Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 127(5): 681-695, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33598697

RESUMEN

BACKGROUND AND AIMS: Extant plant groups with a long fossil history are key elements in understanding vascular plant evolution. Horsetails (Equisetum, Equisetaceae) have a nearly continuous fossil record dating back to the Carboniferous, but their phylogenetic and biogeographic patterns are still poorly understood. We use here the most extensive phylogenetic analysis to date as a framework to evaluate their age, biogeography and genome size evolution. METHODS: DNA sequences of four plastid loci were used to estimate divergence times and investigate the biogeographic history of all extant species of Equisetum. Flow cytometry was used to study genome size evolution against the framework of phylogenetic relationships in Equisetum. KEY RESULTS: On a well-supported phylogenetic tree including all extant Equisetum species, a molecular clock calibrated with multiple fossils places the node at which the outgroup and Equisetum diverged at 343 Mya (Early Carboniferous), with the first major split among extant species occurring 170 Mya (Middle Jurassic). These dates are older than those reported in some other recent molecular clock studies but are largely in agreement with a timeline established by fossil appearance in the geological record. Representatives of evergreen subgenus Hippochaete have much larger genome sizes than those of deciduous subgenus Equisetum, despite their shared conserved chromosome number. Subgenus Paramochaete has an intermediate genome size and maintains the same number of chromosomes. CONCLUSIONS: The first divergences among extant members of the genus coincided with the break-up of Pangaea and the resulting more humid, warmer climate. Subsequent tectonic activity most likely involved vicariance events that led to species divergences combined with some more recent, long-distance dispersal events. We hypothesize that differences in genome size between subgenera may be related to the number of sperm flagellae.


Asunto(s)
Equisetum , Tracheophyta , Equisetum/genética , Evolución Molecular , Fósiles , Tamaño del Genoma , Filogenia
2.
J Plant Physiol ; 251: 153210, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32544741

RESUMEN

Transglycanases are enzymes that remodel the primary cell wall in plants, potentially loosening and/or strengthening it. Xyloglucan endotransglucosylase (XET; EC 2.4.1.207), ubiquitous in land plants, is a homo-transglucanase activity (donor, xyloglucan; acceptor, xyloglucan) exhibited by XTH (xyloglucan endotransglucosylase/hydrolase) proteins. By contrast, hetero-trans-ß-glucanase (HTG) is the only known enzyme that is preferentially a hetero-transglucanase. Its two main hetero-transglucanase activities are MLG : xyloglucan endotransglucosylase (MXE) and cellulose : xyloglucan endotransglucosylase (CXE). HTG is highly acidic and found only in the evolutionarily isolated genus of fern-allies, Equisetum. We now report genes for three new highly acidic HTG-related XTHs in E. fluviatile (EfXTH-A, EfXTH-H and EfXTH-I). We expressed them heterologously in Pichia and tested the encoded proteins' enzymic activities to determine whether their acidity and/or their Equisetum-specific sequences might confer high hetero-transglucanase activity. Untransformed Pichia was found to secrete MLG-degrading enzyme(s), which had to be removed for reliable MXE assays. All three acidic EfXTHs exhibited very predominantly XET activity, although low but measurable hetero-transglucanase activities (MXE and CXE) were also detected in EfXTH-H and EfXTH-I. We conclude that the extremely high hetero-transglucanase activities of Equisetum HTG are not emulated by similarly acidic Equisetum XTHs that share up to 55.5% sequence identity with HTG.


Asunto(s)
Equisetum/genética , Glicosiltransferasas/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Equisetum/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
3.
Proc Biol Sci ; 286(1914): 20191662, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31662084

RESUMEN

Whole-genome duplication (WGD) has occurred commonly in land plant evolution and it is often invoked as a causal agent in diversification, phenotypic and developmental innovation, as well as conferring extinction resistance. The ancient and iconic lineage of Equisetum is no exception, where WGD has been inferred to have occurred prior to the Cretaceous-Palaeogene (K-Pg) boundary, coincident with WGD events in angiosperms. In the absence of high species diversity, WGD in Equisetum is interpreted to have facilitated the long-term survival of the lineage. However, this characterization remains uncertain as these analyses of the Equisetum WGD event have not accounted for fossil diversity. Here, we analyse additional available transcriptomes and summarize the fossil record. Our results confirm support for at least one WGD event shared among the majority of extant Equisetum species. Furthermore, we use improved dating methods to constrain the age of gene duplication in geological time and identify two successive Equisetum WGD events. The two WGD events occurred during the Carboniferous and Triassic, respectively, rather than in association with the K-Pg boundary. WGD events are believed to drive high rates of trait evolution and innovations, but analysed trends of morphological evolution across the historical diversity of Equisetum provide little evidence for further macroevolutionary consequences following WGD. WGD events cannot have conferred extinction resistance to the Equisetum lineage through the K-Pg boundary since the ploidy events occurred hundreds of millions of years before this mass extinction and we find evidence of extinction among fossil polyploid Equisetum lineages. Our findings precipitate the need for a review of the proposed roles of WGDs in biological innovation and extinction survival in angiosperm and non-angiosperm lineages alike.


Asunto(s)
Evolución Biológica , Equisetum/genética , Genoma de Planta , Plantas/genética , Duplicación de Gen
4.
Am J Bot ; 105(8): 1286-1303, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30025163

RESUMEN

PREMISE OF THE STUDY: Equisetum is the sole living representative of Sphenopsida, a clade with impressive species richness, a long fossil history dating back to the Devonian, and obscure relationships with other living pteridophytes. Based on molecular data, the crown group age of Equisetum is mid-Paleogene, although fossils with possible crown synapomorphies appear in the Triassic. The most widely circulated hypothesis states that the lineage of Equisetum derives from calamitaceans, but no comprehensive phylogenetic studies support the claim. Using a combined approach, we provide a comprehensive phylogenetic analysis of Equisetales, with special emphasis on the origin of genus Equisetum. METHODS: We performed parsimony phylogenetic analyses to address relationships of 43 equisetalean species (15 extant, 28 extinct) using a combination of morphological and molecular characters. KEY RESULTS: We recovered Equisetaceae + Neocalamites as sister to Calamitaceae + a clade of Angaran and Gondwanan horsetails, with the four groups forming a clade that is sister to Archaeocalamitaceae. The estimated age for the Equisetum crown group is mid-Mesozoic. CONCLUSIONS: Modern horsetails are not nested within calamitaceans; instead, both groups have explored independent evolutionary trajectories since the Carboniferous. Diverse fossil taxon sampling helps to shed light on the position and relationships of equisetalean lineages, of which only a tiny remnant is present within the extant flora. Understanding these relationships and early character configurations of ancient plant clades as Equisetales provide useful tests of hypotheses about overall phylogenetic relationships of euphyllophytes and foundations for future tests of molecular dates with paleontological data.


Asunto(s)
Equisetum/genética , Fósiles , Filogenia
5.
Gigascience ; 7(2): 1-11, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29186447

RESUMEN

Background: Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. Results: With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Conclusions: Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants.


Asunto(s)
Helechos/genética , Filogenia , Transcriptoma , Evolución Biológica , Equisetum/anatomía & histología , Equisetum/clasificación , Equisetum/genética , Helechos/anatomía & histología , Helechos/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Esporangios/anatomía & histología , Esporangios/genética
6.
J Plant Physiol ; 200: 82-9, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27344403

RESUMEN

Silicon (Si) is a beneficial element to plants, and its absorption via transporters leads to protective effects against biotic and abiotic stresses. In higher plants, two groups of root transporters for Si have been identified: influx transporters (Lsi1) and efflux transporters (Lsi2). Lsi1 transporters belong to the NIPIII aquaporins, and functional Lsi1s have been found in many plants species. Much less is known about Lsi2s that have been characterized in only a few species. Horsetail (Equisetum arvense), known among the highest Si accumulators in the plant kingdom, is a valuable model to study Si absorption and deposition. In this study, we first analyzed discrete Si deposition patterns in horsetail shoots, where ubiquitous silicification differs markedly from that of higher plants. Then, using the sequenced horsetail root transcriptome, two putative Si efflux transporter genes, EaLsi2-1 and EaLsi2-2, were identified. These genes share low sequence similarity with their homologues in higher plants. Further characterisation of EaLsi2-1 in transient expression assay using Nicotiana benthamiana epidermal cells confirmed transmembrane localization. In order to determine their functionality, the EaLsi2-1 was expressed in Xenopus oocytes, confirming that the translated protein was efficient for Si efflux. Both genes were equally expressed in roots and shoots, but interestingly, showed a much higher expression in the shoots than in the roots in contrast to Lsi2s found in other plants, a result consistent with the specific anatomy of horsetail and its rank as one of the highest Si accumulators among plant species.


Asunto(s)
Equisetum/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Silicio/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Clonación Molecular , ADN Complementario/genética , Equisetum/genética , Genes de Plantas , Proteínas de Transporte de Membrana/genética , Oocitos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Brotes de la Planta/metabolismo , Alineación de Secuencia , Xenopus
7.
Plant J ; 83(5): 753-69, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26185964

RESUMEN

Cell walls are metabolically active components of plant cells. They contain diverse enzymes, including transglycanases (endotransglycosylases), enzymes that 'cut and paste' certain structural polysaccharide molecules and thus potentially remodel the wall during growth and development. Known transglycanase activities modify several cell-wall polysaccharides (xyloglucan, mannans, mixed-linkage ß-glucan and xylans); however, no transglycanases were known to act on cellulose, the principal polysaccharide of biomass. We now report the discovery and characterization of hetero-trans-ß-glucanase (HTG), a transglycanase that targets cellulose, in horsetails (Equisetum spp., an early-diverging genus of monilophytes). HTG is also remarkable in predominantly catalysing hetero-transglycosylation: its preferred donor substrates (cellulose or mixed-linkage ß-glucan) differ qualitatively from its acceptor substrate (xyloglucan). HTG thus generates stable cellulose-xyloglucan and mixed-linkage ß-glucan-xyloglucan covalent bonds, and may therefore strengthen ageing Equisetum tissues by inter-linking different structural polysaccharides of the cell wall. 3D modelling suggests that only three key amino acid substitutions (Trp → Pro, Gly → Ser and Arg → Leu) are responsible for the evolution of HTG's unique specificity from the better-known xyloglucan-acting homo-transglycanases (xyloglucan endotransglucosylase/hydrolases; XTH). Among land plants, HTG appears to be confined to Equisetum, but its target polysaccharides are widespread, potentially offering opportunities for enhancing crop mechanical properties, such as wind resistance. In addition, by linking cellulose to xyloglucan fragments previously tagged with compounds such as dyes or indicators, HTG may be useful biotechnologically for manufacturing stably functionalized celluloses, thereby potentially offering a commercially valuable 'green' technology for industrially manipulating biomass.


Asunto(s)
Celulosa/metabolismo , Equisetum/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Proteínas Recombinantes/metabolismo , Sustitución de Aminoácidos , Clonación Molecular , Equisetum/genética , Evolución Molecular , Glicósido Hidrolasas/genética , Glicosiltransferasas/metabolismo , Pichia/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , Proteínas Recombinantes/genética , Homología Estructural de Proteína , Especificidad por Sustrato
8.
Sci Rep ; 5: 11942, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26165523

RESUMEN

The global herbal products market has grown in recent years, making regulation of these products paramount for public healthcare. For instance, the common horsetail (Equisetum arvense L.) is used in numerous herbal products, but it can be adulterated with closely related species, especially E. palustre L. that can produce toxic alkaloids. As morphology-based identification is often difficult or impossible, the identification of processed material can be aided by molecular techniques. In this study, we explore two molecular identification techniques as methods of testing the purity of these products: a Thin Layer Chromatography approach (TLC-test) included in the European Pharmacopoeia and a DNA barcoding approach, used in recent years to identify material in herbal products. We test the potential of these methods for distinguishing and identifying these species using material from herbarium collections and commercial herbal products. We find that both methods can discriminate between the two species and positively identify E. arvense. The TLC-test is more cost- and time-efficient, but DNA barcoding is more powerful in determining the identity of adulterant species. Our study shows that, although DNA barcoding presents certain advantages, other established laboratory methods can perform as well or even better in confirming species' identity in herbal products.


Asunto(s)
Cromatografía en Capa Delgada , Código de Barras del ADN Taxonómico , ADN/análisis , Equisetum/genética , Equisetum/clasificación , Filogenia , Análisis de Secuencia de ADN
9.
Plant Cell ; 27(6): 1566, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26002870
10.
Plant Cell ; 27(6): 1567-78, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26002871

RESUMEN

Horsetails represent an enigmatic clade within the land plants. Despite consisting only of one genus (Equisetum) that contains 15 species, they are thought to represent the oldest extant genus within the vascular plants dating back possibly as far as the Triassic. Horsetails have retained several ancient features and are also characterized by a particularly high chromosome count (n = 108). Whole-genome duplications (WGDs) have been uncovered in many angiosperm clades and have been associated with the success of angiosperms, both in terms of species richness and biomass dominance, but remain understudied in nonangiosperm clades. Here, we report unambiguous evidence of an ancient WGD in the fern lineage, based on sequencing and de novo assembly of an expressed gene catalog (transcriptome) from the giant horsetail (Equisetum giganteum). We demonstrate that horsetails underwent an independent paleopolyploidy during the Late Cretaceous prior to the diversification of the genus but did not experience any recent polyploidizations that could account for their high chromosome number. We also discuss the specific retention of genes following the WGD and how this may be linked to their long-term survival.


Asunto(s)
Equisetum/genética , Poliploidía , Evolución Biológica , Cromosomas de las Plantas/genética , Helechos/genética , Duplicación de Gen/genética , Genoma de Planta/genética , Transcriptoma
11.
New Phytol ; 207(3): 893-904, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25900772

RESUMEN

Shoot apical meristem (SAM) structure varies markedly within the land plants. The SAMs of many seedless vascular plants contain a conspicuous inverted, pyramidal cell called the apical cell (AC), which is unidentified in angiosperms. In this study, we use transcriptomic sequencing with precise laser microdissections of meristem subdomains to define the molecular signatures of anatomically distinct zones from the AC-type SAMs of a lycophyte (Selaginella moellendorffii) and a monilophyte (Equisetum arvense). The two model species for this study represent vascular plant lineages that diverged > 400 million yr ago. Our data comprise comprehensive molecular signatures for the distinct subdomains within AC-type SAMs, an anatomical anomaly whose functional significance has been debated in the botanical literature for over two centuries. Moreover, our data provide molecular support for distinct gene expression programs between the AC-type SAMs of Selaginella and Equisetum, as compared with the SAM transcriptome of the angiosperm maize. The results are discussed in light of the functional significance and evolutionary success of the AC-type SAM within the embryophytes.


Asunto(s)
Embryophyta/citología , Embryophyta/genética , Meristema/citología , Meristema/genética , Filogenia , Equisetum/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Captura por Microdisección con Láser , ARN Mensajero/genética , ARN Mensajero/metabolismo , Selaginellaceae/genética , Transcripción Genética , Regulación hacia Arriba/genética
12.
J Proteome Res ; 14(4): 1779-91, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25716083

RESUMEN

The rhizome is responsible for the invasiveness and competitiveness of many plants with great economic and agricultural impact worldwide. Besides its value as an invasive organ, the rhizome plays a role in the establishment and massive growth of forage, providing biomass for biofuel production. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development, and function in plants. In this work, we characterized the proteome of rhizome apical tips and elongation zones from different species using a GeLC-MS/MS (one-dimensional electrophoresis in combination with liquid chromatography coupled online with tandem mass spectrometry) spectral-counting proteomics strategy. Five rhizomatous grasses and an ancient species were compared to study the protein regulation in rhizomes. An average of 2200 rhizome proteins per species were confidently identified and quantified. Rhizome-characteristic proteins showed similar functional distributions across all species analyzed. The over-representation of proteins associated with central roles in cellular, metabolic, and developmental processes indicated accelerated metabolism in growing rhizomes. Moreover, 61 rhizome-characteristic proteins appeared to be regulated similarly among analyzed plants. In addition, 36 showed conserved regulation between rhizome apical tips and elongation zones across species. These proteins were preferentially expressed in rhizome tissues regardless of the species analyzed, making them interesting candidates for more detailed investigative studies about their roles in rhizome development.


Asunto(s)
Equisetum/genética , Proteínas de Plantas/análisis , Poaceae/genética , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Rizoma/metabolismo , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Equisetum/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Rizoma/genética , Especificidad de la Especie , Espectrometría de Masas en Tándem
13.
PLoS One ; 9(8): e103898, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25157804

RESUMEN

Comparative analyses of complete chloroplast (cp) DNA sequences within a species may provide clues to understand the population dynamics and colonization histories of plant species. Equisetum arvense (Equisetaceae) is a widely distributed fern species in northeastern Asia, Europe, and North America. The complete cp DNA sequences from Asian and American E. arvense individuals were compared in this study. The Asian E. arvense cp genome was 583 bp shorter than that of the American E. arvense. In total, 159 indels were observed between two individuals, most of which were concentrated on the hypervariable trnY-trnE intergenic spacer (IGS) in the large single-copy (LSC) region of the cp genome. This IGS region held a series of 19 bp repeating units. The numbers of the 19 bp repeat unit were responsible for 78% of the total length difference between the two cp genomes. Furthermore, only other closely related species of Equisetum also show the hypervariable nature of the trnY-trnE IGS. By contrast, only a single indel was observed in the gene coding regions: the ycf1 gene showed 24 bp differences between the two continental individuals due to a single tandem-repeat indel. A total of 165 single-nucleotide polymorphisms (SNPs) were recorded between the two cp genomes. Of these, 52 SNPs (31.5%) were distributed in coding regions, 13 SNPs (7.9%) were in introns, and 100 SNPs (60.6%) were in intergenic spacers (IGS). The overall difference between the Asian and American E. arvense cp genomes was 0.12%. Despite the relatively high genetic diversity between Asian and American E. arvense, the two populations are recognized as a single species based on their high morphological similarity. This indicated that the two regional populations have been in morphological stasis.


Asunto(s)
ADN de Cloroplastos/genética , Equisetum/genética , Evolución Molecular , Genoma del Cloroplasto , Secuencia de Bases , ADN Intergénico/genética , Eliminación de Gen , Mutagénesis Insercional , Polimorfismo de Nucleótido Simple , Alineación de Secuencia
14.
BMC Evol Biol ; 14: 23, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24533922

RESUMEN

BACKGROUND: Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. RESULTS: We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. CONCLUSIONS: Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies.


Asunto(s)
Chlorophyta/genética , Genoma de Plastidios , Magnoliopsida/genética , Plastidios/genética , Viridiplantae/genética , Chlorophyta/clasificación , Equisetum/clasificación , Equisetum/genética , Magnoliopsida/clasificación , Datos de Secuencia Molecular , Filogenia , Viridiplantae/clasificación
15.
Ann Bot ; 113(4): 571-94, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24532607

RESUMEN

BACKGROUND AND AIMS: Throughout the history of fern classification, familial and generic concepts have been highly labile. Many classifications and evolutionary schemes have been proposed during the last two centuries, reflecting different interpretations of the available evidence. Knowledge of fern structure and life histories has increased through time, providing more evidence on which to base ideas of possible relationships, and classification has changed accordingly. This paper reviews previous classifications of ferns and presents ideas on how to achieve a more stable consensus. SCOPE: An historical overview is provided from the first to the most recent fern classifications, from which conclusions are drawn on past changes and future trends. The problematic concept of family in ferns is discussed, with a particular focus on how this has changed over time. The history of molecular studies and the most recent findings are also presented. KEY RESULTS: Fern classification generally shows a trend from highly artificial, based on an interpretation of a few extrinsic characters, via natural classifications derived from a multitude of intrinsic characters, towards more evolutionary circumscriptions of groups that do not in general align well with the distribution of these previously used characters. It also shows a progression from a few broad family concepts to systems that recognized many more narrowly and highly controversially circumscribed families; currently, the number of families recognized is stabilizing somewhere between these extremes. Placement of many genera was uncertain until the arrival of molecular phylogenetics, which has rapidly been improving our understanding of fern relationships. As a collective category, the so-called 'fern allies' (e.g. Lycopodiales, Psilotaceae, Equisetaceae) were unsurprisingly found to be polyphyletic, and the term should be abandoned. Lycopodiaceae, Selaginellaceae and Isoëtaceae form a clade (the lycopods) that is sister to all other vascular plants, whereas the whisk ferns (Psilotaceae), often included in the lycopods or believed to be associated with the first vascular plants, are sister to Ophioglossaceae and thus belong to the fern clade. The horsetails (Equisetaceae) are also members of the fern clade (sometimes inappropriately called 'monilophytes'), but, within that clade, their placement is still uncertain. Leptosporangiate ferns are better understood, although deep relationships within this group are still unresolved. Earlier, almost all leptosporangiate ferns were placed in a single family (Polypodiaceae or Dennstaedtiaceae), but these families have been redefined to narrower more natural entities. CONCLUSIONS: Concluding this paper, a classification is presented based on our current understanding of relationships of fern and lycopod clades. Major changes in our understanding of these families are highlighted, illustrating issues of classification in relation to convergent evolution and false homologies. Problems with the current classification and groups that still need study are pointed out. A summary phylogenetic tree is also presented. A new classification in which Aspleniaceae, Cyatheaceae, Polypodiaceae and Schizaeaceae are expanded in comparison with the most recent classifications is presented, which is a modification of those proposed by Smith et al. (2006, 2008) and Christenhusz et al. (2011). These classifications are now finding a wider acceptance and use, and even though a few amendments are made based on recently published results from molecular analyses, we have aimed for a stable family and generic classification of ferns.


Asunto(s)
Equisetum/clasificación , Helechos/clasificación , Lycopodiaceae/clasificación , Equisetum/genética , Evolución Molecular , Helechos/genética , Lycopodiaceae/genética , Filogenia , Hojas de la Planta/clasificación , Hojas de la Planta/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
16.
BMC Evol Biol ; 13: 8, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23311954

RESUMEN

BACKGROUND: Plastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic. RESULTS: In order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales), Ophioglossum californicum (Ophioglossales), and Psilotum nudum (Psilotales). A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR) boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida. CONCLUSIONS: Although molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic resolution.


Asunto(s)
Equisetum/clasificación , Evolución Molecular , Helechos/clasificación , Genoma del Cloroplasto , Filogenia , ADN de Cloroplastos/genética , ADN de Plantas/genética , Equisetum/genética , Helechos/genética , Genoma de Planta , Intrones , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN
17.
Plant J ; 72(2): 320-30, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22712876

RESUMEN

Plants benefit greatly from silicon (Si) absorption provided that they contain Si transporters. The latter have recently been identified in the roots of some higher plants known to accumulate high concentrations of Si, and all share a high level of sequence identity. In this study, we searched for transporters in the primitive vascular plant Equisetum arvense (horsetail), which is a valuable but neglected model plant for the study of Si absorption, as it has one of the highest Si concentrations in the plant kingdom. Our initial attempts to identify Si transporters based on sequence homology with transporters from higher plants proved unsuccessful, suggesting a divergent structure or property in horsetail transporters. Subsequently, through sequencing of the horsetail root transcriptome and a search using amino acid sequences conserved in plant aquaporins, we were able to identify a multigene family of aquaporin Si transporters. Comparison of known functional domains and phylogenetic analysis of sequences revealed that the horsetail proteins belong to a different group than higher-plant Si transporters. In particular, the newly identified proteins contain a STAR pore as opposed to the GSGR pore common to all previously identified Si transporters. In order to determine its functionality, the proteins were heterologously expressed in both Xenopus oocytes and Arabidopsis, and the results showed that the horsetail proteins are extremely efficient a transporting Si. These findings offer new insights into the elusive properties of Si and its absorption by plants.


Asunto(s)
Acuaporinas/genética , Equisetum/genética , Familia de Multigenes , Silicio/metabolismo , Secuencia de Aminoácidos , Animales , Acuaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Transporte Biológico , Equisetum/metabolismo , Femenino , Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Oocitos , Especificidad de Órganos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Estructura Terciaria de Proteína , ARN de Planta/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Transcriptoma , Xenopus/genética , Xenopus/metabolismo
18.
Ann Bot ; 109(5): 873-86, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22378839

RESUMEN

BACKGROUND AND AIMS: Horsetails (Equisetopsida) diverged from other extant eusporangiate monilophytes in the Upper Palaeozoic. They are the only monilophytes known to contain the hemicellulose mixed-linkage (1 → 3, 1 → 4)-ß-d-glucan (MLG), whereas all land plants possess xyloglucan. It has been reported that changes in cell-wall chemistry often accompanied major evolutionary steps. We explored changes in hemicelluloses occurring during Equisetum evolution. METHODS: Hemicellulose from numerous monilophytes was treated with lichenase and xyloglucan endoglucanase. Lichenase digests MLG to di-, tri- and tetrasaccharide repeat-units, resolvable by thin-layer chromatography. KEY RESULTS: Among monilophytes, MLG was confined to horsetails. Our analyses support a basal trichotomy of extant horsetails: MLG was more abundant in subgenus Equisetum than in subgenus Hippochaete, and uniquely the sister group E. bogotense yielded almost solely the tetrasaccharide repeat-unit (G4G4G3G). Other species also gave the disaccharide, whereas the trisaccharide was consistently very scarce. Tetrasaccharide : disaccharide ratios varied interspecifically, but with no consistent difference between subgenera. Xyloglucan was scarce in Psilotum and subgenus Equisetum, but abundant in subgenus Hippochaete and in the eusporangiate ferns Marattia and Angiopteris; leptosporangiate ferns varied widely. All monilophytes shared a core pattern of xyloglucan repeat-units, major XEG products co-chromatographing on thin-layer chromatography with non-fucosylated hepta-, octa- and nonasaccharides and fucose-containing nona- and decasaccharides. CONCLUSIONS: G4G4G3G is the ancestral repeat-unit of horsetail MLG. Horsetail evolution was accompanied by quantitative and qualitative modification of MLG; variation within subgenus Hippochaete suggests that the structure and biosynthesis of MLG is evolutionarily plastic. Xyloglucan quantity correlates negatively with abundance of other hemicelluloses; but qualitatively, all monilophyte xyloglucans conform to a core pattern of repeat-unit sizes.


Asunto(s)
Pared Celular/química , Equisetum/química , Glucanos/química , Polisacáridos/química , Xilanos/química , beta-Glucanos/química , Evolución Biológica , Pared Celular/metabolismo , Celulasa/metabolismo , Cromatografía en Capa Delgada , Equisetum/genética , Equisetum/metabolismo , Glucanos/metabolismo , Glicósido Hidrolasas/metabolismo , Filogenia , Polisacáridos/clasificación , Polisacáridos/metabolismo , Tracheophyta/química , Tracheophyta/genética , Tracheophyta/metabolismo , Xilanos/metabolismo , beta-Glucanos/clasificación , beta-Glucanos/metabolismo
19.
Chromosome Res ; 19(6): 763-75, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21847691

RESUMEN

Less than 1% of known monilophytes and lycophytes have a genome size estimate, and substantially less is known about the presence and prevalence of endopolyploid nuclei in these groups. Thirty-one monilophyte species (including three horsetails) and six lycophyte species were collected in Ontario, Canada. Using flow cytometry, genome size and degree of endopolyploidy were estimated for 37 species. Across the five orders covered, 1Cx-values averaged 4.2 pg in the Lycopodiales, 18.1 pg for the Equisetales, 5.06 pg for a single representative of the Ophioglossales, 14.3 pg for the Osmundales, and 7.06 pg for the Polypodiales. There was no indication of endoreduplication in any of the leaf, stem, or root tissue analyzed. This information is essential to our understanding of DNA content evolution in land plants.


Asunto(s)
ADN de Plantas/genética , Tamaño del Genoma , Genoma de Planta , Equisetum/genética , Evolución Molecular , Helechos/genética , Citometría de Flujo , Lycopodium/genética , Ploidias
20.
Am J Bot ; 98(4): 680-97, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21613167

RESUMEN

PREMISE OF THE STUDY: Dated molecular phylogenies suggest a Cenozoic origin for the crown group of Equisetum. but compression fossil equisetaleans that are morphologically indistinguishable from extant Equisetum and recently discovered anatomically preserved examples strongly suggest an earlier Mesozoic initial diversification. METHODS: In situ samples of Equisetum thermale sp. nov. from the Upper Jurassic San Agustín hot spring deposit were collected and studied with the use of polished blocks, thin sections, and light microscopy. KEY RESULTS: Equisetum thermale exhibits all the morphological and anatomical characteristics of the extant crown group Equisetum. It shows a mixture of features present in the two extant subgenera, e.g., superficial stomata typical of subgenus Equisetum allied with infrequently ramifying stems typical of subgenus Hippochaete. This appears to ally E. thermale with the least derived extant species in the genus Equisetum bogotense (sister species to the two subgenera). Its association of hydromorphic and xeromorphic characters allowed it to grow as an emergent aquatic in physically and chemically stressed geothermally influenced wetlands, where it formed dense monospecific stands. Equisetum thermale, because it is preserved in situ with intact anatomy, provides clear paleoecological, biological, plus inferred paleoecophysiological evidence of adaptations known in extant species. CONCLUSIONS: As the earliest unequivocal member of the genus, E. thermale supports the hypothesis of a Mesozoic origin. Its inferred tolerance of a similar range of stresses (e.g., high salinity, alkalinity, and heavy metal concentrations) to that seen in extant Equisetum suggests early evolution and subsequent maintenance of ecophysiological innovations in the genus.


Asunto(s)
Evolución Biológica , Equisetum/genética , Fósiles , Fenotipo , Filogenia , Equisetum/anatomía & histología , Equisetum/clasificación , Manantiales de Aguas Termales , América del Sur , Especificidad de la Especie , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA