , Adulto Joven , Epilepsias Parciales/cirugía , Epilepsias Parciales/diagnóstico por imagen , Estudios de Seguimiento
6.
J Neurosurg ; 140(4): 1129-1136, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564812

RESUMEN

OBJECTIVE: Stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) has the advantage of producing a lesion in the epileptogenic zone (EZ) at the end of SEEG. The majority of published SEEG-guided RFTCs have been bipolar and usually performed between contiguous contacts of the same electrode. In the present study, the authors evaluate the safety, efficacy, and benefits of monopolar RFTC at the end of SEEG. METHODS: This study included a series of 31 consecutive patients who had undergone RFTC at the end of SEEG for drug-resistant focal epilepsy in the period of January 2013-December 2019. Post-RFTC seizure control was assessed after 2 months and at the last follow-up visit. Twenty-one patients underwent resective epilepsy surgery after the SEEG-guided RFTC, and the postoperative seizure outcome among these patients was compared with the post-RFTC seizure outcome. RESULTS: Four hundred forty-six monopolar RFTCs were done in the 31 patients. Monopolar RFTCs were performed in all cortical areas, including the insular cortex in 11 patients (56 insular RFTCs). There were 31 noncontiguous lesions (7.0%) because of vascular constraints. The volume of one monopolar RFTC, as measured on T2-weighted MRI immediately after the procedure, was between 44 and 56 mm3 (mean 50 mm3). The 2-month post-RFTC seizure outcomes were as follows: seizure freedom in 13 patients (41.9%), ≥ 50% reduced seizure frequency in 11 (35.5%), and no significant change in 7 (22.6%). Seizure outcome at the last follow-up visit (mean 18 months, range 2-54 months) showed seizure freedom in 2 patients (6.5%) and ≥ 50% reduced seizure frequency in 20 patients (64.5%). Seizure freedom after monopolar RFTC was not significantly associated with the number or location of coagulated contacts. Seizure response after monopolar RFTC had a high positive predictive value (93.8%) but a low negative predictive value (40%) for seizure outcome after subsequent resective surgery. In this series, the only complication (3.2%) was a limited intraventricular hematoma following RFTC performed in the hippocampal head, with spontaneous resolution and no sequelae. CONCLUSIONS: The use of monopolar SEEG-guided RFTC provides more freedom in terms of choosing the SEEG contacts for thermocoagulation and a larger thermolesion volume. Monopolar thermocoagulation seems particularly beneficial in cases with an insular EZ, in which vascular constraints could be partially avoided by making noncontiguous lesions within the EZ.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Resultado del Tratamiento , Electroencefalografía/métodos , Epilepsia/cirugía , Convulsiones/etiología , Técnicas Estereotáxicas/efectos adversos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electrocoagulación/métodos , Imagen por Resonancia Magnética/efectos adversos , Estudios Retrospectivos
7.
Seizure ; 117: 293-297, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38608341

RESUMEN

PURPOSE: Stereoelectroencephalography (sEEG) is increasingly utilized for localization of seizure foci, functional mapping, and neurocognitive research due to its ability to target deep and difficult to reach anatomical locations and to study in vivo brain function with a high signal-to-noise ratio. The research potential of sEEG is constrained by the need for accurate localization of the implanted electrodes in a common template space for group analyses. METHODS: We present an algorithm to automate the grouping of sEEG electrodes by trajectories, labelled by target and insertion point. This algorithm forms the core of a pipeline that fully automates the entire process of electrode localization in standard space, using raw CT and MRI images to produce atlas labelled MNI coordinates. RESULTS: Across 196 trajectories from 20 patients, the pipeline successfully processed 190 trajectories with localizations within 0.25±0.55 mm of the manual annotation by two reviewers. Six electrode trajectories were not directly identified due to metal artifacts and locations were interpolated based on the first and last contact location and the number of contacts in that electrode as listed in the surgical record. CONCLUSION: We introduce our algorithm and pipeline for automatically localizing, grouping, and classifying sEEG electrodes from raw CT and MRI. Our algorithm adds to existing pipelines and toolboxes for electrode localization by automating the manual step of marking and grouping electrodes, thereby expedites the analyses of sEEG data, particularly in large datasets.


Asunto(s)
Algoritmos , Electrodos Implantados , Electroencefalografía , Imagen por Resonancia Magnética , Técnicas Estereotáxicas , Humanos , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Adulto , Tomografía Computarizada por Rayos X , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Mapeo Encefálico/métodos
8.
Epilepsy Res ; 202: 107357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582073

RESUMEN

PURPOSE: Focal cortical dysplasias (FCDs) are a leading cause of drug-resistant epilepsy. Early detection and resection of FCDs have favorable prognostic implications for postoperative seizure freedom. Despite advancements in imaging methods, FCD detection remains challenging. House et al. (2021) introduced a convolutional neural network (CNN) for automated FCD detection and segmentation, achieving a sensitivity of 77.8%. However, its clinical applicability was limited due to a low specificity of 5.5%. The objective of this study was to improve the CNN's performance through data-driven training and algorithm optimization, followed by a prospective validation on daily-routine MRIs. MATERIAL AND METHODS: A dataset of 300 3 T MRIs from daily clinical practice, including 3D T1 and FLAIR sequences, was prospectively compiled. The MRIs were visually evaluated by two neuroradiologists and underwent morphometric assessment by two epileptologists. The dataset included 30 FCD cases (11 female, mean age: 28.1 ± 10.1 years) and a control group of 150 normal cases (97 female, mean age: 32.8 ± 14.9 years), along with 120 non-FCD pathological cases (64 female, mean age: 38.4 ± 18.4 years). The dataset was divided into three subsets, each analyzed by the CNN. Subsequently, the CNN underwent a two-phase-training process, incorporating subset MRIs and expert-labeled FCD maps. This training employed both classical and continual learning techniques. The CNN's performance was validated by comparing the baseline model with the trained models at two training levels. RESULTS: In prospective validation, the best model trained using continual learning achieved a sensitivity of 90.0%, specificity of 70.0%, and accuracy of 72.0%, with an average of 0.41 false positive clusters detected per MRI. For FCD segmentation, an average Dice coefficient of 0.56 was attained. The model's performance improved in each training phase while maintaining a high level of sensitivity. Continual learning outperformed classical learning in this regard. CONCLUSIONS: Our study presents a promising CNN for FCD detection and segmentation, exhibiting both high sensitivity and specificity. Furthermore, the model demonstrates continuous improvement with the inclusion of more clinical MRI data. We consider our CNN a valuable tool for automated, examiner-independent FCD detection in daily clinical practice, potentially addressing the underutilization of epilepsy surgery in drug-resistant focal epilepsy and thereby improving patient outcomes.


Asunto(s)
Imagen por Resonancia Magnética , Malformaciones del Desarrollo Cortical , Redes Neurales de la Computación , Humanos , Femenino , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/cirugía , Imagen por Resonancia Magnética/métodos , Masculino , Adulto , Estudios Prospectivos , Adulto Joven , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Procesamiento de Imagen Asistido por Computador/métodos , Adolescente , Algoritmos , Persona de Mediana Edad , Sensibilidad y Especificidad , Displasia Cortical Focal
9.
Epilepsia ; 65(6): 1631-1643, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511905

RESUMEN

OBJECTIVE: We aim to improve focal cortical dysplasia (FCD) detection by combining high-resolution, three-dimensional (3D) magnetic resonance fingerprinting (MRF) with voxel-based morphometric magnetic resonance imaging (MRI) analysis. METHODS: We included 37 patients with pharmacoresistant focal epilepsy and FCD (10 IIa, 15 IIb, 10 mild Malformation of Cortical Development [mMCD], and 2 mMCD with oligodendroglial hyperplasia and epilepsy [MOGHE]). Fifty-nine healthy controls (HCs) were also included. 3D lesion labels were manually created. Whole-brain MRF scans were obtained with 1 mm3 isotropic resolution, from which quantitative T1 and T2 maps were reconstructed. Voxel-based MRI postprocessing, implemented with the morphometric analysis program (MAP18), was performed for FCD detection using clinical T1w images, outputting clusters with voxel-wise lesion probabilities. Average MRF T1 and T2 were calculated in each cluster from MAP18 output for gray matter (GM) and white matter (WM) separately. Normalized MRF T1 and T2 were calculated by z-scores using HCs. Clusters that overlapped with the lesion labels were considered true positives (TPs); clusters with no overlap were considered false positives (FPs). Two-sample t-tests were performed to compare MRF measures between TP/FP clusters. A neural network model was trained using MRF values and cluster volume to distinguish TP/FP clusters. Ten-fold cross-validation was used to evaluate model performance at the cluster level. Leave-one-patient-out cross-validation was used to evaluate performance at the patient level. RESULTS: MRF metrics were significantly higher in TP than FP clusters, including GM T1, normalized WM T1, and normalized WM T2. The neural network model with normalized MRF measures and cluster volume as input achieved mean area under the curve (AUC) of .83, sensitivity of 82.1%, and specificity of 71.7%. This model showed superior performance over direct thresholding of MAP18 FCD probability map at both the cluster and patient levels, eliminating ≥75% FP clusters in 30% of patients and ≥50% of FP clusters in 91% of patients. SIGNIFICANCE: This pilot study suggests the efficacy of MRF for reducing FPs in FCD detection, due to its quantitative values reflecting in vivo pathological changes. © 2024 International League Against Epilepsy.


Asunto(s)
Imagen por Resonancia Magnética , Malformaciones del Desarrollo Cortical , Humanos , Imagen por Resonancia Magnética/métodos , Femenino , Masculino , Adulto , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/patología , Adolescente , Adulto Joven , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/patología , Persona de Mediana Edad , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/patología , Imagenología Tridimensional/métodos , Niño , Reacciones Falso Positivas , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Procesamiento de Imagen Asistido por Computador/métodos , Displasia Cortical Focal
10.
Epilepsia ; 65(6): 1709-1719, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38546705

RESUMEN

OBJECTIVES: Amygdala enlargement is detected on magnetic resonance imaging (MRI) in some patients with drug-resistant temporal lobe epilepsy (TLE), but its clinical significance remains uncertain We aimed to assess if the presence of amygdala enlargement (1) predicted seizure outcome following anterior temporal lobectomy with amygdalohippocampectomy (ATL-AH) and (2) was associated with specific histopathological changes. METHODS: This was a case-control study. We included patients with drug-resistant TLE who underwent ATL-AH with and without amygdala enlargement detected on pre-operative MRI. Amygdala volumetry was done using FreeSurfer for patients who had high-resolution T1-weighted images. Mann-Whitney U test was used to compare pre-operative clinical characteristics between the two groups. The amygdala volume on the epileptogenic side was compared to the amygdala volume on the contralateral side among cases and controls. Then, we used a two-sample, independent t test to compare the means of amygdala volume differences between cases and controls. The chi-square test was used to assess the correlation of amygdala enlargement with (1) post-surgical seizure outcomes and (2) histopathological changes. RESULTS: Nineteen patients with and 19 patients without amygdala enlargement were studied. Their median age at surgery was 38 years for cases and 39 years for controls, and 52.6% were male. There were no statistically significant differences between the two groups in their pre-operative clinical characteristics. There were significant differences in the means of volume difference between cases and controls (Diff = 457.2 mm3, 95% confidence interval [CI] 289.6-624.8; p < .001) and in the means of percentage difference (p < .001). However, there was no significant association between amygdala enlargement and surgical outcome (p = .72) or histopathological changes (p = .63). SIGNIFICANCE: The presence of amygdala enlargement on the pre-operative brain MRI in patients with TLE does not affect the surgical outcome following ATL-AH, and it does not necessarily suggest abnormal histopathology. These findings suggest that amygdala enlargement might reflect a secondary reactive process to seizures in the epileptogenic temporal lobe.


Asunto(s)
Amígdala del Cerebelo , Epilepsia del Lóbulo Temporal , Imagen por Resonancia Magnética , Humanos , Amígdala del Cerebelo/cirugía , Amígdala del Cerebelo/patología , Amígdala del Cerebelo/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Masculino , Femenino , Adulto , Estudios de Casos y Controles , Resultado del Tratamiento , Adulto Joven , Persona de Mediana Edad , Lobectomía Temporal Anterior/métodos , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/patología , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Hipocampo/cirugía , Adolescente
11.
Epilepsia ; 65(5): 1462-1474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436479

RESUMEN

OBJECTIVE: Interictal blood-brain barrier dysfunction in chronic epilepsy has been demonstrated in animal models and pathological specimens. Ictal blood-brain barrier dysfunction has been shown in humans in vivo using an experimental quantitative magnetic resonance imaging (MRI) protocol. Here, we hypothesized that interictal blood-brain barrier dysfunction is also present in people with drug-resistant epilepsy. METHODS: Thirty-nine people (21 females, mean age at MRI ± SD = 30 ± 8 years) with drug-resistant epilepsy were prospectively recruited and underwent interictal T1-relaxometry before and after administration of a paramagnetic contrast agent. Likewise, quantitative T1 was acquired in 29 people without epilepsy (12 females, age at MRI = 48 ± 18 years). Quantitative T1 difference maps were calculated and served as a surrogate imaging marker for blood-brain barrier dysfunction. Values of quantitative T1 difference maps inside hemispheres ipsilateral to the presumed seizure onset zone were then compared, on a voxelwise level and within presumed seizure onset zones, to the contralateral side of people with epilepsy and to people without epilepsy. RESULTS: Compared to the contralateral side, ipsilateral T1 difference values were significantly higher in white matter (corrected p < .05), gray matter (uncorrected p < .05), and presumed seizure onset zones (p = .04) in people with epilepsy. Compared to people without epilepsy, significantly higher T1 difference values were found in the anatomical vicinity of presumed seizure onset zones (p = .004). A subgroup of people with hippocampal sclerosis demonstrated significantly higher T1 difference values in the ipsilateral hippocampus and in regions strongly interconnected with the hippocampus compared to people without epilepsy (corrected p < .01). Finally, z-scores reflecting the deviation of T1 difference values within the presumed seizure onset zone were associated with verbal memory performance (p = .02) in people with temporal lobe epilepsy. SIGNIFICANCE: Our results indicate a blood-brain barrier dysfunction in drug-resistant epilepsy that is detectable interictally in vivo, anatomically related to the presumed seizure onset zone, and associated with cognitive deficits.


Asunto(s)
Barrera Hematoencefálica , Epilepsia Refractaria , Imagen por Resonancia Magnética , Humanos , Barrera Hematoencefálica/fisiopatología , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/diagnóstico por imagen , Femenino , Masculino , Adulto , Persona de Mediana Edad , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/diagnóstico por imagen , Adulto Joven , Estudios Prospectivos , Epilepsia/fisiopatología , Epilepsia/diagnóstico por imagen
12.
Clin Neurophysiol ; 161: 80-92, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452427

RESUMEN

OBJECTIVE: Ictal Single Photon Emission Computed Tomography (SPECT) and stereo-electroencephalography (SEEG) are diagnostic techniques used for the management of patients with drug-resistant focal epilepsies. While hyperperfusion patterns in ictal SPECT studies reveal seizure onset and propagation pathways, the role of ictal hypoperfusion remains poorly understood. The goal of this study was to systematically characterize the spatio-temporal information flow dynamics between differently perfused brain regions using stereo-EEG recordings. METHODS: We identified seizure-free patients after resective epilepsy surgery who had prior ictal SPECT and SEEG investigations. We estimated directional connectivity between the epileptogenic-zone (EZ), non-resected areas of hyperperfusion, hypoperfusion, and baseline perfusion during the interictal, preictal, ictal, and postictal periods. RESULTS: Compared to the background, we noted significant information flow (1) during the preictal period from the EZ to the baseline and hyperperfused regions, (2) during the ictal onset from the EZ to all three regions, and (3) during the period of seizure evolution from the area of hypoperfusion to all three regions. CONCLUSIONS: Hypoperfused brain regions were found to indirectly interact with the EZ during the ictal period. SIGNIFICANCE: Our unique study, combining intracranial electrophysiology and perfusion imaging, presents compelling evidence of dynamic changes in directional connectivity between brain regions during the transition from interictal to ictal states.


Asunto(s)
Electroencefalografía , Convulsiones , Tomografía Computarizada de Emisión de Fotón Único , Humanos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Masculino , Femenino , Adulto , Convulsiones/fisiopatología , Convulsiones/diagnóstico por imagen , Electroencefalografía/métodos , Adolescente , Adulto Joven , Electrocorticografía/métodos , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Persona de Mediana Edad , Niño , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía
13.
Clin Neurophysiol ; 161: 112-121, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461595

RESUMEN

OBJECTIVES: Stereoelectroencephalography (SEEG) can define the epileptogenic zone (EZ). However, SEEG is susceptible to the sampling bias, where no SEEG recording is taken within a circumscribed EZ. METHODS: Nine patients with medically refractory epilepsy underwent SEEG recording, and brain resection got positive outcomes. Ictal neuronal currents were estimated by distributed source modeling using the SEEG data and individual's anatomical magnetic resonance imaging. Using a retrospective leave-one-out data sub-sampling, we evaluated the sensitivity and specificity of the current estimates using MRI after surgical resection or radio-frequency ablation. RESULTS: The sensitivity and specificity in detecting the EZ were indistinguishable from either the data from all electrodes or the sub-sampled data (rank sum test: rank sum = 23719, p = 0.13) when at least one remaining electrode contact was no more than 20 mm away. CONCLUSIONS: The distributed neuronal current estimates of ictal SEEG data can mitigate the challenge of delineating the boundary of the EZ in cases of missing an electrode implanted within the EZ and a required second SEEG exploration. SIGNIFICANCE: Distributed source modeling can be a tool for clinicians to infer the EZ by allowing for more flexible planning of the electrode implantation route and minimizing the number of electrodes.


Asunto(s)
Epilepsia Refractaria , Electroencefalografía , Humanos , Femenino , Masculino , Electroencefalografía/métodos , Adulto , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Estudios Retrospectivos , Adulto Joven , Adolescente , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Técnicas Estereotáxicas , Niño , Electrodos Implantados , Persona de Mediana Edad
14.
Ann Clin Transl Neurol ; 11(5): 1135-1147, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532258

RESUMEN

OBJECTIVE: In parallel to standard vagus nerve stimulation (VNS), microburst stimulation delivery has been developed. We evaluated the fMRI-related signal changes associated with standard and optimized microburst stimulation in a proof-of-concept study (NCT03446664). METHODS: Twenty-nine drug-resistant epilepsy patients were prospectively implanted with VNS. Three 3T fMRI scans were collected 2 weeks postimplantation. The maximum tolerated VNS intensity was determined prior to each scan starting at 0.125 mA with 0.125 mA increments. FMRI scans were block-design with alternating 30 sec stimulation [ON] and 30 sec no stimulation [OFF]: Scan 1 utilized standard VNS and Scan 3 optimized microburst parameters to determine target settings. Semi-automated on-site fMRI data processing utilized ON-OFF block modeling to determine VNS-related fMRI activation per stimulation setting. Anatomical thalamic mask was used to derive highest mean thalamic t-value for determination of microburst stimulation parameters. Paired t-tests corrected at P < 0.05 examined differences in fMRI responses to each stimulation type. RESULTS: Standard and microburst stimulation intensities at Scans 1 and 3 were similar (P = 0.16). Thalamic fMRI responses were obtained in 28 participants (19 with focal; 9 with generalized seizures). Group activation maps showed standard VNS elicited thalamic activation while optimized microburst VNS showed widespread activation patterns including thalamus. Comparison of stimulation types revealed significantly greater cerebellar, midbrain, and parietal fMRI signal changes in microburst compared to standard VNS. These differences were not associated with seizure responses. INTERPRETATION: While standard and optimized microburst VNS elicited thalamic activation, microburst also engaged other brain regions. Relationship between these fMRI activation patterns and clinical response warrants further investigation. CLINICAL TRIAL REGISTRATION: The study was registered with clinicaltrials.gov (NCT03446664).


Asunto(s)
Epilepsia Refractaria , Imagen por Resonancia Magnética , Tálamo , Estimulación del Nervio Vago , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Epilepsia Refractaria/terapia , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Neuroimagen Funcional/normas , Neuroimagen Funcional/métodos , Prueba de Estudio Conceptual , Tálamo/diagnóstico por imagen , Estimulación del Nervio Vago/métodos , Estudios Prospectivos
15.
Curr Opin Neurol ; 37(2): 141-151, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334495

RESUMEN

PURPOSE OF REVIEW: To review the current practices and evidence for the diagnostic accuracy and the benefits of presurgical evaluation. RECENT FINDINGS: Preoperative evaluation of patients with drug-resistant focal epilepsies and subsequent epilepsy surgery leads to a significant proportion of seizure-free patients. Even those who are not completely seizure free postoperatively often experience improved quality of life with better social integration. Systematic reviews and meta-analysis on the diagnostic accuracy are available for Video-electroencephalographic (EEG) monitoring, magnetic resonance imaging (MRI), electric and magnetic source imaging, and functional MRI for lateralization of language and memory. There are currently no evidence-based international guidelines for presurgical evaluation and epilepsy surgery. SUMMARY: Presurgical evaluation is a complex multidisciplinary and multiprofessional clinical pathway. We rely on limited consensus-based recommendations regarding the required staffing or methodological expertise in epilepsy centers.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Calidad de Vida , Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Imagen por Resonancia Magnética/métodos , Resultado del Tratamiento
16.
Epilepsy Behav ; 153: 109694, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401416

RESUMEN

OBJECTIVE: Negative MRI and an epileptogenic zone (EZ) adjacent to eloquent areas are two main issues that can be encountered during pre-surgical evaluation for epilepsy surgery. Focal Cortical Dysplasia type II (FCD type II) is the most common aetiology underlying a negative MRI. The objective of this study is to present three cases of pediatric patients exhibiting negative MRI and a seizure onset zone close to eloquent areas, who previously underwent traditional open surgery or SEEG-guided radiofrequency thermocoagulations (RF-TC). After seizure seizure recrudescence, pre-surgical SEEG was re-evaluated and Magnetic Resonance-guided laser interstitial thermal therapy (MRg-LiTT) was performed. We discuss the SEEG patterns, the planning of laser probes trajectories and the outcomes one year after the procedure. METHODS: Pediatric patients who underwent SEEG followed by MRg-LiTT for drug-resistant epilepsy associated with FCD type II at our Centre were included. Pre-surgical videoEEG (vEEG), stereoEEG (sEEG), and MRI were reviewed. Post-procedure clinical outcome (measured by Engel score) and complications rates were evaluated. RESULTS: Three patients underwent 3 MRg-LiTT procedures from January 2022 to June 2022. Epileptogenic zone was previously studied via SEEG in all the patients. All the three patients pre-surgical MRI was deemed negative. Mean age at seizure onset was 47 months (21-96 months), mean age at MRg-LiTT was 12 years (10 years 10 months - 12 years 9 months). Engel class Ia outcome was achieved in patients #2 and #3, Engel class Ib in patient #1. Mean follow-up length was of 17 months (13 months - 20 months). Complications occurred in one patient (patient #2, extradural hematoma). CONCLUSIONS: The combined use of SEEG and MRg-LiTT in complex cases can lead to good outcomes both as a rescue therapy after failed surgery, but also as an alternative to open surgery after a successful SEEG-guided Radiofrequency Thermocoagulation (RF-TC). Specific SEEG patterns and a previous good outcome from RF-TC can be predictors of a favourable outcome.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Malformaciones del Desarrollo Cortical de Grupo I , Humanos , Niño , Preescolar , Técnicas Estereotáxicas , Electroencefalografía/métodos , Resultado del Tratamiento , Epilepsia/cirugía , Imagen por Resonancia Magnética/métodos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Convulsiones/diagnóstico por imagen , Convulsiones/etiología , Convulsiones/cirugía , Espectroscopía de Resonancia Magnética , Estudios Retrospectivos
17.
World Neurosurg ; 184: e408-e416, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309654

RESUMEN

OBJECTIVE: To analyze the relationship between trajectory-skull angle and stereoelectroencephalography electrode implantation accuracy in drug-resistant epilepsy patients, aiming to guide clinical electrode placement and enhance surgical precision and safety. METHODS: We conducted a retrospective analysis of medical records and surgical characteristics of 32 consecutive patients diagnosed with drug-resistant epilepsy, who underwent stereoelectroencephalography procedures at our center from June 2020 to June 2023. To evaluate the accuracy of electrode implantation, we utilized preoperative and postoperative computed tomography scans fused with SinoPlan software-planned trajectories. Entry radial error and target vector error were assessed as measurements of electrode implantation accuracy. RESULTS: After adjusting for confounders, we found a significant positive correlation between trajectory-skull angle and entry radial error (ß = 0.02, 95% CI: 0.01-0.03, P < 0.001). Likewise, a significant positive correlation existed between trajectory-skull angle and target vector error in all three models (ß = 0.03, 95% CI: 0.01-0.04, P < 0.001). Additionally, a U-shaped relationship between trajectory-skull angle and target vector error was identified using smooth curve fitting. This U-shaped pattern persisted in both frame-based and robot-guided stereotactic techniques. According to the two-piecewise linear regression model, the inflection points were 9° in the frame-based group and 16° in the robot-guided group. CONCLUSIONS: This study establishes a significant positive linear correlation between trajectory-skull angle and entry radial error, along with a distinctive U-shaped pattern in the relationship between trajectory-skull angle and target vector error. Our findings suggest that trajectory-skull angles of 9° (frame-based) and 16° (robot-guided) may optimize the accuracy of target vector error.


Asunto(s)
Epilepsia Refractaria , Electroencefalografía , Humanos , Estudios Retrospectivos , Electroencefalografía/métodos , Electrodos Implantados , Técnicas Estereotáxicas , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Cráneo
18.
J Neuroimmunol ; 388: 578298, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330780

RESUMEN

PURPOSE: New-Onset Refractory Status Epilepticus (NORSE) is a rare and severe form of refractory status epilepticus without an apparent underlying cause at presentation or prior history of epilepsy. We aimed to describe the clinical features, etiology, treatment, and outcomes of NORSE in adults in a quaternary-level hospital in Saudi Arabia. METHODOLOGY: In this retrospective cohort study, inclusion criteria involved patients over 14 years old who met the 2018 consensus definition for NORSE. Patients were identified using a combination of medical record admission labels 'status epilepticus' and 'encephalitis', and continuous EEG reports documenting status epilepticus. Demographic, clinical, and radiological data were collected and then analyzed for factors correlated with specific etiologies, better functional outcomes, and future diagnosis of epilepsy. RESULTS: We found 24 patients presenting with NORSE between 2010 and 2021. Fever/infectious symptoms were the most common prodrome. Elevated inflammatory serum and cerebrospinal fluid markers in most patients. Brain MRI revealed T2/FLAIR hyperintensity patterns, predominantly affecting limbic and perisylvian structures. The etiology of NORSE varied, with immune-related causes being the most common. Long-term outcomes were poor, with a high mortality rate and most survivors developing drug-resistant epilepsy. CONCLUSION: This study provides valuable insights into NORSE's clinical characteristics, highlighting the heterogeneity of this condition. The poor outcome is likely related to the progressive nature of the underlying disease, where refractory seizures are a clinical symptom. Thus, we propose to focus future research on the etiology rather than the NORSE acronym.


Asunto(s)
Epilepsia Refractaria , Encefalitis , Estado Epiléptico , Adulto , Humanos , Adolescente , Estudios Retrospectivos , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/tratamiento farmacológico , Epilepsia Refractaria/diagnóstico por imagen , Encefalitis/complicaciones , Imagen por Resonancia Magnética
19.
PLoS One ; 19(2): e0296843, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330027

RESUMEN

In drug-resistant focal epilepsy, detecting epileptogenic lesions using MRI poses a critical diagnostic challenge. Here, we assessed the utility of MP2RAGE-a T1-weighted sequence with self-bias correcting properties commonly utilized in ultra-high field MRI-for the detection of epileptogenic lesions using a surface-based morphometry pipeline based on FreeSurfer, and compared it to the common approach using T1w MPRAGE, both at 3T. We included data from 32 patients with focal epilepsy (5 MRI-positive, 27 MRI-negative with lobar seizure onset hypotheses) and 94 healthy controls from two epilepsy centres. Surface-based morphological measures and intensities were extracted and evaluated in univariate GLM analyses as well as multivariate unsupervised 'novelty detection' machine learning procedures. The resulting prediction maps were analyzed over a range of possible thresholds using alternative free-response receiver operating characteristic (AFROC) methodology with respect to the concordance with predefined lesion labels or hypotheses on epileptogenic zone location. We found that MP2RAGE performs at least comparable to MPRAGE and that especially analysis of MP2RAGE image intensities may provide additional diagnostic information. Secondly, we demonstrate that unsupervised novelty-detection machine learning approaches may be useful for the detection of epileptogenic lesions (maximum AFROC AUC 0.58) when there is only a limited lesional training set available. Third, we propose a statistical method of assessing lesion localization performance in MRI-negative patients with lobar hypotheses of the epileptogenic zone based on simulation of a random guessing process as null hypothesis. Based on our findings, it appears worthwhile to study similar surface-based morphometry approaches in ultra-high field MRI (≥ 7 T).


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Humanos , Encéfalo/anatomía & histología , Imagen por Resonancia Magnética/métodos , Epilepsias Parciales/diagnóstico por imagen , Epilepsia Refractaria/diagnóstico por imagen
20.
Epilepsia ; 65(4): 1092-1106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345348

RESUMEN

OBJECTIVE: Epilepsy patients are often grouped together by clinical variables. Quantitative neuroimaging metrics can provide a data-driven alternative for grouping of patients. In this work, we leverage ultra-high-field 7-T structural magnetic resonance imaging (MRI) to characterize volumetric atrophy patterns across hippocampal subfields and thalamic nuclei in drug-resistant focal epilepsy. METHODS: Forty-two drug-resistant epilepsy patients and 13 controls with 7-T structural neuroimaging were included in this study. We measured hippocampal subfield and thalamic nuclei volumetry, and applied an unsupervised machine learning algorithm, Latent Dirichlet Allocation (LDA), to estimate atrophy patterns across the hippocampal subfields and thalamic nuclei of patients. We studied the association between predefined clinical groups and the estimated atrophy patterns. Additionally, we used hierarchical clustering on the LDA factors to group patients in a data-driven approach. RESULTS: In patients with mesial temporal sclerosis (MTS), we found a significant decrease in volume across all ipsilateral hippocampal subfields (false discovery rate-corrected p [pFDR] < .01) as well as in some ipsilateral (pFDR < .05) and contralateral (pFDR < .01) thalamic nuclei. In left temporal lobe epilepsy (L-TLE) we saw ipsilateral hippocampal and some bilateral thalamic atrophy (pFDR < .05), whereas in right temporal lobe epilepsy (R-TLE) extensive bilateral hippocampal and thalamic atrophy was observed (pFDR < .05). Atrophy factors demonstrated that our MTS cohort had two atrophy phenotypes: one that affected the ipsilateral hippocampus and one that affected the ipsilateral hippocampus and bilateral anterior thalamus. Atrophy factors demonstrated posterior thalamic atrophy in R-TLE, whereas an anterior thalamic atrophy pattern was more common in L-TLE. Finally, hierarchical clustering of atrophy patterns recapitulated clusters with homogeneous clinical properties. SIGNIFICANCE: Leveraging 7-T MRI, we demonstrate widespread hippocampal and thalamic atrophy in epilepsy. Through unsupervised machine learning, we demonstrate patterns of volumetric atrophy that vary depending on disease subtype. Incorporating these atrophy patterns into clinical practice could help better stratify patients to surgical treatments and specific device implantation strategies.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Imagen por Resonancia Magnética/métodos , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Lóbulo Temporal/patología , Atrofia/patología , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/patología , Esclerosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA