Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Mol Neurobiol ; 60(10): 5755-5769, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37341859

RESUMEN

The purpose of this study was to identify and validate new putative lead drug targets in drug-resistant mesial temporal lobe epilepsy (mTLE) starting from differentially expressed genes (DEGs) previously identified in mTLE in humans by transcriptome analysis. We identified consensus DEGs among two independent mTLE transcriptome datasets and assigned them status as "lead target" if they (1) were involved in neuronal excitability, (2) were new in mTLE, and (3) were druggable. For this, we created a consensus DEG network in STRING and annotated it with information from the DISEASES database and the Target Central Resource Database (TCRD). Next, we attempted to validate lead targets using qPCR, immunohistochemistry, and Western blot on hippocampal and temporal lobe neocortical tissue from mTLE patients and non-epilepsy controls, respectively. Here we created a robust, unbiased list of 113 consensus DEGs starting from two lists of 3040 and 5523 mTLE significant DEGs, respectively, and identified five lead targets. Next, we showed that CACNB3, a voltage-gated Ca2+ channel subunit, was significantly regulated in mTLE at both mRNA and protein level. Considering the key role of Ca2+ currents in regulating neuronal excitability, this suggested a role for CACNB3 in seizure generation. This is the first time changes in CACNB3 expression have been associated with drug-resistant epilepsy in humans, and since efficient therapeutic strategies for the treatment of drug-resistant mTLE are lacking, our finding might represent a step toward designing such new treatment strategies.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/complicaciones , Lóbulo Temporal/metabolismo , Convulsiones/metabolismo , Hipocampo/metabolismo , Epilepsia Refractaria/genética , Epilepsia Refractaria/metabolismo
2.
Brain ; 146(4): 1342-1356, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36226386

RESUMEN

Understanding the exact molecular mechanisms involved in the aetiology of epileptogenic pathologies with or without tumour activity is essential for improving treatment of drug-resistant focal epilepsy. Here, we characterize the landscape of somatic genetic variants in resected brain specimens from 474 individuals with drug-resistant focal epilepsy using deep whole-exome sequencing (>350×) and whole-genome genotyping. Across the exome, we observe a greater number of somatic single-nucleotide variants in low-grade epilepsy-associated tumours (7.92 ± 5.65 single-nucleotide variants) than in brain tissue from malformations of cortical development (6.11 ± 4 single-nucleotide variants) or hippocampal sclerosis (5.1 ± 3.04 single-nucleotide variants). Tumour tissues also had the largest number of likely pathogenic variant carrying cells. low-grade epilepsy-associated tumours had the highest proportion of samples with one or more somatic copy-number variants (24.7%), followed by malformations of cortical development (5.4%) and hippocampal sclerosis (4.1%). Recurring somatic whole chromosome duplications affecting Chromosome 7 (16.8%), chromosome 5 (10.9%), and chromosome 20 (9.9%) were observed among low-grade epilepsy-associated tumours. For germline variant-associated malformations of cortical development genes such as TSC2, DEPDC5 and PTEN, germline single-nucleotide variants were frequently identified within large loss of heterozygosity regions, supporting the recently proposed 'second hit' disease mechanism in these genes. We detect somatic variants in 12 established lesional epilepsy genes and demonstrate exome-wide statistical support for three of these in the aetiology of low-grade epilepsy-associated tumours (e.g. BRAF) and malformations of cortical development (e.g. SLC35A2 and MTOR). We also identify novel significant associations for PTPN11 with low-grade epilepsy-associated tumours and NRAS Q61 mutated protein with a complex malformation of cortical development characterized by polymicrogyria and nodular heterotopia. The variants identified in NRAS are known from cancer studies to lead to hyperactivation of NRAS, which can be targeted pharmacologically. We identify large recurrent 1q21-q44 duplication including AKT3 in association with focal cortical dysplasia type 2a with hyaline astrocytic inclusions, another rare and possibly under-recognized brain lesion. The clinical-genetic analyses showed that the numbers of somatic single-nucleotide variant across the exome and the fraction of affected cells were positively correlated with the age at seizure onset and surgery in individuals with low-grade epilepsy-associated tumours. In summary, our comprehensive genetic screen sheds light on the genome-scale landscape of genetic variants in epileptic brain lesions, informs the design of gene panels for clinical diagnostic screening and guides future directions for clinical implementation of epilepsy surgery genetics.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Malformaciones del Desarrollo Cortical , Humanos , Epilepsia/patología , Encéfalo/patología , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/metabolismo , Genómica , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/metabolismo , Epilepsias Parciales/metabolismo , Nucleótidos/metabolismo
3.
J Mol Neurosci ; 72(10): 2125-2135, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36028602

RESUMEN

The transporter hypothesis is one of the most popular hypotheses of drug-resistant epilepsy (DRE). P-glycoprotein (P-gp), a channel protein at the blood-brain barrier (BBB), plays an important role in the transport of some anti-seizure drugs from brain tissue into vessels, which reduces drug concentrations and diminishes the effects of drug treatment. We performed this study to test whether P-gp is overexpressed in DRE and identify ways to prevent and reverse DRE. In this study, we established a phenytoin (PHT)-resistant mouse model and revealed that P-gp was overexpressed at the BBB in PHT-resistant mice. The P-gp inhibitor nimodipine decreased the resistance of phenytoin. Antioxidative preventive treatment with N-acetylcysteine (NAC) prevented the mice from entering a PHT-resistant state, and NAC therapy tended to reverse PHT resistance into sensitivity. We were also able to induce PHT resistance by activating the Nrf2/P-gp pathway, which indicates that oxidative stress plays an important role in drug resistance. Taken together, these findings suggest that antioxidative therapy may be a promising strategy for overcoming DRE.


Asunto(s)
Epilepsia Refractaria , Fenitoína , Animales , Ratones , Fenitoína/farmacología , Fenitoína/uso terapéutico , Barrera Hematoencefálica/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Acetilcisteína/metabolismo , Nimodipina/farmacología , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Encéfalo/metabolismo , Epilepsia Refractaria/metabolismo
4.
Epilepsy Res ; 186: 107000, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037622

RESUMEN

OBJECTIVE: To develop a functionalized PEG-PLA nanoparticle system containing ketoconazole (KCZ) to overcome the overactivity of pregnane X receptor (PXR) for the treatment of drug-resistant epilepsy (DRE). SIGNIFICANCE: KCZ was developed as a therapy strategy for DRE limited by its lethal hepatotoxicity and minute brain concentration. KCZ-incorporated nanoparticles modified with angiopep-2 (NPs/KCZ) could reduce adverse effects of KCZ and achieve epileptic foci-targeted drug delivery. METHODS: NPs/KCZ was prepared by thin-film hydration method and characterized in vitro and in vivo. The efficacy evaluation of NPs/KCZ was evaluated in a kainic acid (KA)-induced mice model of epilepsy with carbamazepine (CBZ) treatment. RESULTS: The mean particle size and Zeta potential of NPs/KCZ were 17.84 ± 0.33 nm and - 2.28 ± 0.12 mV, respectively. The drug-loading (DL%) of KCZ in nanoparticles was 8.96 ± 0.12 % and the entrapment efficiency (EE%) was 98.56 ± 0.02 %. The critical value of critical micelle concentration was 10-3.3 mg/ml. No obvious cytotoxicity was found in vitro. The behavioral and electrographic seizure activities were obviously attenuated in NPs/KCZ+CBZ group. The CBZ concentration of brain tissues in mice treated with NPs/KCZ+CBZ was significantly increased than those treated with CBZ alone (P = 0.0028). A significantly decreased expression level of PXR and its downstream proteins was observed in NPs/KCZ+CBZ group compared with that in the control and CBZ group (All P < 0.05). CONCLUSION: Our results showed that NPs/KCZ achieved the epileptic foci-targeted delivery of KCZ and ameliorated the efficacy of CBZ on DRE by attenuating the overactivity of PXR.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Nanopartículas , Animales , Encéfalo/metabolismo , Carbamazepina/farmacología , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/metabolismo , Epilepsia/metabolismo , Ácido Kaínico/farmacología , Cetoconazol/farmacología , Cetoconazol/uso terapéutico , Ratones , Micelas , Polietilenglicoles , Receptor X de Pregnano/metabolismo
5.
Curr Drug Metab ; 23(9): 735-756, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35980054

RESUMEN

Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Transportadoras de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Epilepsia Refractaria/metabolismo , Filogenia , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Nanotecnología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/uso terapéutico
6.
Cell Biol Int ; 46(11): 1775-1786, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35989486

RESUMEN

The present study was conducted to determine the effects of the γ-aminobutyric acid B (GABAB ) receptor positive allosteric modulator BHF177 on refractory epilepsy (RE). An RE rat model was initially established via treatment with lithium-pilocarpine. The RE rats were then treated with BHF177 or the GABAB receptor antagonist CGP46381, followed by recording of their seizure rate and assessment of their spatial learning in the Morris water maze test. Treatment of BHF177 reduced the seizure intensity, whereas this effect was revered upoj treatment with CGP46381. Immunohistochemistry revealed that BHF177 treatment diminished P-glycoprotein (P-gp) expression in the hippocampal tissues of RE rats. Next, we found that BHF177 activated GABAB receptor, resulting in upregulated expression of insulin receptor substrate 1 (IRS-1) and PI3K, as well as antiapoptotic factors (Bcl-2 and mTOR), along with suppression of the apoptosis factors Bax and cleaved caspase-3 in the hippocampal tissues. Further, activation of GABAB receptors by BHF177 alleviated the inflammatory response in hippocampal tissues of RE rats, as evidenced by reduced VCAM-1, ICAM-1, and tumor necrosis factor-α levels. Next, we treated primary cultured rat hippocampal neurons with BHF177 and the IRS-1 selective inhibitor NT157. BHF177 inhibited hippocampal apoptosis in rat hippocampal neurons by regulating the IRS-1/PI3K/Akt axis through crosstalk between GABAB and insulin-like growth factor-1 receptors. Collectively, our findings indicate that the BHF177 inhibited neuron apoptosis, thus protecting against RE through the IRS-1/PI3K/Akt axis, which may present a new therapeutic channel for RE.


Asunto(s)
Epilepsia Refractaria , Receptores de GABA-B , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Apoptosis , Caspasa 3/metabolismo , Epilepsia Refractaria/metabolismo , Epilepsia Refractaria/patología , Hipocampo/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Litio/metabolismo , Litio/farmacología , Litio/uso terapéutico , Neuronas/metabolismo , Norbornanos , Fosfatidilinositol 3-Quinasas/metabolismo , Pilocarpina/metabolismo , Pilocarpina/farmacología , Pilocarpina/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas , Ratas , Receptores de GABA-B/metabolismo , Receptores de GABA-B/uso terapéutico , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Convulsiones/patología , Serina-Treonina Quinasas TOR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/farmacología , Molécula 1 de Adhesión Celular Vascular/uso terapéutico , Proteína X Asociada a bcl-2/metabolismo , Ácido gamma-Aminobutírico/farmacología
7.
Brain ; 145(3): 925-938, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35355055

RESUMEN

Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemimegalencefalia , Malformaciones del Desarrollo Cortical , Encéfalo/patología , Niño , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Hemimegalencefalia/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patología , Humanos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
8.
Nutrients ; 14(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35276837

RESUMEN

BACKGROUND: Changes in adipokine secretion may be involved in the anti-epileptic effect of a ketogenic diet (KD) in drug-resistant epilepsy (DRE). OBJECTIVES: The assessment of the influence of KD on serum adiponectin, omentin-1, and vaspin in children with DRE. METHODS: Anthropometric measurements (weight, height, BMI, and waist-to-hip circumference ratio) were performed in 72 children aged 3-9 years, divided into 3 groups: 24 children with DRE treated with KD, 26-treated with valproic acid (VPA), and a control group of 22 children. Biochemical tests included fasting glucose, insulin, beta-hydroxybutyric acid, lipid profile, aminotransferases activities, and blood gasometry. Serum levels of adiponectin, omentin-1 and vaspin were assayed using commercially available ELISA tests. RESULTS: Serum levels of adiponectin and omentin-1 in the KD group were significantly higher and vaspin-lower in comparison to patients receiving VPA and the control group. In all examined children, serum adiponectin and omentin-1 correlated negatively with WHR and serum triglycerides, insulin, fasting glucose, and HOMA-IR. Vaspin levels correlated negatively with serum triglycerides and positively with body weight, BMI, fasting glucose, insulin, and HOMA-IR. CONCLUSION: One of the potential mechanisms of KD in children with drug-resistant epilepsy may be a modulation of metabolically beneficial and anti-inflammatory adipokine levels.


Asunto(s)
Adiponectina , Citocinas , Dieta Cetogénica , Epilepsia Refractaria , Lectinas , Serpinas , Adiponectina/metabolismo , Índice de Masa Corporal , Niño , Preescolar , Citocinas/metabolismo , Epilepsia Refractaria/dietoterapia , Epilepsia Refractaria/metabolismo , Proteínas Ligadas a GPI/metabolismo , Humanos , Resistencia a la Insulina , Lectinas/metabolismo , Obesidad , Serpinas/metabolismo
9.
J Integr Neurosci ; 21(1): 31, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164467

RESUMEN

Background: Ketogenic dietary therapies (KDT) are used as a treatment in childhood epilepsy. However, their mechanism has not yet been established. The main objective of this study was to determine the changes in the transcriptomic profile induced by KDT in children with epilepsy in order to shed light on its possible mechanisms. Methods: Eight children with refractory epilepsy were enrolled in the study. Peripheral blood mononuclear cells were obtained before and after the children were treated with KDT for a minimum of 6 months. RNA was extracted and mRNA and miRNA profiling were performed and analyzed. Results: Our intervention with KDT significantly reduced the seizure number in seven of the eight paediatric patients treated and caused important changes in their gene expression profile. Our study reveals modifications in the transcription of 4630 genes and 230 miRNAs. We found that the genes involved in the protection against epileptic crises were among those mainly changed. These genes collectively encode for ion channels, neurotransmitter receptors, and synapse structural proteins. Conclusions: Together our results explain the possible mechanisms of KDT and reinforce its clinical importance in the treatment of epilepsy.


Asunto(s)
Dieta Cetogénica , Epilepsia Refractaria/dietoterapia , Epilepsia Refractaria/metabolismo , MicroARNs/metabolismo , Transcriptoma , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Evaluación de Resultado en la Atención de Salud
10.
PLoS One ; 17(1): e0262285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35025939

RESUMEN

BACKGROUND: Canine idiopathic epilepsy (IE) is a common neurological disease with severe impact on the owner´s and the dog's quality of life. A subpopulation of dogs with IE does not respond to antiseizure drugs (non-responder). Th17 cells (T helper cells) and their proinflammatory Interleukin-17 (IL-17) are part of the immune system and previous studies showed their involvement in the pathogenesis of several autoimmune diseases. Non-responder might have an abnormal immune response against structures of the central nervous system. To discover a new aetiology of canine IE and thereby optimising the therapy of intractable IE, this prospective study aimed to investigate Th17 cells and IL-17 in dogs with IE. The underlying hypothesis was that in some dogs with IE a Th17 cell-mediated immune response could be detectable. METHODS: 57 dogs with IE and 10 healthy dogs (control group, C) were enrolled in the study. EDTA blood was taken to measure Th17 cells by flow cytometry. IL-17 was measured in 35 cerebrospinal fluid (CSF) and 33 serum samples using an enzyme-linked immunosorbent assay (ELISA). It was investigated whether there was a significant increase of stimulated Th17 cells in blood samples or of IL-17 in serum and CSF samples of dogs with IE in comparison to C. Correlations between the amount of Th17 cells/µL or IL-17 and different clinical parameters e.g. seizure frequency, seizure type, seizure severity or treatment response were evaluated. Additionally, Th17 cells/µL were randomly controlled of 17 dogs with IE and were examined for changes over time and in relation to treatment response. RESULTS: Ten dogs with IE had strongly elevated stimulated Th17 cells/µL within the blood (>100 Th17 cells/µL). A slight positive correlation between stimulated Th17 cells/µL and seizure severity (p = 0.046; rSpear = 0.27) was proven in these dogs. In addition, 4/10 dogs with elevated Th17 levels experienced cluster seizures and status epilepticus in comparison to 9% of the dogs with non-elevated Th17 levels (<100 Th17 cells/µL). Dogs with IE had significantly higher IL-17 values in CSF and serum samples compared to C (p<0.001; p<0.002; respectively). CONCLUSION: In single dogs with IE, strongly increased amounts of Th17 cells were detectable and dogs with elevated Th17 cells seemed to have a greater risk for experiencing a combination of cluster seizures and status epilepticus. Therefore, an underlying Th17-cell mediated immune response was suspected and hence anti-inflammatory drugs could be indicated in these single cases with intractable epilepsy.


Asunto(s)
Epilepsia Refractaria/inmunología , Células Th17/metabolismo , Animales , Enfermedades de los Perros/sangre , Perros , Epilepsia Refractaria/metabolismo , Epilepsia Refractaria/veterinaria , Ensayo de Inmunoadsorción Enzimática , Epilepsia Generalizada/complicaciones , Epilepsia Generalizada/inmunología , Epilepsia Generalizada/veterinaria , Femenino , Interleucina-17/inmunología , Interleucina-17/metabolismo , Masculino , Estudios Prospectivos , Calidad de Vida , Convulsiones/tratamiento farmacológico , Convulsiones/veterinaria , Células Th17/inmunología
11.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884898

RESUMEN

We report herein a series of water-soluble analogues of previously described anticonvulsants and their detailed in vivo and in vitro characterization. The majority of these compounds demonstrated broad-spectrum anticonvulsant properties in animal seizure models, including the maximal electroshock (MES) test, the pentylenetetrazole-induced seizure model (scPTZ), and the psychomotor 6 Hz (32 mA) seizure model in mice. Compound 14 showed the most robust anticonvulsant activity (ED50 MES = 49.6 mg/kg, ED50 6 Hz (32 mA) = 31.3 mg/kg, ED50scPTZ = 67.4 mg/kg). Notably, it was also effective in the 6 Hz (44 mA) model of drug-resistant epilepsy (ED50 = 63.2 mg/kg). Apart from favorable anticonvulsant properties, compound 14 revealed a high efficacy against pain responses in the formalin-induced tonic pain, the capsaicin-induced neurogenic pain, as well as in the oxaliplatin-induced neuropathic pain in mice. Moreover, compound 14 showed distinct anti-inflammatory activity in the model of carrageenan-induced aseptic inflammation. The mechanism of action of compound 14 is likely complex and may result from the inhibition of peripheral and central sodium and calcium currents, as well as the TRPV1 receptor antagonism as observed in the in vitro studies. This lead compound also revealed beneficial in vitro ADME-Tox properties and an in vivo pharmacokinetic profile, making it a potential candidate for future preclinical development. Interestingly, the in vitro studies also showed a favorable induction effect of compound 14 on the viability of neuroblastoma SH-SY5Y cells.


Asunto(s)
Acetamidas/administración & dosificación , Analgésicos/administración & dosificación , Anticonvulsivantes/administración & dosificación , Epilepsia Refractaria/tratamiento farmacológico , Dolor/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Acetamidas/farmacología , Administración Intravenosa , Analgésicos/química , Analgésicos/farmacología , Animales , Anticonvulsivantes/farmacología , Canales de Calcio/metabolismo , Capsaicina/efectos adversos , Modelos Animales de Enfermedad , Epilepsia Refractaria/etiología , Epilepsia Refractaria/metabolismo , Electrochoque/efectos adversos , Formaldehído/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Oxaliplatino/efectos adversos , Dolor/inducido químicamente , Dolor/metabolismo , Pentilenotetrazol/efectos adversos , Convulsiones/etiología , Convulsiones/metabolismo , Canales de Sodio/metabolismo , Canales Catiónicos TRPV/metabolismo
12.
Epilepsia ; 62(12): 2899-2908, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34558066

RESUMEN

OBJECTIVE: Imaging activated glutamate N-methyl-D-aspartate receptor ion channels (NMDAR-ICs) using positron emission tomography (PET) has proved challenging due to low brain uptake, poor affinity and selectivity, and high metabolism and dissociation rates of candidate radioligands. The radioligand [18 F]GE-179 is a known use-dependent marker of NMDAR-ICs. We studied whether interictal [18 F]GE-179 PET would detect foci of abnormal NMDAR-IC activation in patients with refractory focal epilepsy. METHODS: Ten patients with refractory focal epilepsy and 18 healthy controls had structural magnetic resonance imaging (MRI) followed by a 90-min dynamic [18 F]GE-179 PET scan with simultaneous electroencephalography (EEG). PET and EEG findings were compared with MRI and previous EEGs. Standard uptake value (SUV) images of [18 F]GE-179 were generated and global gray matter uptake was measured for each individual. To localize focal increases in uptake of [18 F]GE-179, the individual SUV images were interrogated with statistical parametric mapping in comparison to a normal database. Additionally, individual healthy control SUV images were compared with the rest of the control database to determine their prevalence of increased focal [18 F]GE-179 uptake. RESULTS: Interictal [18 F]GE-179 PET detected clusters of significantly increased binding in eight of 10 patients with focal epilepsy but none of the controls. The number of clusters of raised [18 F]GE-179 uptake in the patients with epilepsy exceeded the focal abnormalities revealed by the simultaneously recorded EEG. Patients with extensive clusters of raised [18 F]GE-179 uptake showed the most abnormal EEGs. SIGNIFICANCE: Detection of multiple foci of abnormal NMDAR-IC activation in 80% of our patients with refractory focal epilepsy using interictal [18 F]GE-179 PET could reflect enhanced neuronal excitability due to chronic seizure activity. This indicates that chronic epileptic activity is associated with abnormal NMDAR ion channel activation beyond the initial irritative zones. [18 F]GE-179 PET could be a candidate marker for identifying pathological brain areas in patients with treatment-resistant focal epilepsy.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/metabolismo , Electroencefalografía , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/metabolismo , Epilepsia/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Gene ; 805: 145907, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34411648

RESUMEN

The gene polymorphisms of ABCB1, EPHX1, and SCN1A were found to influence carbamazepine (CBZ) metabolism and resistance in epilepsy patients, but the relevance remains controversial. To reveal the relationships among the gene polymorphisms of ABCB1, EPHX1, SCN1A and the metabolism and resistance of CBZ, the databases of PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure, Chinese Science and Technique Journals, China Biology medicine disc and Wan Fang were retrieved for suitable studies up to April 2021. 18 studies containing 3293 epilepsy patients were included. The result revealed the gene polymorphism of ABCB1 c.3435C > T is significantly associated with altered concentration-dose ratios of CBZ (CDRCBZ) (CC vs. CT, OR = 0.25 (95% CI: 0.08-0.42), P = 0.004), and EPHX c.416A > G gene polymorphism may also significantly adjusted the concentration-dose ratios of carbamazepine-10, 11-trans dihydrodiol (CDRCBZD) (AA vs. GG, OR = 0.48 (95% CI: 0.01-0.96), P = 0.045; AG vs. GG, OR = 0.68 (95% CI: 0.16-1.20), P = 0.010, respectively) and the ratio of CBZD:carbamazepine-10,11-epoxide (CBZE) (CDRCBZD:CDRCBZE) (AG vs GG, OR = 0.83 (95% CI: 0.31-1.36), P = 0.002). Furthermore, ABCB1 c.3435C > T polymorphism was also observed to be significantly influenced CBZ resistance (CC vs TT, OR = 1.78 (95% CI: 1.17-2.72), P = 0.008; CT vs TT, OR = 1.60 (95% CI: 1.12-2.30), P = 0.01; CC + CT vs TT, OR = 1.61 (95% CI: 1.15-2.26), P = 0.006, respectively). Therefore, CBZ metabolism and resistance in patients with epilepsy may be adjusted by the gene polymorphisms of ABCB1 c.3435C > T and EPHX1 c.416A > G which provides the further scientific basis for clinical individualized therapy of epilepsy. However, larger sample size studies are still needed to provide further conclusive evidence.


Asunto(s)
Carbamazepina/metabolismo , Epóxido Hidrolasas/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adulto , Anticonvulsivantes/farmacología , Carbamazepina/sangre , Carbamazepina/farmacología , China , Bases de Datos Genéticas , Epilepsia Refractaria/genética , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Epóxido Hidrolasas/metabolismo , Femenino , Genotipo , Humanos , Masculino , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Polimorfismo de Nucleótido Simple/genética
14.
Neuroimage ; 238: 118102, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34058334

RESUMEN

OBJECTIVE: Malformations of cortical development (MCD), including focal cortical dysplasia (FCD), are the most common cause of drug-resistant focal epilepsy in children. Histopathological lesion characterisation demonstrates abnormal cell types and lamination, alterations in myelin (typically co-localised with iron), and sometimes calcification. Quantitative susceptibility mapping (QSM) is an emerging MRI technique that measures tissue magnetic susceptibility (χ) reflecting it's mineral composition. We used QSM to investigate abnormal tissue composition in a group of children with focal epilepsy with comparison to effective transverse relaxation rate (R2*) and Synchrotron radiation X-ray fluorescence (SRXRF) elemental maps. Our primary hypothesis was that reductions in χ would be found in FCD lesions, resulting from alterations in their iron and calcium content. We also evaluated deep grey matter nuclei for changes in χ with age. METHODS: QSM and R2* maps were calculated for 40 paediatric patients with suspected MCD (18 histologically confirmed) and 17 age-matched controls. Patients' sub-groups were defined based on concordant electro-clinical or histopathology data. Quantitative investigation of QSM and R2* was performed within lesions, using a surface-based approach with comparison to homologous regions, and within deep brain regions using a voxel-based approach with regional values modelled with age and epilepsy as covariates. Synchrotron radiation X-ray fluorescence (SRXRF) was performed on brain tissue resected from 4 patients to map changes in iron, calcium and zinc and relate them to MRI parameters. RESULTS: Compared to fluid-attenuated inversion recovery (FLAIR) or T1-weighted imaging, QSM improved lesion conspicuity in 5% of patients. In patients with well-localised lesions, quantitative profiling demonstrated decreased χ, but not R2*, across cortical depth with respect to the homologous regions. Contra-lateral homologous regions additionally exhibited increased χ at 2-3 mm cortical depth that was absent in lesions. The iron decrease measured by the SRXRF in FCDIIb lesions was in agreement with myelin reduction observed by Luxol Fast Blue histochemical staining. SRXRF analysis in two FCDIIb tissue samples showed increased zinc and calcium in one patient, and decreased iron in the brain region exhibiting low χ and high R2* in both patients. QSM revealed expected age-related changes in the striatum nuclei, substantia nigra, sub-thalamic and red nucleus. CONCLUSION: QSM non-invasively revealed cortical/sub-cortical tissue alterations in MCD lesions and in particular that χ changes in FCDIIb lesions were consistent with reduced iron, co-localised with low myelin and increased calcium and zinc content. These findings suggest that measurements of cortical χ could be used to characterise tissue properties non-invasively in epilepsy lesions.


Asunto(s)
Calcio/metabolismo , Corteza Cerebral/diagnóstico por imagen , Epilepsia Refractaria/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Hierro/metabolismo , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Zinc/metabolismo , Adolescente , Mapeo Encefálico , Corteza Cerebral/metabolismo , Niño , Preescolar , Epilepsia Refractaria/etiología , Epilepsia Refractaria/metabolismo , Femenino , Sustancia Gris/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/metabolismo , Estudios Retrospectivos , Adulto Joven
15.
Epilepsia ; 62(6): e88-e97, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33949690

RESUMEN

The objective of this study was to monitor the extracellular brain chemistry dynamics at baseline and in relation to spontaneous seizures in human patients with refractory epilepsy. Thirty patients with drug-resistant focal epilepsy underwent intracranial electroencephalography and concurrent brain microdialysis for up to 8 continuous days. Extracellular brain glutamate, glutamine, and the branched-chain amino acids (BCAAs) valine, leucine, and isoleucine were quantified in the dialysis samples by liquid chromatography-tandem mass spectrometry. Extracellular BCAAs and glutamate were chronically elevated at baseline by approximately 1.5-3-fold in brain regions of seizure onset and propagation versus regions not involved by seizures. Moreover, isoleucine increased significantly above baseline as early as 3 h before a spontaneous seizure. BCAAs play important roles in glutamatergic neurotransmission, mitochondrial function, neurodegeneration, and mammalian target of rapamycin signaling. Because all of these processes have been implicated in epilepsy, the results suggest a novel role of BCAAs in the pathogenesis of spontaneous seizures.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Química Encefálica , Epilepsia Refractaria/metabolismo , Epilepsias Parciales/metabolismo , Convulsiones/metabolismo , Adolescente , Adulto , Niño , Preescolar , Cromatografía Líquida de Alta Presión , Electrocorticografía , Electroencefalografía , Espacio Extracelular , Femenino , Ácido Glutámico/metabolismo , Humanos , Isoleucina/metabolismo , Masculino , Microdiálisis , Persona de Mediana Edad , Espectrometría de Masas en Tándem , Adulto Joven
16.
Brain Res ; 1758: 147345, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33556378

RESUMEN

Brain pH is thought to be important in epilepsy. The regulation of brain pH is, however, still poorly understood in animal models of chronic seizures (SZ) as well as in patients with intractable epilepsy. We used chemical exchange saturation transfer (CEST) MRI to noninvasively determine if the pH is alkaline shifted in a rodent model of the mesial temporal lobe (MTL) epilepsy with chronic SZ. Taking advantage of its high spatial resolution, we determined the pH values in specific brain regions believed to be important in this model produced by lithium-pilocarpine injection. All animals developed status epilepticus within 90 min after the lithium-pilocarpine administration, but one animal died within 24 hrs. All the surviving animals developed chronic SZ during the first 2 months. After SZ developed, brain pH was determined in the pilocarpine and control groups (n = 8 each). Epileptiform activity was documented in six pilocarpine rats with scalp EEG. The brain pH was estimated using two methods based on magnetization transfer asymmetry and amide proton transfer ratio. The pH was alkaline shifted in the pilocarpine rats (one outlier excluded) compared to the controls in the hippocampus (7.29 vs 7.17, t-test, p < 0.03) and the piriform cortex (7.34 vs. 7.06, p < 0.005), marginally more alkaline in the thalamus (7.13 vs. 7.01, p < 0.05), but not in the cerebral cortex (7.18 vs. 7.08, p > 0.05). Normalizing the brain pH may lead to an effective non-surgical method for treating intractable epilepsy as it is known that SZ can be eliminated by lowering the pH.


Asunto(s)
Química Encefálica/fisiología , Encéfalo/metabolismo , Epilepsia Refractaria/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Concentración de Iones de Hidrógeno , Animales , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Cloruro de Litio/toxicidad , Masculino , Pilocarpina/toxicidad , Ratas , Ratas Sprague-Dawley
17.
J Neuroinflammation ; 18(1): 44, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588880

RESUMEN

BACKGROUND: Intracellular Ca2+ modulates several microglial activities, such as proliferation, migration, phagocytosis, and inflammatory mediator secretion. Extracellular ATP, the levels of which significantly change during epileptic seizures, activates specific receptors leading to an increase of intracellular free Ca2+ concentration ([Ca2+]i). Here, we aimed to functionally characterize human microglia obtained from cortices of subjects with temporal lobe epilepsy, focusing on the Ca2+-mediated response triggered by purinergic signaling. METHODS: Fura-2 based fluorescence microscopy was used to measure [Ca2+]i in primary cultures of human microglial cells obtained from surgical specimens. The perforated patch-clamp technique, which preserves the cytoplasmic milieu, was used to measure ATP-evoked Ca2+-dependent whole-cell currents. RESULTS: In human microglia extracellular ATP evoked [Ca2+]i increases depend on Ca2+ entry from the extracellular space and on Ca2+ mobilization from intracellular compartments. Extracellular ATP also induced a transient fivefold potentiation of the total transmembrane current, which was completely abolished when [Ca2+]i increases were prevented by removing external Ca2+ and using an intracellular Ca2+ chelator. TRAM-34, a selective KCa3.1 blocker, significantly reduced the ATP-induced current potentiation but did not abolish it. The removal of external Cl- in the presence of TRAM-34 further lowered the ATP-evoked effect. A direct comparison between the ATP-evoked mean current potentiation and mean Ca2+ transient amplitude revealed a linear correlation. Treatment of microglial cells with LPS for 48 h did not prevent the ATP-induced Ca2+ mobilization but completely abolished the ATP-mediated current potentiation. The absence of the Ca2+-evoked K+ current led to a less sustained ATP-evoked Ca2+ entry, as shown by the faster Ca2+ transient kinetics observed in LPS-treated microglia. CONCLUSIONS: Our study confirms a functional role for KCa3.1 channels in human microglia, linking ATP-evoked Ca2+ transients to changes in membrane conductance, with an inflammation-dependent mechanism, and suggests that during brain inflammation the KCa3.1-mediated microglial response to purinergic signaling may be reduced.


Asunto(s)
Adenosina Trifosfato/farmacología , Calcio/metabolismo , Epilepsia Refractaria/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Microglía/metabolismo , Lóbulo Temporal/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/fisiología , Células Cultivadas , Epilepsia Refractaria/patología , Humanos , Líquido Intracelular/efectos de los fármacos , Líquido Intracelular/metabolismo , Lipopolisacáridos/toxicidad , Microglía/efectos de los fármacos , Lóbulo Temporal/efectos de los fármacos , Lóbulo Temporal/patología
18.
Neuroimage ; 231: 117838, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33577938

RESUMEN

Perfusion patterns observed in Subtraction Ictal SPECT Co-registered to MRI (SISCOM) assist in focus localization and surgical planning for patients with medically intractable focal epilepsy. While the localizing value of SISCOM has been widely investigated, its relationship to the underlying electrophysiology has not been extensively studied and is therefore not well understood. In the present study, we set to investigate this relationship in a cohort of 70 consecutive patients who underwent ictal and interictal SPECT studies and subsequent stereo-electroencephalography (SEEG) monitoring for localization of the epileptogenic focus and surgical intervention. Seizures recorded during SEEG evaluation (SEEG seizures) were matched to semiologically-similar seizures during the preoperative ictal SPECT evaluation (SPECT seizures) by comparing the semiological changes in the course of each seizure. The spectral changes of the ictal SEEG with respect to interictal ones over 7 traditional frequency bands (0.1 to 150Hz) were analyzed at each SEEG site. Neurovascular (SEEG/SPECT) relations were assessed by comparing the estimated spectral power density changes of the SEEG at each site with the perfusion changes (SISCOM z-scores) estimated from the acquired SISCOM map at that site. Across patients, a significant correlation (p<0.05) was observed between spectral changes during the SEEG seizure and SISCOM perfusion z-scores. Brain sites with high perfusion z-score exhibited higher increased SEEG power in theta to ripple frequency bands with concurrent suppression in delta and theta frequency bands compared to regions with lower perfusion z-score. The dynamics of the correlation of SISCOM perfusion and SEEG spectral power from ictal onset to seizure end and immediate postictal period were also derived. Forty-six (46) of the 70 patients underwent resective epilepsy surgery. SISCOM z-score and power increase in beta to ripple frequency bands were significantly higher in resected than non-resected sites in the patients who were seizure-free following surgery. This study provides for the first time concrete evidence that both hyper-perfusion and hypo-perfusion patterns observed in SISCOM maps have strong electrophysiological underpinnings, and that integration of the information from SISCOM and SEEG can shed light on the location and dynamics of the underlying epileptic brain networks, and thus advance our anatomo-electro-clinical understanding and approaches to targeted diagnostic and therapeutic interventions.


Asunto(s)
Circulación Cerebrovascular/fisiología , Epilepsia Refractaria/fisiopatología , Electrocorticografía/métodos , Red Nerviosa/fisiopatología , Acoplamiento Neurovascular/fisiología , Tomografía Computarizada de Emisión de Fotón Único/métodos , Adolescente , Adulto , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encéfalo/cirugía , Niño , Epilepsia Refractaria/metabolismo , Epilepsia Refractaria/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/metabolismo , Red Nerviosa/cirugía , Estudios Retrospectivos , Espectroscopía Infrarroja Corta/métodos , Técnicas Estereotáxicas , Adulto Joven
19.
Sci Rep ; 11(1): 1545, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452388

RESUMEN

We explored regional functional connectivity alterations in intractable focal epilepsy brains using resting-state functional MRI. Distributions of the network parameters (corresponding to degree and eigenvector centrality) measured at each brain region for all 25 patients were significantly different from age- and sex-matched control data that were estimated by a healthy control dataset (n = 582, 18-84 years old). The number of abnormal regions whose parameters exceeded the mean + 2 SD of age- and sex-matched data for each patient were associated with various clinical parameters such as the duration of illness and seizure severity. Furthermore, abnormal regions for each patient tended to have functional connections with each other (mean ± SD = 58.6 ± 20.2%), the magnitude of which was negatively related to the quality of life. The abnormal regions distributed within the default mode network with significantly higher probability (p < 0.05) in 7 of 25 patients. We consider that the detection of abnormal regions by functional connectivity analysis using a large number of control datasets is useful for the numerical assessment of each patient's clinical conditions, although further study is necessary to elucidate etiology-specific abnormalities.


Asunto(s)
Mapeo Encefálico/métodos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Adolescente , Adulto , Anciano , Encéfalo/fisiopatología , Conectoma/métodos , Epilepsia Refractaria/metabolismo , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/metabolismo , Epilepsias Parciales/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Descanso/fisiología
20.
Turk Neurosurg ; 31(1): 76-82, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33491170

RESUMEN

AIM: To investigate the expression patterns of D-serine and N-methyl-D-aspartate (NMDA) receptor 1 in the temporal lobes of patients with intractable epilepsy. MATERIAL AND METHODS: Cortical temporal lobe brain tissue samples were collected from 20 patients with intractable epilepsy and 6 patients with brain trauma. The expression patterns of D-serine and NMDA receptor 1 were detected by immunofluorescence staining and western blot analysis. RESULTS: A total of 20 patients (11 males, 9 females) were included in the present study. D-serine expression was significantly higher in the neurons and glial cells of patients with intractable epilepsy than in control individuals. The mean integrated optical density (IOD) value for the intractable epilepsy group (13.37 ± 1.88) was significantly higher than that for the control group (9.27 ± 0.62, p < 0.05). The mean absorbance value of the NMDA receptor 1 protein strip obtained from intractable epileptic patients was 0.4175 ± 0.2321, which was significantly higher than the value of 0.2402 ± 0.1458 for the control group (p < 0.05). CONCLUSION: D-serine and NMDA receptor 1 expressions increased significantly in patients with intractable epilepsy compared with control patients. Therefore, the D-serine signaling pathway may represent a potential neurochemical target for epilepsy treatment.


Asunto(s)
Epilepsia Refractaria/genética , Epilepsia Refractaria/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética , Serina/biosíntesis , Serina/genética , Adulto , Epilepsia Refractaria/cirugía , Femenino , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Lóbulo Temporal/metabolismo , Lóbulo Temporal/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA