Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.282
Filtrar
1.
Sci Rep ; 14(1): 10678, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724551

RESUMEN

Mutations in LRBA, a BEACH domain protein, cause severe immune deficiency in humans. LRBA is expressed in many tissues and organs according to biochemical analysis, but little is known about its cellular and subcellular localization, and its deficiency phenotype outside the immune system. By LacZ histochemistry of Lrba gene-trap mice, we performed a comprehensive survey of LRBA expression in numerous tissues, detecting it in many if not all epithelia, in exocrine and endocrine cells, and in subpopulations of neurons. Immunofluorescence microscopy of the exocrine and endocrine pancreas, salivary glands, and intestinal segments, confirmed these patterns of cellular expression and provided information on the subcellular localizations of the LRBA protein. Immuno-electron microscopy demonstrated that in neurons and endocrine cells, which co-express LRBA and its closest relative, neurobeachin, both proteins display partial association with endomembranes in complementary, rather than overlapping, subcellular distributions. Prominent manifestations of human LRBA deficiency, such as inflammatory bowel disease or endocrinopathies, are believed to be primarily due to immune dysregulation. However, as essentially all affected tissues also express LRBA, it is possible that LRBA deficiency enhances their vulnerability and contributes to the pathogenesis.


Asunto(s)
Glándulas Endocrinas , Neuronas , Animales , Neuronas/metabolismo , Ratones , Humanos , Glándulas Endocrinas/metabolismo , Glándulas Exocrinas/metabolismo , Mutación , Epitelio/metabolismo , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Síndromes de Inmunodeficiencia/patología
2.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732189

RESUMEN

Sjögren's Disease (SjD) is an autoimmune disease of the exocrine tissues. Etiological events result in the loss of epithelial homeostasis alongside extracellular matrix (ECM) destruction within the salivary and lacrimal glands, followed by immune cell infiltration. In this review, we have assessed the current understanding of epithelial-mesenchymal transition (EMT)-associated changes within the salivary epithelium potentially involved in salivary dysfunction and SjD pathogenesis. We performed a PubMed literature review pertaining to the determination of pathogenic events that lead to EMT-related epithelial dysfunction and signaling in SjD. Molecular patterns of epithelial dysfunction in SjD salivary glands share commonalities with EMT mediating wound healing. Pathological changes altering salivary gland integrity and function may precede direct immune involvement while perpetuating MMP9-mediated ECM destruction, inflammatory mediator expression, and eventual immune cell infiltration. Dysregulation of EMT-associated factors is present in the salivary epithelium of SjD and may be significant in initiating and perpetuating the disease. In this review, we further highlight the gap regarding mechanisms that drive epithelial dysfunction in salivary glands in the early or subclinical pre-lymphocytic infiltration stages of SjD.


Asunto(s)
Transición Epitelial-Mesenquimal , Glándulas Salivales , Síndrome de Sjögren , Humanos , Síndrome de Sjögren/patología , Síndrome de Sjögren/metabolismo , Glándulas Salivales/patología , Glándulas Salivales/metabolismo , Animales , Epitelio/patología , Epitelio/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transducción de Señal , Matriz Extracelular/metabolismo
3.
J Photochem Photobiol B ; 255: 112908, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663336

RESUMEN

The prevalence of Light-emitting diodes (LEDs) has exposed us to an excessive amount of blue light (BL) which causes various ophthalmic diseases. Previous studies have shown that conjunctiva is vulnerable to BL. In this study, we aimed to investigate the underlying mechanism of BL-induced injury in conjunctiva. We placed C57BL/6 mice and human conjunctival epithelial cell lines (HCECs) under BL (440 nm ± 15 nm, 0.2 mW/cm2) to establish a BL injury model in vivo and in vitro. Immunohistochemistry and MDA assay were used to identify lipid peroxidation (LPO) in vivo. HE staining was applied to detect morphological damage of conjunctival epithelium. DCFH-DA, C11-BODIPY 581/591, Calcein-AM, and FeRhoNox™-1 probes were performed to identify ferroptosis levels in vitro. Real-time qPCR and Western blotting techniques were employed to uncover signaling pathways of blue light-induced ferroptosis. Our findings demonstrated that BL affected tear film instability and induced conjunctival epithelium injury in vivo. Ferrostatin-1 significantly alleviated blue light-induced ferroptosis in vivo and in vitro. BL downregulates the levels of solute carrier family 7 member 11 (SLC7A11), Ferritin heavy chain (FTH1), and glutathione peroxidase (GPX4) by inhibiting the activation and translocation of the Signal transducer and activator of transcription 3 (STAT3) from inducing Fe2+ burst, ROS and LPO accumulation, ultimately resulting in ferroptosis. This study will offer new insight into BL-induced conjunctival injury and LED-induced dry eye.


Asunto(s)
Conjuntiva , Ferroptosis , Luz , Ratones Endogámicos C57BL , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Factor de Transcripción STAT3 , Animales , Conjuntiva/metabolismo , Conjuntiva/efectos de la radiación , Conjuntiva/patología , Ratones , Ferroptosis/efectos de la radiación , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Humanos , Factor de Transcripción STAT3/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Peroxidación de Lípido/efectos de la radiación , Línea Celular , Epitelio/efectos de la radiación , Epitelio/metabolismo , Epitelio/patología , Transducción de Señal/efectos de la radiación , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Células Epiteliales/patología , Especies Reactivas de Oxígeno/metabolismo , Fenilendiaminas/farmacología , Luz Azul , Ciclohexilaminas
4.
Cell Rep Methods ; 4(4): 100741, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38569541

RESUMEN

Deep proteomic profiling of rare cell populations has been constrained by sample input requirements. Here, we present DROPPS (droplet-based one-pot preparation for proteomic samples), an accessible low-input platform that generates high-fidelity proteomic profiles of 100-2,500 cells. By applying DROPPS within the mammary epithelium, we elucidated the connection between mitochondrial activity and clonogenicity, identifying CD36 as a marker of progenitor capacity in the basal cell compartment. We anticipate that DROPPS will accelerate biology-driven proteomic research for a multitude of rare cell populations.


Asunto(s)
Biomarcadores , Antígenos CD36 , Glándulas Mamarias Animales , Proteómica , Células Madre , Proteómica/métodos , Antígenos CD36/metabolismo , Animales , Femenino , Células Madre/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análisis , Epitelio/metabolismo , Ratones , Humanos , Mitocondrias/metabolismo
5.
Epigenetics Chromatin ; 17(1): 10, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643244

RESUMEN

BACKGROUND: Nuclear organization of interphase chromosomes involves individual chromosome territories, "open" and "closed" chromatin compartments, topologically associated domains (TADs) and chromatin loops. The DNA- and RNA-binding transcription factor CTCF together with the cohesin complex serve as major organizers of chromatin architecture. Cellular differentiation is driven by temporally and spatially coordinated gene expression that requires chromatin changes of individual loci of various complexities. Lens differentiation represents an advantageous system to probe transcriptional mechanisms underlying tissue-specific gene expression including high transcriptional outputs of individual crystallin genes until the mature lens fiber cells degrade their nuclei. RESULTS: Chromatin organization between mouse embryonic stem (ES) cells, newborn (P0.5) lens epithelium and fiber cells were analyzed using Hi-C. Localization of CTCF in both lens chromatins was determined by ChIP-seq and compared with ES cells. Quantitative analyses show major differences between number and size of TADs and chromatin loop size between these three cell types. In depth analyses show similarities between lens samples exemplified by overlaps between compartments A and B. Lens epithelium-specific CTCF peaks are found in mostly methylated genomic regions while lens fiber-specific and shared peaks occur mostly within unmethylated DNA regions. Major differences in TADs and loops are illustrated at the ~ 500 kb Pax6 locus, encoding the critical lens regulatory transcription factor and within a larger ~ 15 Mb WAGR locus, containing Pax6 and other loci linked to human congenital diseases. Lens and ES cell Hi-C data (TADs and loops) together with ATAC-seq, CTCF, H3K27ac, H3K27me3 and ENCODE cis-regulatory sites are shown in detail for the Pax6, Sox1 and Hif1a loci, multiple crystallin genes and other important loci required for lens morphogenesis. The majority of crystallin loci are marked by unexpectedly high CTCF-binding across their transcribed regions. CONCLUSIONS: Our study has generated the first data on 3-dimensional (3D) nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells. These findings generate novel insights into lens-specific transcriptional gene control, open new research avenues to study transcriptional condensates in lens fiber cells, and enable studies of non-coding genetic variants linked to cataract and other lens and ocular abnormalities.


Asunto(s)
Cromatina , Cristalinas , Animales , Ratones , Humanos , Células Madre Embrionarias de Ratones/metabolismo , Cromosomas/metabolismo , Factores de Transcripción/metabolismo , ADN/metabolismo , Epitelio/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Factor de Unión a CCCTC/metabolismo
6.
Hear Res ; 446: 109006, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583350

RESUMEN

Hair cells in the cochlear sensory epithelia serve as mechanosensory receptors, converting sound into neuronal signals. The basal sensory epithelia are responsible for transducing high-frequency sounds, while the apex handles low-frequency sounds. Age-related hearing loss predominantly affects hearing at high frequencies and is indicative of damage to the basal sensory epithelia. However, the precise mechanism underlying this site-selective injury remains unclear. In this study, we employed a microscale proteomics approach to examine and compare protein expression in different regions of the cochlear sensory epithelia (upper half and lower half) in 1.5-month-old (normal hearing) and 6-month-old (severe high-frequency hearing loss without hair cell loss) C57BL/6J mice. A total of 2,386 proteins were detected, and no significant differences in protein expression were detected in the upper half of the cochlear sensory epithelia between the two age groups. The expression of 20 proteins in the lower half of the cochlear sensory epithelia significantly differed between the two age groups (e.g., MATN1, MATN4, and AQP1). Moreover, there were 311 and 226 differentially expressed proteins between the upper and lower halves of the cochlear sensory epithelia in 1.5-month-old and 6-month-old mice, respectively. The expression levels of selected proteins were validated by Western blotting. These findings suggest that the spatial differences in protein expression within the cochlear sensory epithelia may play a role in determining the susceptibility of cells at different sites of the cochlea to age-related damage.


Asunto(s)
Cóclea , Ratones Endogámicos C57BL , Presbiacusia , Proteómica , Animales , Cóclea/metabolismo , Cóclea/patología , Presbiacusia/metabolismo , Presbiacusia/patología , Presbiacusia/fisiopatología , Presbiacusia/genética , Factores de Edad , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Envejecimiento/metabolismo , Envejecimiento/patología , Modelos Animales de Enfermedad , Audición , Epitelio/metabolismo , Masculino , Ratones
7.
Sci Adv ; 10(14): eadj7666, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569041

RESUMEN

Inflammation-associated fibroblasts (IAFs) are associated with progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial cells is unknown. Here, we developed an in vitro model whereby human colon fibroblasts are induced by specific cytokines and recapitulate key features of IAFs in vivo. When cocultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid expansion and barrier disruption due to swelling and rupture of individual epithelial cells. Colonoids cocultured with IAFs also show increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated by a paracrine pathway involving prostaglandin E2 and its receptor EP4, leading to protein kinase A -dependent activation of the cystic fibrosis transmembrane conductance regulator. EP4-specific chemical inhibitors effectively prevented IAF-induced colonoid swelling and restored normal proliferation and genome stability. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a therapeutic avenue to mitigate inflammation-associated epithelial injury.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Prostaglandinas , Humanos , Epitelio/metabolismo , Inflamación , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Fibroblastos/metabolismo
8.
Int J Dev Biol ; 68(1): 39-45, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591692

RESUMEN

Keratin 17 (K17) is thought to be a candidate target gene for regulation by Lymphoid Enhancer Factor-1 (Lef-1). K17 is a marker that distinguishes junctional epithelium (JE) from epithelial rests of Malassez (ERM). However, the relationship of Lef-1 to K17 is not clear in this context. Moreover, the expression of other keratins such as K5, K6, K7 and K16 is not reported. Therefore, the aim of our study was to assay the expression of K5, K6, K7, K14, K16, K17 and Lef-1 in postnatal developing teeth, and clarify the corresponding immunophenotypes of the JE and ERM. Upper jaws of Wistar rats aged from postnatal (PN) day 3.5 to PN21 were used and processed for immunohistochemistry. K5 and K14 were intensely expressed in inner enamel epithelium (IEE), reduced enamel epithelium (REE), ERM and JE. There was no staining for K16 in the tissue, except for strong staining in the oral epithelium. Specifically, at PN3.5 and PN7, K17 was initially strongly expressed and then negative in the IEE. At PN16 and PN21, both REE and ERM were strongly stained for K17, whereas K17 was negative in the JE. In addition, K6, K7 and Lef-1 were not detected in any tissue investigated. REE and ERM have an identical keratin expression pattern before eruption, while JE differs from ERM in the expression of K17 after eruption. The expression of K17 does not coincide with that of Lef-1. These data indicate that JE has a unique phenotype different from ERM, which is of odontogenic origin.


Asunto(s)
Inserción Epitelial , Descanso , Ratas , Animales , Inserción Epitelial/metabolismo , Ratas Wistar , Epitelio/metabolismo , Inmunohistoquímica , Queratinas/metabolismo
9.
Nat Commun ; 15(1): 3000, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589403

RESUMEN

Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.


Asunto(s)
Actomiosina , Proteínas de Drosophila , Animales , Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo , Epitelio/metabolismo , Morfogénesis
10.
Environ Pollut ; 348: 123781, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492752

RESUMEN

Epidemiological studies showed a positive association between exposure to PM2.5 and the severity of influenza virus infection. However, the mechanisms by which PM2.5 can disrupt antiviral defence are still unclear. From this perspective, the objective of this study was to evaluate the effects of PM2.5 on antiviral signalling in the respiratory epithelium using the bronchial Calu-3 cell line grown at the air-liquid interface. Pre-exposure to PM2.5 before infection with the influenza virus was investigated, as well as a co-exposure. Although a physical interaction between the virus and the particles seems possible, no effect of PM2.5 on viral replication was observed during co-exposure, although a downregulation of IFN-ß release was associated to PM2.5 exposure. However, pre-exposure slightly increased the viral nucleoprotein production and the pro-inflammatory response. Conversely, the level of the myxovirus resistance protein A (MxA), an interferon-stimulated gene (ISG) induced by IFN-ß, was reduced. Therefore, these results suggest that pre-exposure to PM2.5 could alter the antiviral response of bronchial epithelial cells, increasing their susceptibility to viral infection.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Virosis , Humanos , Interferones , Gripe Humana/genética , Gripe Humana/metabolismo , Mucosa Respiratoria , Antivirales , Epitelio/metabolismo , Material Particulado/toxicidad
11.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38512712

RESUMEN

The formation of complex three-dimensional organs during development requires precise coordination between patterning networks and mechanical forces. In particular, tissue folding is a crucial process that relies on a combination of local and tissue-wide mechanical forces. Here, we investigate the contribution of cell proliferation to epithelial morphogenesis using the Drosophila leg tarsal folds as a model. We reveal that tissue-wide compression forces generated by cell proliferation, in coordination with the Notch signaling pathway, are essential for the formation of epithelial folds in precise locations along the proximo-distal axis of the leg. As cell numbers increase, compressive stresses arise, promoting the folding of the epithelium and reinforcing the apical constriction of invaginating cells. Additionally, the Notch target dysfusion plays a key function specifying the location of the folds, through the apical accumulation of F-actin and the apico-basal shortening of invaginating cells. These findings provide new insights into the intricate mechanisms involved in epithelial morphogenesis, highlighting the crucial role of tissue-wide forces in shaping a three-dimensional organ in a reproducible manner.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila , Drosophila , Receptores Notch , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epitelio/metabolismo , Morfogénesis/genética , Transducción de Señal , Receptores Notch/metabolismo
12.
Sci Rep ; 14(1): 6774, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514727

RESUMEN

Biophysical cues from the cell microenvironment are detected by mechanosensitive components at the cell surface. Such machineries convert physical information into biochemical signaling cascades within cells, subsequently leading to various cellular responses in a stimulus-dependent manner. At the surface of extracellular environment and cell cytoplasm exist several ion channel families that are activated by mechanical signals to direct intracellular events. One of such channel is formed by transient receptor potential cation channel subfamily V member, TRPV4 that is known to act as a mechanosensor in wide variaty of tissues and control ion-influx in a spatio-temporal way. Here we report that TRPV4 is prominently expressed in the stem/progenitor cell populations of the mammary epithelium and seems important for the lineage-specific differentiation, consequently affecting mechanical features of the mature mammary epithelium. This was evident by the lack of several markers for mature myoepithelial and luminal epithelial cells in TRPV4-depleted cell lines. Interestingly, TRPV4 expression is controlled in a tension-dependent manner and it also impacts differentation process dependently on the stiffness of the microenvironment. Furthermore, such cells in a 3D compartment were disabled to maintain normal mammosphere structures and displayed abnormal lumen formation, size of the structures and disrupted cellular junctions. Mechanosensitive TRPV4 channel therefore act as critical player in the homeostasis of normal mammary epithelium through sensing the physical environment and guiding accordingly differentiation and structural organization of the bilayered mammary epithelium.


Asunto(s)
Transducción de Señal , Canales Catiónicos TRPV , Humanos , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Epitelio/metabolismo , Células Epiteliales/metabolismo , Citoplasma/metabolismo
13.
Sci Rep ; 14(1): 6750, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514730

RESUMEN

Signals for the maintenance of epithelial homeostasis are provided in part by commensal bacteria metabolites, that promote tissue homeostasis in the gut and remote organs as microbiota metabolites enter the bloodstream. In our study, we investigated the effects of bile acid metabolites, 3-oxolithocholic acid (3-oxoLCA), alloisolithocholic acid (AILCA) and isolithocholic acid (ILCA) produced from lithocholic acid (LCA) by microbiota, on the regulation of innate immune responses connected to the expression of host defense peptide cathelicidin in lung epithelial cells. The bile acid metabolites enhanced expression of cathelicidin at low concentrations in human bronchial epithelial cell line BCi-NS1.1 and primary bronchial/tracheal cells (HBEpC), indicating physiological relevance for modulation of innate immunity in airway epithelium by bile acid metabolites. Our study concentrated on deciphering signaling pathways regulating expression of human cathelicidin, revealing that LCA and 3-oxoLCA activate the surface G protein-coupled bile acid receptor 1 (TGR5, Takeda-G-protein-receptor-5)-extracellular signal-regulated kinase (ERK1/2) cascade, rather than the nuclear receptors, aryl hydrocarbon receptor, farnesoid X receptor and vitamin D3 receptor in bronchial epithelium. Overall, our study provides new insights into the modulation of innate immune responses by microbiota bile acid metabolites in the gut-lung axis, highlighting the differences in epithelial responses between different tissues.


Asunto(s)
Ácidos y Sales Biliares , Catelicidinas , Humanos , Ácidos y Sales Biliares/metabolismo , Catelicidinas/metabolismo , Sistema de Señalización de MAP Quinasas , Receptores Acoplados a Proteínas G/metabolismo , Epitelio/metabolismo , Ácido Litocólico/farmacología , Ácido Litocólico/metabolismo
14.
Elife ; 132024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441552

RESUMEN

The mammary gland is a unique organ that undergoes dynamic alterations throughout a female's reproductive life, making it an ideal model for developmental, stem cell and cancer biology research. Mammary gland development begins in utero and proceeds via a quiescent bud stage before the initial outgrowth and subsequent branching morphogenesis. How mammary epithelial cells transit from quiescence to an actively proliferating and branching tissue during embryogenesis and, importantly, how the branch pattern is determined remain largely unknown. Here, we provide evidence indicating that epithelial cell proliferation and onset of branching are independent processes, yet partially coordinated by the Eda signaling pathway. Through heterotypic and heterochronic epithelial-mesenchymal recombination experiments between mouse mammary and salivary gland tissues and ex vivo live imaging, we demonstrate that unlike previously concluded, the mode of branching is an intrinsic property of the mammary epithelium whereas the pace of growth and the density of ductal tree are determined by the mesenchyme. Transcriptomic profiling and ex vivo and in vivo functional studies in mice disclose that mesenchymal Wnt/ß-catenin signaling, and in particular IGF-1 downstream of it critically regulate mammary gland growth. These results underscore the general need to carefully deconstruct the different developmental processes producing branched organs.


Asunto(s)
Células Epiteliales , Vía de Señalización Wnt , Ratones , Animales , Epitelio/metabolismo , Células Epiteliales/fisiología , Proliferación Celular , Morfogénesis , Mesodermo , Glándulas Mamarias Animales/metabolismo
15.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542338

RESUMEN

Claudins are one of the major components of tight junctions (TJs) that polymerize within the cell membrane and form interactions between cells. Some claudins seal the paracellular space, limiting paracellular flux, while others form selectively permeable ion channels that control the paracellular permeability of small ions. Claudin strands are known to be dynamic and reshape within TJs to accommodate large-scale movements and rearrangements of epithelial tissues. Here, we summarize the recent computational and modeling studies on claudin assembly into tetrameric ion channels and their polymerization into µm long strands within the membrane. Computational studies ranging from all-atom molecular dynamics, coarse-grained simulations, and hybrid-resolution simulations elucidate the molecular nature of claudin assembly and function and provide a framework that describes the lateral flexibility of claudin strands.


Asunto(s)
Claudinas , Uniones Estrechas , Claudinas/metabolismo , Uniones Estrechas/metabolismo , Canales Iónicos/metabolismo , Simulación de Dinámica Molecular , Epitelio/metabolismo , Claudina-3/metabolismo
16.
PLoS Genet ; 20(3): e1011169, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437244

RESUMEN

The basement membrane (BM) is an essential structural element of tissues, and its diversification participates in organ morphogenesis. However, the traffic routes associated with BM formation and the mechanistic modulations explaining its diversification are still poorly understood. Drosophila melanogaster follicular epithelium relies on a BM composed of oriented BM fibrils and a more homogenous matrix. Here, we determined the specific molecular identity and cell exit sites of BM protein secretory routes. First, we found that Rab10 and Rab8 define two parallel routes for BM protein secretion. When both routes were abolished, BM production was fully blocked; however, genetic interactions revealed that these two routes competed. Rab10 promoted lateral and planar-polarized secretion, whereas Rab8 promoted basal secretion, leading to the formation of BM fibrils and homogenous BM, respectively. We also found that the dystrophin-associated protein complex (DAPC) and Rab10 were both present in a planar-polarized tubular compartment containing BM proteins. DAPC was essential for fibril formation and sufficient to reorient secretion towards the Rab10 route. Moreover, we identified a dual function for the exocyst complex in this context. First, the Exo70 subunit directly interacted with dystrophin to limit its planar polarization. Second, the exocyst complex was also required for the Rab8 route. Altogether, these results highlight important mechanistic aspects of BM protein secretion and illustrate how BM diversity can emerge from the spatial control of distinct traffic routes.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Membrana Basal/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Distrofina , Citoplasma/metabolismo , Epitelio/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
17.
Elife ; 122024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466627

RESUMEN

Thymus medulla epithelium establishes immune self-tolerance and comprises diverse cellular subsets. Functionally relevant medullary thymic epithelial cells (mTECs) include a self-antigen-displaying subset that exhibits genome-wide promiscuous gene expression promoted by the nuclear protein Aire and that resembles a mosaic of extrathymic cells including mucosal tuft cells. An additional mTEC subset produces the chemokine CCL21, thereby attracting positively selected thymocytes from the cortex to the medulla. Both self-antigen-displaying and thymocyte-attracting mTEC subsets are essential for self-tolerance. Here, we identify a developmental pathway by which mTECs gain their diversity in functionally distinct subsets. We show that CCL21-expressing mTECs arise early during thymus ontogeny in mice. Fate-mapping analysis reveals that self-antigen-displaying mTECs, including Aire-expressing mTECs and thymic tuft cells, are derived from CCL21-expressing cells. The differentiation capability of CCL21-expressing embryonic mTECs is verified in reaggregate thymus experiments. These results indicate that CCL21-expressing embryonic mTECs carry a developmental potential to give rise to self-antigen-displaying mTECs, revealing that the sequential conversion of thymocyte-attracting subset into self-antigen-displaying subset serves to assemble functional diversity in the thymus medulla epithelium.


Asunto(s)
Timocitos , Factores de Transcripción , Ratones , Animales , Timocitos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ratones Endogámicos C57BL , Timo/metabolismo , Diferenciación Celular , Células Epiteliales/metabolismo , Epitelio/metabolismo
18.
Front Immunol ; 15: 1338096, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495892

RESUMEN

Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.


Asunto(s)
Interferón Tipo I , Virosis , Humanos , Interferón lambda , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Interferón Tipo I/metabolismo , Epitelio/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico
19.
Dis Model Mech ; 17(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38501211

RESUMEN

Mitogen-activated protein 3 kinase 1 (MAP3K1) has a plethora of cell type-specific functions not yet fully understood. Herein, we describe a role for MAP3K1 in female reproductive tract (FRT) development. MAP3K1 kinase domain-deficient female mice exhibited an imperforate vagina, labor failure and infertility. These defects corresponded with shunted Müllerian ducts (MDs), the embryonic precursors of FRT, that manifested as a contorted caudal vagina and abrogated vaginal-urogenital sinus fusion in neonates. The MAP3K1 kinase domain is required for optimal activation of the Jun-N-terminal kinase (JNK) and cell polarity in the MD epithelium, and for upregulation of WNT signaling in the mesenchyme surrounding the caudal MD. The MAP3K1-deficient epithelial cells and MD epithelium had reduced expression of WNT7B ligands. Correspondingly, conditioned media derived from MAP3K1-competent, but not -deficient, epithelial cells activated a TCF/Lef-luciferase reporter in fibroblasts. These observations indicate that MAP3K1 regulates MD caudal elongation and FRT development, in part through the induction of paracrine factors in the epithelium that trans-activate WNT signaling in the mesenchyme.


Asunto(s)
Células Epiteliales , Quinasa 1 de Quinasa de Quinasa MAP , Vagina , Animales , Femenino , Ratones , Células Epiteliales/metabolismo , Epitelio/metabolismo , Vagina/metabolismo , Vía de Señalización Wnt , Quinasa 1 de Quinasa de Quinasa MAP/genética , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo
20.
Int J Biol Macromol ; 263(Pt 2): 130245, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367779

RESUMEN

The dynamic adhesion between cells and their extracellular matrix is essential for the development and function of organs. During insect wing development, two epithelial sheets contact each other at their basal sites through the interaction of ßPS integrins with the extracellular matrix. We report that Osiris17 contributes to the maintenance of ßPS integrins localization and function in developing wing of Drosophila and locust. In flies with reduced Osiris17 expression the epithelia sheets fail to maintain the integrity of basal cytoplasmic junctional bridges and basal adhesion. In contrast to the continuous basal integrin localization in control wings, this localization is disrupted during late stages of wing development in Osiris17 depleted flies. In addition, the subcellular localization revealed that Osiris17 co-localizes with the endosomal markers Rab5 and Rab11. This observation suggests an involvement of Osiris17 in endosomal recycling of integrins. Indeed, Osiris17 depletion reduced the numbers of Rab5 and Rab11 positive endosomes. Moreover, overexpression of Osiris17 increased co-localization of Rab5 and ßPS integrins and partially rescued the detachment phenotype in flies with reduced ßPS integrins. Taken together, our data suggest that Osiris17 is an endosome related protein that contributes to epithelial remodeling and morphogenesis by assisting basal integrins localization in insects.


Asunto(s)
Proteínas de Drosophila , Integrinas , Animales , Integrinas/metabolismo , Drosophila/genética , Epitelio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA