Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Sci Rep ; 11(1): 23007, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34837027

RESUMEN

Spermatogenesis, which is a continuous process from undifferentiated spermatogonia to spermatozoa in the seminiferous tubules, declines with age. To investigate changes in spermatogenesis with aging, we reconstructed the seminiferous tubules of 12 mice aged 12 to 30 months from serial sections and examined age-related and region-specific alterations in the seminiferous epithelium and spermatogenic waves in three dimensions. The basic structure of the seminiferous tubules, including the numbers of tubules, terminating points, branching points, and total tubule length, did not change with age. Age-related alterations in spermatogenesis, primarily assessed by the formation of vacuoles in Sertoli cells, were detected in the seminiferous tubules at 12 months. The proportion of altered tubule segments with impaired spermatogenesis further increased by 24 months, but remained unchanged thereafter. Altered tubule segments were preferentially distributed in tubule areas close to the rete testis and those in the center of the testis. Spermatogenic waves became shorter in length with age. These results provide a basis for examining the decline of spermatogenesis not only with aging, but also in male infertility.


Asunto(s)
Envejecimiento , Túbulos Seminíferos/ultraestructura , Espermatogénesis , Testículo/ultraestructura , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Epitelio Seminífero/citología , Epitelio Seminífero/ultraestructura , Túbulos Seminíferos/citología , Espermatogonias/citología , Espermatogonias/ultraestructura , Testículo/citología
2.
Tissue Cell ; 69: 101484, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33450652

RESUMEN

The Sand rat, Psammomys obesus, living northwest of the Algerian Sahara, presents a seasonal reproductive cycle. The purposes of this study were firstly to determine the stages of seminiferous epithelium cycle (SEC) by histological and morphometric analysis and secondly to investigate, for the first time, the testicular expression of RFamide-related peptide-3 (RFRP-3) during the SEC by immunohistochemistry. The results showed that the SEC consists of 14 stages according to the tubular morphology method. RFRP-3 was observed in both testicular compartments: the tubular and the interstitial. Leydig cells exhibited the highest RFRP-3 signal (30.73 % ± 4.80) compared to Sertoli cells (13-15 %). In the germline, RFRP-3 was detected during the late prophase I of meiosis in late pachytene, diplotene and metaphasic spermatocytes I. In addition, only round and triangular spermatids were positive during spermiogenesis. Referring to the SEC, it was found that the increased staining of RFRP-3 in spermatocytes I coincided with late pachytene of XI and XII stages (16.90 % ± 0.69 and 16.61 % ± 0.28, respectively). In spermatids, the labeling decreased in the triangular ones at stage IX (8.04 % ± 0.42). These results suggest the involvement of RFRP-3 in the control of SEC in P. obesus.


Asunto(s)
Gerbillinae/metabolismo , Neuropéptidos/metabolismo , Epitelio Seminífero/metabolismo , Animales , Inmunohistoquímica , Masculino , Epitelio Seminífero/citología , Testículo/citología , Testículo/metabolismo
3.
Biofabrication ; 12(4): 045002, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32492667

RESUMEN

Testicular organoid models are tools to study testicular physiology, development, and spermatogenesis in vitro. However, few side-by-side comparisons of organoid generation method have been evaluated. Here, we directly tested whether the culture microenvironment is the prime determinant promoting testicular organoid self-assembly. Using Matrigel as a representative extracellular matrix (ECM), we compared multiple culture environments, 2D and 3D, ECM-free and ECM, for organoid self-assembly with immature murine testicular cells. De novo tissues were observed to self-assemble in all four culture environments tested within 72 h, however, these tissues only met requirements to be named organoids in 2D ECM and 3D ECM-free (3DF) culture methods. Based on these results, 3DF was selected for further study, and used to examine animal age as an independent variable. Organoid assembly was significantly delayed when using pubertal murine cells and entirely absent from adult murine and adult human cells. Organoid-conditioned medium and medium supplemented with 1% Matrigel did not improve organoid assembly in pubertal murine cells, but immature murine cells rescued the assembly of adult murine cells when cultured together as age-chimeric cell mixtures. In murine organoids cultured for 14 d, tubule-like structures exhibiting a highly biomimetic architecture were characterized, including some rare germ and spermatogonial stem cells. These structural organoids secreted high levels of testosterone and inhibin B over 12 weeks with preserved responsivity to gonadotropins. Collectively these studies, in which cellular self-assembly and organoid formation was achieved independent of the culture microenvironment, suggest that self-assembly is an innate property of immature testicular cells independent from, but capable of being promoted by, the culture environment. This study provides a template for studying testicular organoid self-assembly and endocrine function, and a platform for improving the engineering of functional testicular tissues.


Asunto(s)
Sistema Endocrino/metabolismo , Hormonas/farmacología , Organoides/citología , Testículo/citología , Adolescente , Adulto , Animales , Senescencia Celular/efectos de los fármacos , Niño , Gonadotropina Coriónica/farmacología , Colágeno/farmacología , Medios de Cultivo Condicionados/farmacología , Combinación de Medicamentos , Sistema Endocrino/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Hormona Folículo Estimulante/farmacología , Humanos , Inhibinas/metabolismo , Laminina/farmacología , Masculino , Ratones , Persona de Mediana Edad , Organoides/efectos de los fármacos , Organoides/ultraestructura , Proteoglicanos/farmacología , Epitelio Seminífero/citología , Epitelio Seminífero/efectos de los fármacos , Testosterona/metabolismo , Adulto Joven
4.
FASEB J ; 34(2): 3105-3128, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31909540

RESUMEN

During the epithelial cycle of spermatogenesis, different sets of cellular events take place across the seminiferous epithelium in the testis. For instance, remodeling of the blood-testis barrier (BTB) that facilitates the transport of preleptotene spermatocytes across the immunological barrier and the release of sperms at spermiation take place at the opposite ends of the epithelium simultaneously at stage VIII of the epithelial cycle. These cellular events are tightly coordinated via locally produced regulatory biomolecules. Studies have shown that collagen α3 (IV) chains, a major constituent component of the basement membrane, release the non-collagenous (NC) 1 domain, a 28-kDa peptide, designated NC1-peptide, from the C-terminal region, via the action of MMP-9 (matrix metalloproteinase 9). NC1-peptide was found to be capable of inducing BTB remodeling and spermatid release across the epithelium. As such, the NC1-peptide is an endogenously produced biologically active peptide which coordinates these cellular events across the epithelium in stage VIII tubules. Herein, we used an animal model, wherein NC1-peptide cloned into the pCI-neo mammalian expression vector was overexpressed in the testis, to better understanding the molecular mechanism by which NC1-peptide regulated spermatogenic function. It was shown that NC1-peptide induced considerable downregulation on a number of cell polarity and planar cell polarity (PCP) proteins, and studies have shown these polarity and PCP proteins modulate spermatid polarity and adhesion via their effects on microtubule (MT) and F-actin cytoskeletal organization across the epithelium. More important, NC1-peptide exerted its effects by downregulating the expression of microtubule (MT) plus-end tracking protein (+TIP) called EB1 (end-binding protein 1). We cloned the full-length EB1 cDNA for its overexpression in the testis, which was found to block the NC1-peptide-mediated disruptive effects on cytoskeletal organization in Sertoli cell epithelium and pertinent Sertoli cell functions. These findings thus illustrate that NC1-peptide is working in concert with EB1 to support spermatogenesis.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Barrera Hematotesticular/metabolismo , Colágeno/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Péptidos/farmacología , Espermátides/metabolismo , Espermatogénesis/efectos de los fármacos , Animales , Barrera Hematotesticular/citología , Colágeno/química , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Péptidos/química , Ratas , Ratas Sprague-Dawley , Epitelio Seminífero/citología , Epitelio Seminífero/metabolismo , Espermátides/citología , Uniones Estrechas/metabolismo
5.
Theriogenology ; 142: 363-367, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31711695

RESUMEN

The seminiferous epithelium goes through multiple changes which enables the differentiation of a spermatogonia in a fully mature spermatozoon. The timing of these changes is species-specific and influences the duration of the reproductive cycles. Bats are among wild mammals whose coordination between male and female reproductive cycles are imperative, since most females show seasonal preferences, even in the Tropics. This seasonal variation demands constant sperm production ready for spermiation in order to guarantee its genetic dispersion and reproduction success. Despite their abundance, little is known about the duration of reproductive cycles in Neotropical bat species, a relevant information for the species management and for conservational strategies regarding anthropogenic and climate influences on bats reproduction. In this study, we aimed at characterizing the stages of the seminiferous epithelium cycle (SEC) of the fruit bat Artibeus lituratus and to determine its duration based on the immunohistochemical analysis of the bromodeoxyuridine (BrDU) activity. SEC stages were characterized according to the tubular morphology method and the frequency of each stage was estimated. After intratesticular injections of BrDU, the animals were euthanized at different times, and the estimation of SEC duration was performed by observing the most advanced germ cells in the seminiferous epithelium. The most advanced stained cells after 2 days of BrdU injection were the primary spermatocytes in pachytene, transitioning from stages 1-2 of the SEC. Within 2 days, we found a progression of 30.42% of the SEC, and an entire cycle lasted 6.58 days on average. Considering that 4.5 seminiferous epithelium cycles are necessary for the whole spermatogenic processes to be completed, the total length of spermatogenesis in A. lituratus was estimated at 29.61 days. Our findings support a pattern of bimodal seasonal polyestry for this species, with rapid spermatogenic cycles.


Asunto(s)
Diferenciación Celular , Quirópteros/fisiología , Epitelio Seminífero/citología , Epitelio Seminífero/fisiología , Espermatogénesis/fisiología , Animales , Masculino , Reproducción/fisiología , Túbulos Seminíferos/citología , Túbulos Seminíferos/fisiología , Maduración del Esperma , Espermatocitos/citología , Espermatocitos/fisiología , Espermatogonias/citología , Espermatogonias/fisiología , Factores de Tiempo
6.
Anat Histol Embryol ; 48(5): 505-507, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31389074

RESUMEN

The distribution of actin filaments was examined in the seminiferous epithelium of the Habu (Trimeresurus flavoviridis; snake), by transmission electron microscopy and fluorescence histochemistry. By transmission electron microscopy, actin filaments were clearly found only at the site between Sertoli cell and spermatid without a lattice-like structure. Fluorescence histochemistry showed a weak labelling of actin filaments in the seminiferous epithelium, whereas these findings seem to be common among reptiles, they are different from those in mammals. Additionally, the bundles of actin filaments adjacent to the plasma membrane of Sertoli cells, appeared in other reptiles, were not observed in the Habu.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Epitelio Seminífero/citología , Animales , Masculino , Epitelio Seminífero/ultraestructura , Células de Sertoli/citología , Espermátides/ultraestructura , Testículo/citología , Trimeresurus
7.
Reprod Fertil Dev ; 31(10): 1545-1557, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31182186

RESUMEN

The aim of this study was to examine ovine sperm cryoresistance during the rutting season (RS) and its association with sperm head area and seminiferous epithelium proliferation. Small ruminants show fluctuating testosterone levels throughout the year, which could interfere with spermatogenesis and sperm cryopreservation. Ejaculates, testicular biopsies and blood were collected during the middle and at the end of the RS (Middle-RS vs End-RS) during periods of high and low testosterone levels in Merino and Mouflon rams. Fresh and frozen-thawed sperm quality, sperm morphometry, seminiferous tubule morphometry and testicular proliferation markers (proliferating cell nuclear antigen, proliferation marker protein Ki-67 and transcription factor GATA-4) were evaluated. Post-thaw sperm viability was higher in the End-RS group in both Merino (69.9±8.2 vs 41.6±7.3%; P=0.020) and Mouflon rams (40.9±3.3 vs 24.2±5.0%; P=0.008). Mouflons had larger sperm head area at the End-RS (38.3±0.2 vs 34.3±0.1µm2; P=0.029), whereas there was no difference between Merino groups (35.7±0.5 vs 34.8±1.0µm2). Seminiferous tubule morphometry and proliferation markers showed higher levels of germinal epithelium proliferation in the Middle-RS of both species. In conclusion, sperm freezability is affected during the RS in domestic and wild rams, which could be correlated with changes that occur during spermatogenesis, since there is an effect of season on cell proliferation in the testis.


Asunto(s)
Criopreservación , Estaciones del Año , Epitelio Seminífero/fisiología , Ovinos , Espermatozoides , Testículo/citología , Animales , Animales Domésticos , Animales Salvajes , Criopreservación/veterinaria , Congelación , Masculino , Análisis de Semen/veterinaria , Preservación de Semen/normas , Preservación de Semen/veterinaria , Epitelio Seminífero/citología , Oveja Doméstica
8.
FASEB J ; 33(6): 7588-7602, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30892947

RESUMEN

Blood-testis barrier (BTB) and apical ectoplasmic specialization (ES) serve as structural supports for germ cell (GC) development. We demonstrated that the Sertoli cell (SC)-specific coxsackievirus and adenovirus receptor (CXADR) knockout (SC-CXADR-/-), but not the GC-specific knockout, impaired spermatogenesis. An increase in GC apoptosis and premature loss of elongated spermatids were observed in SC-CXADR-/- testes. The BTB function was compromised in SC-CXADR-/- testes with dysregulation of oocludin and zonula occludens-1 expression at the basal compartment of the seminiferous epithelium. An integrated omics analyses confirmed that altered gene ontology terms identified in SC-CXADR-/- testes are highly associated with spermatid development and differentiation, spermatogenesis, and sperm motility and are considered as unique testicular function terms. Leptin, Nasp, Tektin3, Larp 7, and acrosin, which are highly associated with male fertility, were found to be down-regulated in SC-CXADR-/- testes. Based on the data from the omics analyses, we employed the CXADR-deficient SC model to further investigate the molecular mechanisms involved. We unraveled that SC-CXADRs are required for ß-catenin inactivation and cell division cycle protein 42 (Cdc42) activation, resulting in maintaining the integrity and function of the BTB and apical ES as well as inhibiting gene transcription, such as the Myc gene, in the testes. We demonstrated for the first time that CXADR is an important mediator governing ß-catenin and Cdc42 signaling that is essential for spermatogenesis. The molecular mechanisms identified herein may provide new insights to unravel the novel functions and signaling cascades of CXADR in other key CXADR-expressing tissues.-Huang, K., Ru, B., Zhang, Y., Chan, W.-L., Chow, S.-C., Zhang, J., Lo, C., Lui, W.-Y. Sertoli cell-specific coxsackievirus and adenovirus receptor knockout regulates cell adhesion and gene transcription via ß-catenin inactivation and Cdc42 activation.


Asunto(s)
Adenoviridae/metabolismo , Adhesión Celular/fisiología , Enterovirus/metabolismo , Receptores Virales/fisiología , Transcripción Genética/fisiología , beta Catenina/antagonistas & inhibidores , Proteína de Unión al GTP cdc42/metabolismo , Animales , Barrera Hematotesticular/metabolismo , Eliminación de Gen , Masculino , Ratones , Ratones Noqueados , Proteómica , Receptores Virales/genética , Epitelio Seminífero/citología , Transducción de Señal , Transcriptoma
9.
Cell Death Dis ; 10(3): 194, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808893

RESUMEN

In the mammalian testes, such as in rats, the directional alignment of polarized elongating/elongated spermatids, in particular step 17-19 spermatids, across the plane of seminiferous epithelium resembles planar cell polarity (PCP) found in hair cells of the cochlea. It is obvious that spermatid PCP is necessary to support the simultaneous development of maximal number of elongating/elongated spermatids to sustain the daily production of > 50 million sperm per adult rat. Studies have shown that the testis indeed expresses multiple PCP proteins necessary to support spermatid PCP. Herein, using physiological and biochemical assays, and morphological analysis, and with the technique of RNA interference (RNAi) to knockdown PCP protein Dishevelled (Dvl) 1 (Dvl1), Dvl2, Dvl3, or Dvl1/2/3, Dvl proteins, in particular Dvl3, it was shown that Dvl3 played a crucial role of support Sertoli cell tight junction (TJ)-permeability barrier function through changes in the organization of actin- and microtubule (MT)-based cytoskeletons. More important, an in vivo knockdown of Dvl1/2/3 in the testis, defects of spermatid polarity were remarkably noted across the seminiferous epithelium, concomitant with defects of spermatid adhesion and spermatid transport, leading to considerably defects in spermatogenesis. More important, Dvl1/2/3 triple knockdown in the testis also impeded the organization of actin- and MT-based cytoskeletons owing to disruptive spatial expression of actin- and MT-regulatory proteins. In summary, PCP Dishevelled proteins, in particular, Dvl3 is a regulator of Sertoli cell blood-testis barrier (BTB)  and also spermatid PCP function through its effects on the actin- and MT-based cytoskeletons in Sertoli cells.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Polaridad Celular , Proteínas Dishevelled/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Barrera Hematotesticular/metabolismo , Polaridad Celular/genética , Citoplasma/metabolismo , Proteínas Dishevelled/genética , Masculino , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Epitelio Seminífero/citología , Células de Sertoli/citología , Espermátides/metabolismo , Espermatogénesis/genética , Espermatogénesis/fisiología , Testículo/citología , Testículo/ultraestructura , Uniones Estrechas/metabolismo
10.
Development ; 146(1)2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30487180

RESUMEN

In mammals, all-trans retinoic acid (ATRA) is instrumental to spermatogenesis. It is synthesized by two retinaldehyde dehydrogenases (RALDH) present in both Sertoli cells (SCs) and germ cells (GCs). In order to determine the relative contributions of each source of ATRA, we have generated mice lacking all RALDH activities in the seminiferous epithelium (SE). We show that both the SC- and GC-derived sources of ATRA cooperate to initiate and propagate spermatogenetic waves at puberty. In adults, they exert redundant functions and, against all expectations, the GC-derived source does not perform any specific roles despite contributing to two-thirds of the total amount of ATRA present in the testis. The production from SCs is sufficient to maintain the periodic expression of genes in SCs, as well and the cycle and wave of the SE, which account for the steady production of spermatozoa. The production from SCs is also specifically required for spermiation. Importantly, our study shows that spermatogonia differentiation depends upon the ATRA synthesized by RALDH inside the SE, whereas initiation of meiosis and expression of STRA8 by spermatocytes can occur without ATRA.


Asunto(s)
Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Tretinoina/metabolismo , Animales , Femenino , Masculino , Meiosis/fisiología , Ratones , Ratones Transgénicos , Epitelio Seminífero/citología , Células de Sertoli/citología , Espermatocitos/citología , Espermatogonias/citología
11.
Tissue Cell ; 55: 1-12, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30503055

RESUMEN

Gerbillus tarabuli is a nocturnal seasonal breeder desert rodent with a main breeding season in spring and summer, and sexual quiescence in winter. This species is an interesting model for studying testis function in rodents. Therefore, the present study was performed firstly to investigate the stages of seminiferous epithelium cycle of Gerbillus tarabuli with a histological, morphometric and statistical study. And secondly to investigate the expression and possible variations in cellular distribution of RFamide-related peptide-3 (RFRP-3) - the mammalian ortholog of avian gonadotropin-inhibitory hormone (GnIH) - during seminiferous epithelium cycle using immunohistochimestry. Our results showed for the first time that the seminiferous epithelium cycle in Gerbillus tarabuli comprises 14 well-defined stages according to the tubular morphology method. The seminiferous epithelium thickness showed a significant difference during the epithelium cycle, thus it was the only morphometric classification criterion of seminiferous epithelium cycle in Gerbillus tarabuli. The immunohistochemical study reveals, for the first time, the presence of RFRP-3 in Gerbillus tarabuli testes, in both testicular compartments: the tubular and the interstitial. RFRP-3 is expressed differently according to the seminiferous epithelium cycle, RFRP-3 seemed to be more expressed at the stages V-VII and XIII. RFRP-3 was detected in Sertoli cells (≈12%), spermatocytes I (≈19%), round and elongated spermatids (≈13%), and with a more important signal in Leydig cells (26.87%±0.07). These results indicated the importance of RFRP-3 in testicular function in Gerbillus tarabuli; its expression at the interstitial and germinal levels argues in favor of an involvement in androgens synthesis and in spermatogenesis specifically in meiosis and spermiogenesis. This action seems primordial from stages V-VII and XIII. Also, the study of the seminiferous epithelium cycle will enrich the histological identity of the species.


Asunto(s)
Neuropéptidos/metabolismo , Epitelio Seminífero/citología , Espermátides/citología , Espermatogénesis/fisiología , Testículo/citología , Animales , Gerbillinae , Células Intersticiales del Testículo/citología , Masculino , Roedores , Células de Sertoli/citología , Espermatocitos/citología
12.
Anat Rec (Hoboken) ; 301(12): 2080-2085, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30312540

RESUMEN

Sertoli cells of the mammalian seminiferous epithelium form unique subcellular actin-related structures at intercellular junctions. The appearance of these so called "tubulobulbar complexes" (TBCs) precedes both sperm release at the apex of the epithelium and the movement of early spermatogenic cells out of the spermatogonial stem cell niche at the base of the epithelium. TBCs are considered to be part of the mechanism of junction endocytosis by Sertoli cells. The structures contain junction proteins and morphologically identifiable junctions, and are associated with markers of endocytosis. Here we review the current state of knowledge about the structure and function of TBCs. As the complexes form, they morphologically resemble and have the molecular signature of clathrin-coated pits with extremely long necks. As they mature, the actin filament networks around the "necks" of the structures progressively disassemble and the membrane cores expand or swell into distinct "bulbs". These bulbs acquire extensive membrane contact sites with associated cisternae of endoplasmic reticulum. Eventually the bulbs undergo scission and continue through endosomal compartments of the Sertoli cells. The morphology and composition of TBC indicates to us that the structures likely evolved from the basic clathrin-mediated endocytosis mechanism common to cells generally, and along the way they incorporated unique features to accommodate the cyclic turnover of massive and "intact" intercellular junctions that occurs during spermatogenesis. Anat Rec, 301:2080-2085, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Actinas/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Uniones Intercelulares/metabolismo , Testículo/metabolismo , Actinas/análisis , Animales , Clatrina/análisis , Humanos , Uniones Intercelulares/química , Masculino , Epitelio Seminífero/química , Epitelio Seminífero/citología , Epitelio Seminífero/metabolismo , Células de Sertoli/química , Células de Sertoli/metabolismo , Testículo/química , Testículo/citología
13.
Reprod Fertil Dev ; 30(12): 1595-1603, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29860969

RESUMEN

Spermiation (sperm release) is the culmination of a spermatid's journey in the seminiferous epithelium. After a long association with the Sertoli cell, spermatids have to finally 'let go' of the support from Sertoli cells in order to be transported to the epididymis. Spermiation is a multistep process characterised by removal of excess spermatid cytoplasm, recycling of junctional adhesion molecules by endocytosis, extensive cytoskeletal remodelling and final spermatid disengagement. Successful execution of all these events requires coordinated regulation by endocrine and paracrine factors. This review focuses on the endocrine regulation of spermiation. With the aim of delineating how hormones control the various aspects of spermiation, this review provides an analysis of recent advances in research on the hormonal control of molecules associated with the spermiation machinery. Because spermiation is one of the most sensitive phases of spermatogenesis to variations in hormone levels, understanding their molecular control is imperative to advance our knowledge of the nuances of spermatogenesis and male fertility.


Asunto(s)
Andrógenos/metabolismo , Movimiento Celular/fisiología , Estrógenos/metabolismo , Oxitocina/metabolismo , Espermatogénesis/fisiología , Espermatozoides/citología , Animales , Humanos , Masculino , Epitelio Seminífero/citología , Epitelio Seminífero/metabolismo , Espermátides/citología , Espermátides/metabolismo , Espermatozoides/metabolismo , Testículo/citología , Testículo/metabolismo
14.
Mol Hum Reprod ; 24(6): 299-309, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29660000

RESUMEN

STUDY QUESTION: Could a more detailed evaluation of marmoset spermatogonial morphology, kinetics and niches using high-resolution light microscopy (HRLM) lead to new findings? SUMMARY ANSWER: Three subtypes of marmoset undifferentiated spermatogonia, which were not evenly distributed in terms of number and position along the basal membrane, and an extra premeiotic cell division not present in humans were identified using HRLM. WHAT IS KNOWN ALREADY: The seminiferous epithelium cycle (SEC) of marmosets is divided into nine stages when based on the acrosome system, and several spermatogenic stages can usually be recognized within the same tubular cross-section. Three spermatogonial generations have been previously described in marmosets: types Adark, Apale and B spermatogonia. STUDY DESIGN, SIZE, DURATION: Testes from five adult Callithrix penicillata were fixed by glutaraldehyde perfusion via the cardiac route and embedded in Araldite plastic resin for HRLM evaluation. Semi-thin sections (1 µm) were analyzed morphologically and morphometrically to evaluate spermatogonial morphology and kinetics (number, mitosis and apoptosis), spermatogenesis efficiency and the spermatogonial niche. PARTICIPANTS/MATERIALS, SETTING, METHODS: Shape and nuclear diameter, the presence and distribution of heterochromatin, the granularity of the euchromatin, as well as the number, morphology and degree of nucleolar compaction were observed for morphological characterization. Kinetics analyses were performed for all spermatogonial subtypes and preleptotene spermatocytes, and their mitosis and apoptosis indexes determined across all SEC stages. Spermatogenesis parameters (mitotic, meiotic, Sertoli cell workload and general spermatogenesis efficiency) were determined through the counting of Adark and Apale spermatogonia, preleptotene and pachytene primary spermatocytes, round spermatids, and Sertoli cells at stage IV of the SEC. MAIN RESULTS AND THE ROLE OF CHANCE: This is the first time that a study in marmosets demonstrates: the existence of a new spermatogonial generation (B2); the presence of two subtypes of Adark spermatogonia with (AdVac) and without (AdNoVac) nuclear rarefaction zones; the peculiar behavior of AdVac spermatogonia across the stages of the SEC, suggesting that they are quiescent stem spermatogonia; and that AdVac spermatogonia are located close to areas in which blood vessels, Leydig cells and macrophages are concentrated, suggesting a niche area for these cells. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: The C. penicillata spermatogonial kinetics evaluated here consider spermatogonial number across the SEC and their mitotic and apoptotic figures identified in HRLM sections. Therefore, caution is required when comparing absolute values between species. Although morphometric evaluation has suggested that AdVac spermatogonia are stem cells, a functional proof of this is still missing. It is known that parameters of the spermatogenic process in C. penicillata have similarities with those of the common marmoset C. jacchus, however, a detailed study of spermatogonial morphology, kinetics and niche has not yet been performed in C. jacchus, and a full comparison of the two species is not possible. WIDER IMPLICATIONS OF THE FINDINGS: Our findings in C. penicillata contribute to a better understanding of the spermatogonial behavior and spermatogenesis efficiency in non-human primates. Given the phylogenetic closeness of the marmoset to the human species, similar processes might occur in humans. Therefore, marmosets may be an excellent model for studies regarding human testicular biology, fertility and related disorders. STUDY FUNDING/COMPETING INTEREST(S): Experiments were partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq). The authors declare that there are no conflicts of interest.


Asunto(s)
Callithrix , Espermatogonias/fisiología , Acrosoma/fisiología , Acrosoma/ultraestructura , Animales , Apoptosis , Cinética , Masculino , Mitosis , Epitelio Seminífero/citología , Espermatogénesis , Espermatogonias/citología , Testículo/citología
15.
J Dev Orig Health Dis ; 9(4): 373-376, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29559019

RESUMEN

This study evaluated the effects of diet containing taro flour on hormone levels and the seminiferous tubules morphology of rats. After weaning, the male rats were divided into two groups (n=12 each): control group (CG) treated with control diet and taro group (TG), fed with 25% taro flour for 90 days. Food, caloric intake, mass and body length were evaluated at experiment end. Testis followed the standard histological processing. Immunostaining was performed using an anti-vimentin antibody to identify Sertoli cells. In histomorphometry, total diameter, total area, epithelial height, luminal height and luminal area were analyzed. The testosterone levels were performed using the radioimmunoassay method. Group TG presented (P<0.05): increase in mass, body length, testicular weight, histomorphometric parameters and hormonal levels. Food intake, calorie and Sertoli cells not presented statistical differences. The taro promoted increase in the testicles parameters and hormones.


Asunto(s)
Colocasia/química , Harina , Epitelio Seminífero/citología , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Testosterona/metabolismo , Animales , Masculino , Ratas , Ratas Wistar , Epitelio Seminífero/efectos de los fármacos , Células de Sertoli/citología , Células de Sertoli/efectos de los fármacos
16.
Cell Death Dis ; 9(2): 208, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29434191

RESUMEN

Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell-cell and Sertoli cell-spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood-testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell-cell interface, and the apical ES at the Sertoli-spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro. Biochemical studies using cultured Sertoli cells and specific F-actin vs. MT polymerization assays supported the notion that a transient loss of Spire 1 by RNAi disrupted Sertoli cell actin and MT polymerization and bundling activities. These findings in vitro were reproduced in studies in vivo by RNAi using Spire 1-specific siRNA duplexes to transfect testes with Polyplus in vivo-jetPEI as a transfection medium with high transfection efficiency. Spire 1 knockdown in the testis led to gross disruption of F-actin and MT organization across the seminiferous epithelium, thereby impeding the transport of spermatids and phagosomes across the epithelium and perturbing spermatogenesis. In summary, Spire 1 is an ES regulator to support germ cell development during spermatogenesis.


Asunto(s)
Citoplasma/metabolismo , Proteínas de Microfilamentos/metabolismo , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermátides/metabolismo , Espermatogénesis/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Epitelio Seminífero/citología , Células de Sertoli/citología , Espermátides/citología , Uniones Estrechas/metabolismo
17.
Methods Mol Biol ; 1748: 245-252, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29453576

RESUMEN

The blood-testis barrier is a unique ultrastructure in the mammalian testis, located near the basement membrane of the seminiferous tubule that segregates the seminiferous epithelium into the basal and the adluminal (apical) compartment. Besides restricting paracellular and transcellular passage of biomolecules (e.g., paracrine factors, hormones), water, electrolytes, and other substances including toxicants and/or drugs to enter the adluminal compartment of the epithelium, the BTB is an important ultrastructure that supports spermatogenesis. As such, a sensitive and reliable assay to monitor its integrity in vivo is helpful for studying testis biology. This assay is based on the ability of an intact BTB to exclude the diffusion of a small molecule such as sulfo-NHS-LC-biotin (C20H29N4NaO9S2, Mr. 556.59, a water-soluble and membrane-impermeable biotinylation reagent) from the basal to the apical compartment of the seminiferous epithelium. Herein, we summarize the detailed procedures on performing the assay and to obtain semiquantitative data to assess the extent of BTB damage when compared to positive controls, such as treatment of rats with cadmium chloride (CdCl2) which is known to compromise the BTB integrity.


Asunto(s)
Biotina/metabolismo , Barrera Hematotesticular/fisiología , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Uniones Estrechas/metabolismo , Animales , Barrera Hematotesticular/efectos de los fármacos , Células Cultivadas , Masculino , Ratas , Ratas Sprague-Dawley , Epitelio Seminífero/citología , Células de Sertoli/citología
18.
Biol Reprod ; 99(1): 87-100, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29462262

RESUMEN

The complex morphology of the Sertoli cells and their interactions with germ cells has been a focus of investigators since they were first described by Enrico Sertoli. In the past 50 years, information on Sertoli cells has transcended morphology alone to become increasingly more focused on molecular questions. The goal of investigators has been to understand the role of the Sertoli cells in spermatogenesis and to apply that information to problems relating to male fertility. Sertoli cells are unique in that they are a nondividing cell population that is active for the reproductive lifetime of the animal and cyclically change morphology and gene expression. The numerous and distinctive junctional complexes and membrane specializations made by Sertoli cells provide a scaffold and environment for germ cell development. The increased focus of investigators on the molecular components and putative functions of testicular cells has resulted primarily from procedures that isolate specific cell types from the testicular milieu. Products of Sertoli cells that influence germ cell development and vice versa have been characterized from cultured cells and from the application of transgenic technologies. Germ cell transplantation has shown that the Sertoli cells respond to cues from germ cells with regard to developmental timing and has furthered a focus on spermatogenic stem cells and the stem cell niche. Very basic and universal features of spermatogenesis such as the cycle of the seminiferous epithelium and the spermatogenic wave are initiated by Sertoli cells and maintained by Sertoli-germ cell cooperation.


Asunto(s)
Fertilidad/fisiología , Células Germinativas/citología , Células de Sertoli/citología , Espermatogénesis/fisiología , Testículo/citología , Animales , Humanos , Masculino , Epitelio Seminífero/citología
19.
FASEB J ; 32(6): 3229-3241, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401623

RESUMEN

The pituitary gonadotrophins and testosterone are the main hormonal regulators of spermatogenesis, but estradiol is also known to play a role in the process. The hormonal responses in the testis are partially mediated by somatic Sertoli cells that provide nutritional and physical support for differentiating male germ cells. Hydroxysteroid (17ß) dehydrogenase 1 (HSD17B1) is a steroidogenic enzyme that especially catalyzes the conversion of low potent 17keto-steroids to highly potent 17ß-hydroxysteroids. In this study, we show that Hsd17b1 is highly expressed in Sertoli cells of fetal and newborn mice, and HSD17B1 knockout males present with disrupted spermatogenesis with major defects, particularly in the head shape of elongating spermatids. The cell-cell junctions between Sertoli cells and germ cells were disrupted in the HSD17B1 knockout mice. This resulted in complications in the orientation of elongating spermatids in the seminiferous epithelium, reduced sperm production, and morphologically abnormal spermatozoa. We also showed that the Sertoli cell-expressed HSD17B1 participates in testicular steroid synthesis, evidenced by a compensatory up-regulation of HSD17B3 in Leydig cells. These results revealed a novel role for HSD17B1 in the control of spermatogenesis and male fertility, and that Sertoli cells significantly contribute to steroid synthesis in the testis.-Hakkarainen, J., Zhang, F.-P., Jokela, H., Mayerhofer, A., Behr, R., Cisneros-Montalvo, S., Nurmio, M., Toppari, J., Ohlsson, C., Kotaja, N., Sipilä, P., Poutanen, M. Hydroxysteroid (17ß) dehydrogenase 1 expressed by Sertoli cells contributes to steroid synthesis and is required for male fertility.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/biosíntesis , Fertilidad/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Células de Sertoli/enzimología , Espermatogénesis/fisiología , Esteroides/biosíntesis , 17-Hidroxiesteroide Deshidrogenasas/genética , Animales , Masculino , Ratones , Ratones Noqueados , Epitelio Seminífero/citología , Epitelio Seminífero/enzimología , Células de Sertoli/citología , Espermátides/citología , Espermátides/enzimología
20.
Biol Reprod ; 98(5): 722-738, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29408990

RESUMEN

Spermatogenesis in mammals occurs in a very highly organized manner within the seminiferous epithelium regulated by different cell types in the testis. Testosterone produced by Leydig cells regulates blood-testis barrier formation, meiosis, spermiogenesis, and spermiation. However, it is unknown whether Leydig cell function changes with the different stages of the seminiferous epithelium. This study utilized the WIN 18,446 and retinoic acid (RA) treatment regime combined with the RiboTag mouse methodology to synchronize male germ cell development and allow for the in vivo mapping of the Leydig cell translatome across the different stages of one cycle of the seminiferous epithelium. Using microarrays analysis, we identified 11 Leydig cell-enriched genes that were expressed in stage-specific manner such as the glucocorticoid synthesis and transport genes, Cyp21a1 and Serpina6. In addition, there were nine Leydig cell transcripts that change their association with polysomes in correlation with the different stages of the spermatogenic cycle including Egr1. Interestingly, the signal intensity of EGR1 and CYP21 varied among Leydig cells in the adult asynchronous testis. However, testosterone levels across the different stages of germ cell development did not cycle. These data show, for the first time, that Leydig cell gene expression changes in a stage-specific manner during the cycle of the seminiferous epithelium and indicate that a heterogeneous Leydig cell population exists in the adult mouse testis.


Asunto(s)
Células Intersticiales del Testículo/metabolismo , Polirribosomas/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Barrera Hematotesticular , Expresión Génica , Células Intersticiales del Testículo/citología , Masculino , Ratones , Epitelio Seminífero/citología , Epitelio Seminífero/metabolismo , Esteroide 21-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/metabolismo , Testículo/citología , Transcortina/genética , Transcortina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...