Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.125
Filtrar
1.
J Insect Sci ; 24(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958929

RESUMEN

The potential role of the juvenile hormone receptor gene (methoprene-tolerant, Met) in reproduction of Coccinella septempunctata L. (Coleoptera: Coccinellidae)(Coleoptera: Coccinellidae), was investigated by cloning, analyzing expression profiles by quantitative real-time PCR, and via RNA interference (RNAi). CsMet encoded a 1518-bp open reading frames with a predicted protein product of 505 amino acids; the latter contained 2 Per-Arnt-Sim repeat profile at amino acid residues 30-83 and 102-175. CsMet was expressed in different C. septempunctata larvae developmental stages and was most highly expressed in third instar. CsMet expression in female adults gradually increased from 20 to 30 d, and expression levels at 25 and 30 d were significantly higher than levels at 1-15 d. CsMet expression in 20-d-old male adults was significantly higher than in males aged 1-15 d. CsMet expression levels in fat body tissues of male and female adults were significantly higher than expression in the head, thorax, and reproductive system. At 5 and 10 d after CsMet-dsRNA injection, CsMet expression was significantly lower than the controls by 75.05% and 58.38%, respectively. Ovary development and vitellogenesis in C. septempunctata injected with CsMet-dsRNA were significantly delayed and fewer mature eggs were produced. This study provides valuable information for the large-scale rearing of C. septempunctata.


Asunto(s)
Clonación Molecular , Escarabajos , Proteínas de Insectos , Animales , Escarabajos/genética , Escarabajos/crecimiento & desarrollo , Escarabajos/metabolismo , Femenino , Masculino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Secuencia de Aminoácidos , Interferencia de ARN , Filogenia
2.
Braz J Biol ; 84: e278187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985058

RESUMEN

Zatrephina lineata (Coleoptera: Chrysomelidae) is a phytophagous insect, mainly of plants of the genera Ipomoea and Mikania. The objective was to study the development, survival and to describe the life stages of Z. lineata fed on leaves of Ipomoea pes-caprae. Biological observations were made daily with the aid of a stereoscopic microscope and the instars of this insect identified by the exuvia left between one moulting and the next. The duration of development and survival of the egg, larva and pupa stages and the first, second, third, fourth and fifth instars and of the nymph stage of Z. lineata differed, but not between sexes of this insect. The duration of development of Z. lineata was longer in the larval stage and in the fifth instar, and its survival greater in the egg and pupa stages and in the first and fifth instars. Zatrephina lineata eggs, cream-colored, are ellipsoid and deposited in groups on the adaxial surface of older I. pes-caprae leaves. The larvae of this insect go through five instars, with the first three being gregarious with chemo-behavioral defenses. The exarated pupae of Z. lineata, light yellow in color and with an oval shape flattened dorsoventrally, attach to the abaxial surface of the I. pes-caprae leaves. The shape of adults of this insect is oval, straw yellow in color with lighter longitudinal stripes and females are slightly larger than males.


Asunto(s)
Escarabajos , Ipomoea , Larva , Hojas de la Planta , Animales , Escarabajos/clasificación , Escarabajos/crecimiento & desarrollo , Masculino , Femenino , Hojas de la Planta/parasitología , Larva/crecimiento & desarrollo , Ipomoea/parasitología , Pupa/crecimiento & desarrollo , Estadios del Ciclo de Vida/fisiología
3.
J Agric Food Chem ; 72(20): 11381-11391, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728113

RESUMEN

RNA interference (RNAi)-based biopesticides offer an attractive avenue for pest control. Previous studies revealed high RNAi sensitivity in Holotrichia parallela larvae, showcasing its potential for grub control. In this study, we aimed to develop an environmentally friendly RNAi method for H. parallela larvae. The double-stranded RNA (dsRNA) of the V-ATPase-a gene (HpVAA) was loaded onto layered double hydroxide (LDH). The dsRNA/LDH nanocomplex exhibited increased environmental stability, and we investigated the absorption rate and permeability of dsRNA-nanoparticle complexes and explored the RNAi controlling effect. Silencing the HpVAA gene was found to darken the epidermis of H. parallela larvae, with growth cessation or death or mortality, disrupting the epidermis and midgut structure. Quantitative reverse transcription-polymerase chain reaction and confocal microscopy confirmed the effective absorption of the dsRNA/LDH nanocomplex by peanut plants, with distribution in roots, stems, and leaves. Nanomaterial-mediated RNAi silenced the target genes, leading to the death of pests. Therefore, these findings indicate the successful application of the nanomaterial-mediated RNAi system for underground pests, thus establishing a theoretical foundation for developing a green, safe, and efficient pest control strategy.


Asunto(s)
Larva , Interferencia de ARN , ARN Bicatenario , Animales , Larva/crecimiento & desarrollo , Larva/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Hidróxidos/química , Hidróxidos/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , Arachis/genética , Arachis/química , Arachis/crecimiento & desarrollo , Arachis/metabolismo , Control Biológico de Vectores , Escarabajos/genética , Escarabajos/crecimiento & desarrollo , Tecnología Química Verde , Agentes de Control Biológico/química , Agentes de Control Biológico/metabolismo , Nanopartículas/química
4.
Microb Ecol ; 87(1): 70, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38740585

RESUMEN

Stag beetles, recognized as common saproxylic insects, are valued for their vibrant coloration and distinctive morphology. These beetles play a crucial ecological role in decomposition and nutrient cycling, serving as a vital functional component in ecosystem functioning. Although previous studies have confirmed that stag beetles are predominantly fungivores, the fluctuations in their intestinal fungal communities at different developmental stages remain poorly understood. In the current study, high-throughput sequencing was employed to investigate the dynamic changes within intestinal fungal communities at various developmental stages in the stag beetle Dorcus hopei. Results showed that microbial diversity was higher during the larval stage than during the pupal and adult stages. Furthermore, significant differences were identified in the composition of the intestinal fungal communities across the larval, pupal, and adult stages, suggesting that developmental transitions may be crucial factors contributing to variations in fungal community composition and diversity. Dominant genera included Candida, Scheffersomyces, Phaeoacremonium, and Trichosporon. Functional predictions indicated a greater diversity and relative abundance of endosymbiotic fungi in the larval gut, suggesting a potential dependency of larvae on beneficial gut fungi for nutrient acquisition. Additionally, the application of abundance-based ß-null deviation and niche width analyses revealed that the adult gut exerted a stronger selection pressure on its fungal community, favoring certain taxa. This selection process culminates in a more robust co-occurrence network of fungal communities within the adult gut, thereby enhancing their adaptability to environmental fluctuations. This study advances our understanding of the intestinal fungal community structure in stag beetles, providing a crucial theoretical foundation for the development of saproxylic beetle resources, biomass energy utilization, plastic degradation strategies, and beetle conservation efforts.


Asunto(s)
Escarabajos , Hongos , Microbioma Gastrointestinal , Larva , Animales , Escarabajos/microbiología , Escarabajos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/microbiología , Hongos/genética , Hongos/clasificación , Hongos/fisiología , Pupa/crecimiento & desarrollo , Pupa/microbiología , Micobioma , Biodiversidad , Simbiosis , Secuenciación de Nucleótidos de Alto Rendimiento
5.
Int J Biol Macromol ; 270(Pt 2): 132459, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763254

RESUMEN

Nuclear receptors (NRs) are ligand-regulated transcription factors that are important for the normal growth and development of insects. However, systematic function analysis of NRs in the molting process of Lasioderma serricorne has not been reported. In this study, we identified and characterized 16 NR genes from L. serricorne. Spatiotemporal expression analysis revealed that six NRs were mainly expressed in 3-d-old 4th-instar larvae; five NRs were primarily expressed in 5-d-old adults and four NRs were predominately expressed in prepupae. All the NRs were highly expressed in epidermis, fat body and foregut. RNA interference (RNAi) experiments revealed that knockdown of 15 NRs disrupted the larva-pupa-adult transitions and caused 64.44-100 % mortality. Hematoxylin-eosin staining showed that depletion of 12 NRs prevented the formation of new cuticle and disrupted apolysis of old cuticle. Silencing of LsHR96, LsSVP and LsE78 led to newly formed cuticle that was thinner than the controls. The 20E titer and chitin content significantly decreased by 17.67-95.12 % after 15 NR dsRNA injection and the gene expression levels of 20E synthesis genes and chitin metabolism genes were significantly reduced. These results demonstrated that 15 NR genes are essential for normal molting and metamorphosis of L. serricorne by regulating 20E synthesis and chitin metabolism.


Asunto(s)
Escarabajos , Regulación del Desarrollo de la Expresión Génica , Metamorfosis Biológica , Muda , Receptores Citoplasmáticos y Nucleares , Animales , Muda/genética , Metamorfosis Biológica/genética , Escarabajos/genética , Escarabajos/crecimiento & desarrollo , Escarabajos/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Quitina/metabolismo , Interferencia de ARN , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Filogenia , Ecdisterona/metabolismo
6.
Sci Data ; 11(1): 557, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816378

RESUMEN

Insect metamorphosis involves significant changes in insect internal structure and is thus a critical focus of entomological research. Investigating the morphological transformation of internal structures is vital to understanding the origins of adult insect organs. Beetles are among the most species-rich groups in insects, but the development and transformation of their internal organs have yet to be systematically documented. In this study, we have acquired a comprehensive dataset that includes 27 detailed whole-body tomographic image sets of Harmonia axyridis, spanning from the prepupal to the pupal stages. Utilizing this data, we have created intricate 3D models of key internal organs, encompassing the brain, ventral nerve cord, digestive and excretion systems, as well as the body wall muscles. These data documented the transformation process of these critical organs and correlations between the origin of adult and larval organs and can be used to enhance the understanding of holometabolous adult organ genesis and offers a valuable reference model for investigating complete metamorphosis in insects.


Asunto(s)
Escarabajos , Metamorfosis Biológica , Microtomografía por Rayos X , Animales , Escarabajos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Pupa/crecimiento & desarrollo
7.
J Insect Physiol ; 155: 104652, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777076

RESUMEN

Insects exchange respiratory gases with their environment through their gas-filled tracheal system, a branched tracheal tree extending from segmental openings and terminating at fine tissue penetrating tracheoles. It was shown that the tracheal volume increases hyperallometrically with insect body size (Mb), both interspecifically and across developmental stages. In this study, we used the sixfold Mb variation in adult Batocera rufomaculata(Cerambicidae; Coleoptera) examining the allometry of adult tracheal volume (Vtr). We further explored the effect of sex and sexual maturity on tracheal gas conductance, testing the hypotheses that (i) larger body size and (ii) egg volume in gravid females would result in lower safety margins for tracheal oxygen transport due to structural restriction. We report a hyperallometric tracheal growth in both sexes of adult B. rufomaculata(mean mass exponent of 1.42 ± 0.09), similar in magnitude to previously reported values. Tracheal gas conductance was independent of Mb and reproductive state, but was significantly higher in females compared with males. We suggest that females may have pre-adapted a higher tracheal conductance required for the higher flight power output while gravid. Lack of compliant air sacs and rigid trachea may explain how gravid females retain their Vtr. However, we show that Vtr outgrows thoracic dimensions with increased B. rufomaculatasize. Hyperallometric growth of the giant cerambycid thoracic trachea could explain the previously reported hypometric scaling of flight muscles in B. rufomaculata, and the compromised long-distance flight performance of larger compared with smaller conspecifics.


Asunto(s)
Tamaño Corporal , Escarabajos , Tráquea , Animales , Femenino , Masculino , Escarabajos/crecimiento & desarrollo , Escarabajos/fisiología , Tráquea/fisiología
8.
Pest Manag Sci ; 80(8): 4034-4043, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38563449

RESUMEN

BACKGROUND: Transgenic crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) have been used to manage insect pests for nearly 30 years. Dose of a Bt crop is key to assessing the risk of resistance evolution because it affects the heritability of resistance traits. Western corn rootworm (Diabrotica virgifera virgifera, LeConte), a major pest of maize, has evolved resistance to all commercially available Bt traits targeting it, and threatens resistance to future transgenic traits. Past research shows the dose of Bt maize targeting western corn rootworm can be confounded by larval density-dependent mortality. We conducted a 2-year field study at two locations to quantify larval density-dependent mortality in Bt and non-Bt maize. We used these results to calculate dose for our method and compared it to three previously published methods. Additionally, adult emergence and root injury were analyzed for predicting initial egg density. RESULTS: Increased pest density caused greater proportions of larvae to die in Bt maize than in non-Bt maize. All methods for calculating dose produced values less than high-dose, and stochastic variation had the greatest impact on dose at high and low pest densities. Our method for calculating dose did not produce values positively correlated with pest density while the three other methods did. CONCLUSION: To achieve the most accurate calculation of dose for transgenic maize targeting western corn rootworm, density-dependent mortality should be taken into account for both transgenic and non-transgenic maize and assessed at moderate pest densities. © 2024 Society of Chemical Industry.


Asunto(s)
Escarabajos , Endotoxinas , Larva , Plantas Modificadas Genéticamente , Densidad de Población , Zea mays , Zea mays/genética , Animales , Escarabajos/efectos de los fármacos , Escarabajos/crecimiento & desarrollo , Escarabajos/genética , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Endotoxinas/genética , Endotoxinas/farmacología , Bacillus thuringiensis/genética , Control Biológico de Vectores , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Hemolisinas/farmacología , Resistencia a los Insecticidas/genética
9.
J Econ Entomol ; 117(3): 696-704, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38592125

RESUMEN

Given the rapid spread and potential harm caused by the small hive beetle, Aethina tumida (Coleoptera: Nitidulidae) in China, it has become imperative to comprehend the developmental biology of this invasive species. Currently, there is limited knowledge regarding the impact of A. tumida female oviposition site preference on larval growth and development. To examine this, we investigated the ovipositional preference of adult female A. tumida on bee pupae, beebread, banana, and honey through a free choice test. Furthermore, we assessed the impact of these food resources on offspring performance, which included larval development time, survival, wandering larvae weight, emerged adult body mass, reproduction, and juvenile hormone titer. Our results showed that A. tumida females exhibited a strong preference for ovipositing on bee pupae compared to other diets, while showing reluctance toward honey. Moreover, A. tumida larvae that were fed on bee pupae displayed accelerated growth compared to those fed on other diets. Furthermore, A. tumida fed on bee pupae exhibited higher weights for wandering larvae, and emerged adult, increased pupation rates, enhanced fecundity and fertility, as well as a larger number of unilateral ovarioles during the larval stage when compared to those fed on other diets. Overall, the results indicate that the oviposition preferences of A. tumida females are adaptive, as their choices can enhance the fitness of their offspring. This finding aligns broadly with the hypothesis of oviposition preference and larval performance. This study can provide a foundation for the development of attractants aimed at promoting the oviposition of the A. tumida adults.


Asunto(s)
Escarabajos , Larva , Oviposición , Pupa , Animales , Escarabajos/crecimiento & desarrollo , Escarabajos/fisiología , Femenino , Larva/crecimiento & desarrollo , Larva/fisiología , Pupa/crecimiento & desarrollo , Pupa/fisiología , Abejas/fisiología , Musa
10.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674138

RESUMEN

The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played a crucial role in monitoring and controlling the M. alternatus population. However, the specific proteins within M. alternatus involved in recognizing the aforementioned informational compounds remain largely unclear. To elucidate the spatiotemporal distribution of M. alternatus chemosensory-related genes, this study conducted neural transcriptome analyses to investigate gene expression patterns in different body parts during the feeding and mating stages of both male and female beetles. The results revealed that 15 genes in the gustatory receptor (GR) gene family exhibited high expression in the mouthparts, most genes in the odorant binding protein (OBP) gene family exhibited high expression across all body parts, 22 genes in the odorant receptor (OR) gene family exhibited high expression in the antennae, a significant number of genes in the chemosensory protein (CSP) and sensory neuron membrane protein (SNMP) gene families exhibited high expression in both the mouthparts and antennae, and 30 genes in the ionotropic receptors (IR) gene family were expressed in the antennae. Through co-expression analyses, it was observed that 34 genes in the IR gene family were co-expressed across the four developmental stages. The Antenna IR subfamily and IR8a/Ir25a subfamily exhibited relatively high expression levels in the antennae, while the Kainate subfamily, NMDA subfamily, and Divergent subfamily exhibited predominantly high expression in the facial region. MalIR33 is expressed only during the feeding stage of M. alternatus, the MalIR37 gene exhibits specific expression in male beetles, the MalIR34 gene exhibits specific expression during the feeding stage in male beetles, the MalIR8 and MalIR39 genes exhibit specific expression during the feeding stage in female beetles, and MalIR8 is expressed only during two developmental stages in male beetles and during the mating stage in female beetles. The IR gene family exhibits gene-specific expression in different spatiotemporal contexts, laying the foundation for the subsequent selection of functional genes and facilitating the full utilization of host plant volatiles and insect sex pheromones, thereby enabling the development of more efficient attractants.


Asunto(s)
Escarabajos , Proteínas de Insectos , Receptores Odorantes , Transcriptoma , Animales , Escarabajos/genética , Escarabajos/metabolismo , Escarabajos/crecimiento & desarrollo , Masculino , Femenino , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Perfilación de la Expresión Génica , Antenas de Artrópodos/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo
11.
Bull Entomol Res ; 114(2): 293-301, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600043

RESUMEN

One of the key reasons for the poor performance of natural enemies of honeydew-producing insect pests is mutualism between ants and some aphid species. The findings demonstrated that red wood ant, Formica rufa Linnaeus (Hymenoptera: Formicidae) had a deleterious impact on different biological parameters of the lady beetle, Hippodamia variegata Goeze (Coleoptera: Coccinellidae). H. variegata laid far fewer eggs in ant-tended aphid colonies, laying nearly 2.5 times more eggs in ant absence. Ants antennated and bit the lady beetle eggs, resulting in significantly low egg hatching of 66 per cent over 85 per cent in ant absent treatments. The presence of ants significantly reduced the development of all larval instars. The highest reduction was found in the fourth larval instar (31.33% reduction), and the lowest in the first larval instar (20% reduction). Later larval instars were more aggressively attacked by ants than earlier instars. The first and second larval instars stopped their feeding and movement in response to ant aggression. The third and fourth larval instars modified their mobility, resulting in increased ant aggression towards them. Adult lady beetles were shown to be more vulnerable to ant attacks than larvae. However, H. variegata adults demonstrated counterattacks in the form of diverse defensive reaction behaviours in response to F. rufa aggression.


Asunto(s)
Hormigas , Escarabajos , Larva , Animales , Hormigas/fisiología , Escarabajos/fisiología , Escarabajos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Áfidos/fisiología , Agresión , Femenino , Simbiosis , Oviposición , Conducta Predatoria
12.
Pest Manag Sci ; 80(8): 3763-3775, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38477428

RESUMEN

BACKGROUND: Cabbage stem flea beetle (CSFB, Psylliodes chrysocephala L.) is a major pest of oilseed rape (OSR, Brassica napus L.) in the UK and low availability of effective chemical control has increased the need for integrated pest management approaches. The risk of OSR to lodging is strongly related to stem strength, however, the impact of CSFB larval tunnelling on stem strength and subsequent risk to stem lodging is unknown. The study investigated this by applying the Generalised Crop Lodging Model to conventionally grown OSR crops scored for varying levels of CSFB larval tunnelling. Lodging risk mitigation strategies including plant growth regulators (PGR) and varying nitrogen regimes were tested under high CSFB larval pressure. RESULTS: Stems of OSR plants were categorised by the proportion of visual damage (< 5%; 5-25%; 26-50%; 51-75%; 75-100%). Stems of 26-50% damage had significantly lower breaking strengths and diameters compared to plants that scored < 5%, with the associated reduction in stem failure windspeed equivalent to an order of magnitude increase in the risk of a lodging event occurring in the UK. PGR use reduced plant height and subsequently lodging risk variably across the sites. CONCLUSION: Estimating the proportion of stem tunnelling alongside larval pressure may be a useful tool in considering the contribution of CSFB pressure to lodging risk. The research demonstrates that the use of canopy management principles to optimise canopy size through nitrogen management and PGR use may help offset increased lodging risk caused by CSFB tunnelling. © 2024 Society of Chemical Industry.


Asunto(s)
Brassica napus , Escarabajos , Larva , Tallos de la Planta , Animales , Escarabajos/fisiología , Escarabajos/crecimiento & desarrollo , Escarabajos/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/fisiología , Tallos de la Planta/química , Herbivoria , Modelos Biológicos
13.
Pest Manag Sci ; 80(8): 3852-3860, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38511626

RESUMEN

BACKGROUND: Reproductive diapause serves as a valuable strategy enabling insects to survive unfavorable seasonal conditions. However, forcing insects into diapause when the environment is conducive to their well-being can cause them to miss out on seasonal opportunities for reproduction. This outcome not only reduces insect populations but also minimizes crop losses caused by insect feeding. Therefore, altering the timing of diapause initiation presents a potential strategy for managing pests. In this study, we examined the possible role of the Insulin Receptor 1 (InR1) in controlling reproductive diapause entry in the male cabbage beetle, Colaphellus bowringi. RESULTS: Compared to short-day (SD) conditions, long-day (LD) conditions led to reproductive diapause of C. bowringi males, characterized by arrested gonad development, increased Triglyceride (TG) accumulation, and upregulated expression of diapause protein 1 and genes associated with lipogenesis and stress tolerance. Upon employing RNA interference to knock down InR1 under SD conditions, males destined for reproduction were compelled into diapause, evidenced by arrested gonadal development, accumulation of TG, and elevated expression of diapause-related genes. Intriguingly, despite the common association of the absence of juvenile hormone (JH) with reproductive diapause in females, the knockdown of InR1 in males did not significant affect the expression of JH biosynthesis and JH response gene. CONCLUSION: The study highlight InR1 is a key factor involved in regulating male reproductive diapause in C. bowringi. Consequently, targeting insulin signaling could be a viable approach to perturb diapause timing, offering a promising strategy for managing pests with reproductive diapause capabilities. © 2024 Society of Chemical Industry.


Asunto(s)
Escarabajos , Diapausa de Insecto , Receptor de Insulina , Reproducción , Animales , Masculino , Escarabajos/fisiología , Escarabajos/crecimiento & desarrollo , Escarabajos/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Fotoperiodo , Femenino
14.
Pest Manag Sci ; 80(7): 3665-3674, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38459943

RESUMEN

BACKGROUND: The ladybeetle, Coccinella septempunctata, an important predator, is widely used to control aphids, whiteflies, mites, thrips, and lepidopteran pests. Diapause control technology is key to extending C. septempunctata shelf-life and commercialization. Lipid accumulation is a major feature of reproductive diapause, but the function of AKH signaling as a regulator of lipid mobilization in reproductive diapause remains unclear. This study aimed to identify and characterize AKH and AKHR genes, and clarify their functions in reproductive diapause. RESULTS: The relative expression levels of CsAKH and CsAKHR were the highest in the head and fat body, respectively, and were significantly decreased under diapause conditions, both in developmental stages and tissues (head, midgut, fat body, and ovary). Furthermore, CsAKH and CsAKHR expression was increased significantly after juvenile hormone (JH) injection, but CsMet silencing significantly inhibited CsAKH and CsAKHR expression, whereas CsMet knockdown blocked the induction effect of JH. CsAKH and CsAKHR knockdown significantly reduced water content, increased lipid storage, and promoted the expression of genes related to lipid synthesis, but significantly blocked ovarian development, and induced forkhead box O (FOXO) gene expression in C. septempunctata under reproduction conditions. By contrast, injection of AKH peptide significantly inhibited FOXO expression, reduced lipid storage, and increased water content in C. septempunctata under diapause conditions. CONCLUSION: These results indicate that CsAKH and CsAKHR are involved in the regulation of lipid accumulation and ovarian development during diapause in C. septempunctata, and provide a promising target for manipulating C. septempunctata diapause. © 2024 Society of Chemical Industry.


Asunto(s)
Escarabajos , Diapausa de Insecto , Hormonas de Insectos , Proteínas de Insectos , Oligopéptidos , Ácido Pirrolidona Carboxílico , Reproducción , Transducción de Señal , Animales , Hormonas de Insectos/metabolismo , Hormonas de Insectos/genética , Escarabajos/fisiología , Escarabajos/metabolismo , Escarabajos/crecimiento & desarrollo , Escarabajos/genética , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Oligopéptidos/metabolismo , Femenino , Metabolismo de los Lípidos
15.
Bull Entomol Res ; 114(2): 244-253, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38444240

RESUMEN

Since metabolism, survival, and reproduction in hexapods are closely related to temperatures; changes in the mean and variance of temperature are major aspects of global climate change. In the typical context of biological control, understanding how predator-prey systems are impacted under thermal conditions can make pest control more effective and resilient. With this view, this study investigated temperature-mediated development and predation parameters of the predator Harmonia axyridis against the potential prey Spodoptera litura. The age-stage, two-sex life table of the predator was constructed at four temperatures (i.e. 15, 20, 25, and 30°C) by feeding on the first instar larvae of S. litura. Our results showed that the mean generation time (T) decreased but the intrinsic rate of increase (r) and the finite rate of increase (λ) increased with increased temperature. The mean duration of the total preadult stage decreased with higher temperatures. The T and r were 70.47 d and 0.0769 d-1 at 15°C; 58.41 d and 0.0958 d-1 at 20°C; 38.71 d and 0.1526 d-1 at 25°C; and 29.59 d and 0.1822 d-1 at 30°C, respectively. The highest net reproductive rate (R0) and fecundity were obtained at 25°C. The highest λ (1.1998 d-1) and lowest T (29.59 d) were obtained at 30°C, whereas the maximum net predation rate (C0) was at 25°C. Total population and predation rates projections were the highest at 30°C. Based on these findings, we anticipate that biological control strategies for this predator release against S. litura should be attuned to warming scenarios to achieve better biocontrol functions.


Asunto(s)
Escarabajos , Larva , Control Biológico de Vectores , Conducta Predatoria , Reproducción , Spodoptera , Temperatura , Animales , Spodoptera/fisiología , Spodoptera/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Escarabajos/fisiología , Escarabajos/crecimiento & desarrollo , Femenino , Masculino
16.
J Forensic Sci ; 69(3): 1088-1093, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321965

RESUMEN

Dermestes frischii Kugelann, 1792 and Dermestes undulatus Brahm, 1790 are the most abundant species worldwide at outdoor or indoor crime scenes during the dry and skeletal stages of decomposition. The attribution of larval age in these beetles is problematic due to the variable number of instars, which is influenced by environmental factors. In this study, a morphometric approach was used to look for potential morphological features as evidence of larval stages. Breeding and monitoring were performed for both species in an incubator with a preset temperature of 28°C ± 0.5 without a photoperiod. Morphometric measurements were made on 10 larvae per instar for each species using length, width, and thickness parameters. Linear discriminant analysis was then used to generate decision boundaries that clearly separated larval stages. The cross-validation procedure demonstrated that the morphometric approach successfully discriminated adjacent larval stages in both species with high values of sensitivity and specificity. This less-invasive approach could improve the ability to estimate minPMI in forensic studies of Dermestidae beetles. Future studies may extend this approach to other species and establish good practices for collecting and storing specimens for morphometric analysis.


Asunto(s)
Escarabajos , Entomología Forense , Larva , Animales , Escarabajos/crecimiento & desarrollo , Escarabajos/anatomía & histología , Larva/crecimiento & desarrollo , Larva/anatomía & histología , Análisis Discriminante , Cambios Post Mortem
17.
Neotrop Entomol ; 53(3): 641-646, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329711

RESUMEN

In holometabolous insects, the immature or larval stage is characterized by a high rate of food consumption. The nutrients obtained from which are directed towards the maintenance of metabolism, growth, pupation, and metamorphosis. However, when resources are scarce, the lack thereof can affect the growth rate and compromise the metamorphosis and formation of adults. Do increased energy expenditures yield outcomes similar to those resulting from restricted food intake during the larval stage? We hypothesized that removing the wax layer from the larvae of the ladybird Cryptolaemus montrouzieri Mulsant, 1850 would result in increased energy expenditure, which can compromise both larval growth and adult size. We compared the development time, feeding rate, and adult size of larvae with an intact wax layer, and those with constantly removed wax layers. We found that the production of the wax layer was continuous. Unlike the waxed larvae, the larvae of C. montrouzieri extended their development time in response to energy depletion through wax removal. The total number of mealybugs consumed by waxless larvae was higher than the total number consumed by waxed larvae; however, the daily consumption of waxless larvae was lower than that of waxed larvae. Furthermore, the adults of waxless larvae were smaller than those whose larvae had intact wax layers. This suggests that the cost associated with wax layer secretion is a pivotal factor in larval growth. Removing this layer does not get compensated by increased larval feeding or extended development time.


Asunto(s)
Escarabajos , Larva , Ceras , Animales , Escarabajos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Ceras/metabolismo , Metabolismo Energético , Conducta Alimentaria , Metamorfosis Biológica
18.
Pest Manag Sci ; 80(6): 2920-2928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38288907

RESUMEN

BACKGROUND: Pollen is a common plant-derived food source for predatory ladybird beetles under field conditions, yet the potential for pollen to improve the quality of artificial diets remains largely unexplored. In this study, we developed three pollen diets by incorporating varying proportions of canola bee pollen (7.5%, 15.0% and 22.5% with 2.5%, 5.0%, and 7.5% of water, respectively) into a conventional diet. The feeding efficiency of Harmonia axyridis, an omnivorous predator, was evaluated and compared on three pollen diets, a conventional nonpollen diet and pea aphids. RESULTS: The larvae fed a medium or high pollen diet exhibited significantly higher survival in the 4th instar, pupa and adult stages than those fed a nonpollen diet. These larvae also developed into significantly heavier adults, and their survival rates in adulthood were comparable to those fed pea aphids. Specifically, we revealed the underlying mechanisms through which a high pollen diet enhances pupal development. Consumption of high pollen diet versus nonpollen diet resulted not only in a significant decrease in pupal glycogen content, but also an increase in adult lipid content. Both diet treatments induced similar changes in carbohydrate and glycogen content compared to the aphid diet while exhibiting different alterations in pupal protein content and adult lipid content. Furthermore, the transcriptome analysis revealed that the nutrient metabolism, immune response, and cuticle development pathways were predominantly enriched among the differentially expressed genes (DEGs). CONCLUSION: Canola bee pollen offers diverse advantages in terms of rearing H. axyridis larvae with an artificial diet, which will advance the development of effective diets for predaceous coccinellids. © 2024 Society of Chemical Industry.


Asunto(s)
Escarabajos , Dieta , Larva , Polen , Animales , Larva/crecimiento & desarrollo , Escarabajos/crecimiento & desarrollo , Escarabajos/fisiología , Pupa/crecimiento & desarrollo , Conducta Predatoria , Abejas/crecimiento & desarrollo , Abejas/fisiología , Alimentación Animal/análisis , Control Biológico de Vectores/métodos , Áfidos/crecimiento & desarrollo , Áfidos/fisiología
19.
Curr Biol ; 33(20): 4285-4297.e5, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37734374

RESUMEN

What limits the size of nature's most extreme structures? For weapons like beetle horns, one possibility is a tradeoff associated with mechanical levers: as the output arm of the lever system-the beetle horn-gets longer, it also gets weaker. This "paradox of the weakening combatant" could offset reproductive advantages of additional increases in weapon size. However, in contemporary populations of most heavily weaponed species, males with the longest weapons also tend to be the strongest, presumably because selection drove the evolution of compensatory changes to these lever systems that ameliorated the force reductions of increased weapon size. Therefore, we test for biomechanical limits by reconstructing the stages of weapon evolution, exploring whether initial increases in weapon length first led to reductions in weapon force generation that were later ameliorated through the evolution of mechanisms of mechanical compensation. We describe phylogeographic relationships among populations of a rhinoceros beetle and show that the "pitchfork" shaped head horn likely increased in length independently in the northern and southern radiations of beetles. Both increases in horn length were associated with dramatic reductions to horn lifting strength-compelling evidence for the paradox of the weakening combatant-and these initial reductions to horn strength were later ameliorated in some populations through reductions to horn length or through increases in head height (the input arm for the horn lever system). Our results reveal an exciting geographic mosaic of weapon size, weapon force, and mechanical compensation, shedding light on larger questions pertaining to the evolution of extreme structures.


Asunto(s)
Evolución Biológica , Escarabajos , Cuernos , Animales , Masculino , Fenómenos Biomecánicos/fisiología , Escarabajos/anatomía & histología , Escarabajos/crecimiento & desarrollo , Escarabajos/fisiología , Cuernos/anatomía & histología , Cuernos/crecimiento & desarrollo , Cuernos/fisiología , Elevación , Caracteres Sexuales , Japón
20.
Bull Entomol Res ; 113(1): 118-125, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36043463

RESUMEN

Different species of Cyclocephala scarab beetles (Scarabaeidae, Dynastinae) perform key functional roles in both natural and agricultural systems, such as the cycling of organic matter and pollination, while also being known as destructive pests both as immatures and adults. Therefore, the identification of biological parameters is crucial for defining strategies for their conservation and efficient pest management. In a forest fragment within the Brazilian Atlantic Forest biodiversity hotspot, we field-captured adult individuals of Cyclocephala cearae, C. celata, and C. paraguayensis then reared and bred them under controlled temperature and humidity conditions. On a daily basis, we individually weighted eggs of all three species, from oviposition until hatching, and monitored egg development parameters (i.e., incubation duration, viability, and egg weight increase). Our findings provide novel empirical evidence showing (i) a positive correlation between egg weight and incubation duration, (ii) idiosyncratic characteristics on egg development, and (iii) a negative (involuntary) effect of manipulation on egg development and viability. Thus, the successful breeding and rearing of Cyclocephala spp. is correlated with egg integrity and the targeted species. Our analyses present a quantitative understanding of the egg phase and can assist in refining strategies for ovicidal activity and pest management of Cyclocephala spp. in agriculture systems. Moreover, they can provide a basis for new studies related to captivity breeding, pollinator management, and developmental biology for biodiversity conservation.


Asunto(s)
Escarabajos , Animales , Femenino , Brasil , Escarabajos/crecimiento & desarrollo , Bosques , Polinización , Cigoto/crecimiento & desarrollo , Cruzamiento , Temperatura , Factores de Tiempo , Humedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...