Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mBio ; 12(6): e0269221, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903041

RESUMEN

Many enteropathogenic bacteria express a needle-like type III secretion system (T3SS) that translocates effectors into host cells promoting infection. O antigen (OAg) constitutes the outer layer of Gram-negative bacteria protecting bacteria from host immune responses. Shigella constitutively shortens the OAg molecule in its three-dimensional conformation by glucosylation, leading to enhanced T3SS function. However, whether and how other enteropathogenic bacteria shorten the OAg molecule that probably facilitates infection remain unknown. For the first time, we report a smart mechanism by which enterohemorrhagic Escherichia coli specifically reduces the size of the OAg molecule at the infection site upon sensing mechanical signals of intestinal epithelial cell attachment via the membrane protein YgjI. YgjI represses expression of the OAg chain length regulator gene fepE via the global regulator H-NS, leading to shortened OAg chains and injection of more T3SS effectors into host cells. However, bacteria express long-chain OAg in the intestinal lumen benefiting their survival. Animal experiments show that blocking this regulatory pathway significantly attenuates bacterial virulence. This finding enhances our understanding of interactions between the surfaces of bacterial and host cells and the way this interaction enhances bacterial pathogenesis. IMPORTANCE Little is known about the regulation of cell wall structure of enteropathogenic bacteria within the host. Here, we report that enterohemorrhagic Escherichia coli regulates its cell wall structure during the infection process, which balances its survival in the intestinal lumen and infection of intestinal epithelial cells. In the intestinal lumen, bacteria express long-chain OAg, which is located in the outer part of the cell wall, leading to enhanced resistance to antimicrobial peptides. However, upon epithelial cell attachment, bacteria sense this mechanical signal via a membrane protein and reduce the OAg chain length, resulting in enhanced injection into epithelial cells of T3SS effectors that mediate host cell infection. Similar regulation mechanisms of cell wall structure in response to host cell attachment may be widespread in pathogenic bacteria and closely related with bacterial pathogenesis.


Asunto(s)
Adhesión Bacteriana , Escherichia coli Enterohemorrágica/fisiología , Infecciones por Escherichia coli/microbiología , Antígenos O/metabolismo , Animales , Escherichia coli Enterohemorrágica/química , Escherichia coli Enterohemorrágica/genética , Células Epiteliales/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Antígenos O/química , Antígenos O/genética , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
2.
J Biol Chem ; 296: 100299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33460651

RESUMEN

The human Gb3/CD77 synthase, encoded by the A4GALT gene, is an unusually promiscuous glycosyltransferase. It synthesizes the Galα1→4Gal linkage on two different glycosphingolipids (GSLs), producing globotriaosylceramide (Gb3, CD77, Pk) and the P1 antigen. Gb3 is the major receptor for Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli. A single amino acid substitution (p.Q211E) ramps up the enzyme's promiscuity, rendering it able to attach Gal both to another Gal residue and to GalNAc, giving rise to NOR1 and NOR2 GSLs. Human Gb3/CD77 synthase was long believed to transfer Gal only to GSL acceptors, therefore its GSL products were, by default, considered the only human Stx receptors. Here, using soluble, recombinant human Gb3/CD77 synthase and p.Q211E mutein, we demonstrate that both enzymes can synthesize the P1 glycotope (terminal Galα1→4Galß1→4GlcNAc-R) on a complex type N-glycan and a synthetic N-glycoprotein (saposin D). Moreover, by transfection of CHO-Lec2 cells with vectors encoding human Gb3/CD77 synthase and its p.Q211E mutein, we demonstrate that both enzymes produce P1 glycotopes on N-glycoproteins, with the mutein exhibiting elevated activity. These P1-terminated N-glycoproteins are recognized by Stx1 but not Stx2 B subunits. Finally, cytotoxicity assays show that Stx1 can use P1 N-glycoproteins produced in CHO-Lec2 cells as functional receptors. We conclude that Stx1 can recognize and use P1 N-glycoproteins in addition to its canonical GSL receptors to enter and kill the cells, while Stx2 can use GSLs only. Collectively, these results may have important implications for our understanding of the Shiga toxin pathology.


Asunto(s)
Galactosiltransferasas/química , Globósidos/química , Toxina Shiga I/química , Trihexosilceramidas/química , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Animales , Sitios de Unión , Células CHO , Secuencia de Carbohidratos , Cricetulus , Escherichia coli Enterohemorrágica/química , Escherichia coli Enterohemorrágica/patogenicidad , Galactosa/química , Galactosa/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Expresión Génica , Globósidos/biosíntesis , Globósidos/metabolismo , Glucosa/química , Glucosa/metabolismo , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/química , Toxina Shiga II/metabolismo , Trihexosilceramidas/biosíntesis
3.
Structure ; 27(7): 1082-1093.e5, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31056419

RESUMEN

Bacterial type 4a pili are dynamic surface filaments that promote bacterial adherence, motility, and macromolecular transport. Their genes are highly conserved among enterobacteria and their expression in enterohemorrhagic Escherichia coli (EHEC) promotes adhesion to intestinal epithelia and pro-inflammatory signaling. To define the molecular basis of EHEC pilus assembly, we determined the structure of the periplasmic domain of its major subunit PpdD (PpdDp), a prototype of an enterobacterial pilin subfamily containing two disulfide bonds. The structure of PpdDp, determined by NMR, was then docked into the density envelope of purified EHEC pili obtained by cryoelectron microscopy (cryo-EM). Cryo-EM reconstruction of EHEC pili at ∼8 Å resolution revealed extremely high pilus flexibility correlating with a large extended region of the pilin stem. Systematic mutagenesis combined with functional and interaction analyses identified charged residues essential for pilus assembly. Structural information on exposed regions and interfaces between EHEC pilins is relevant for vaccine and drug discovery.


Asunto(s)
Escherichia coli Enterohemorrágica/química , Proteínas de Escherichia coli/química , Proteínas Fimbrias/química , Fimbrias Bacterianas/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Microscopía por Crioelectrón , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática , Termodinámica
4.
Arch Microbiol ; 201(6): 841-846, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30963197

RESUMEN

The flagellum and motility are crucial virulence factors for many pathogenic bacteria. In general, pathogens invade and translocate through motility and adhere to specific tissue via flagella. Therefore, the motility and flagella of pathogens are effectual targets for attenuation. Here, we show that the fermentation products of Clostridium ramosum, a commensal intestinal bacterium, decrease the intracellular pH of enterohemorrhagic Escherichia coli (EHEC) and influence its swimming motility. Quantifications of flagellar rotation in individual EHEC cells showed an increase in reversal frequency and a decrease in rotation rate in the presence of C. ramosum fermentation products. Furthermore, the C. ramosum fermentation products affected synthesis of flagellar filaments. The results were reproduced by a combination of organic acids under acidic conditions. Short-chain fatty acids produced by microbes in the gut flora are beneficial for the host, e.g. they prevent infection. Thus, C. ramosum could affect the physiologies of other enteric microbes and host tissues.


Asunto(s)
Clostridium/química , Escherichia coli Enterohemorrágica/citología , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Clostridium/metabolismo , Escherichia coli Enterohemorrágica/química , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/metabolismo , Proteínas de Escherichia coli/genética , Ácidos Grasos Volátiles/metabolismo , Fermentación , Flagelos/genética , Humanos , Concentración de Iones de Hidrógeno , Intestinos/microbiología , Simbiosis
5.
Structure ; 27(3): 476-484.e3, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30612860

RESUMEN

AtaT-AtaR is an enterohemorrhagic Escherichia coli toxin-antitoxin system that modulates cellular growth under stress conditions. AtaT and AtaR act as a toxin and its repressor, respectively. AtaT is a member of the GNAT family, and the dimeric AtaT acetylates the α-amino group of the aminoacyl moiety of methionyl initiator tRNAfMet, thereby inhibiting translation initiation. The crystallographic analysis of the AtaT-AtaR complex revealed that the AtaT-AtaR proteins form a heterohexameric [AtaT-(AtaR4)-AtaT] complex, where two V-shaped AtaR dimers bridge two AtaT molecules. The N-terminal region of AtaR is required for its dimerization, and the C-terminal region of AtaR interacts with AtaT. The two AtaT molecules are spatially separated in the AtaT-AtaR complex. AtaT alone forms a dimer in solution, which is enzymatically active. The present structure, in which AtaR prevents AtaT from forming an active dimer, reveals the molecular basis of the AtaT toxicity repression by the antitoxin AtaR.


Asunto(s)
Antitoxinas/química , Antitoxinas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Acetilación , Escherichia coli Enterohemorrágica/química , Activación Enzimática , Proteínas de Escherichia coli , Modelos Moleculares , Biosíntesis de Proteínas , Conformación Proteica , ARN de Transferencia de Metionina/química , Sistemas Toxina-Antitoxina
6.
Chem Commun (Camb) ; 53(27): 3890-3893, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28319218

RESUMEN

Specific identification of enterohemorrhagic Escherichia coli was achieved using microspheres coated with overoxidized polypyrrole. The microspheres are well dispersed in aqueous media, and they specifically, spontaneously, and efficiently bind E. coli O157:H7 through surface area effects. In addition, we found that light-scattering by a single microsphere depended linearly on the number of bound cells.


Asunto(s)
Escherichia coli Enterohemorrágica/química , Polímeros/química , Pirroles/química , Sitios de Unión , Escherichia coli Enterohemorrágica/citología , Microesferas , Oxidación-Reducción , Tamaño de la Partícula
7.
Sci Rep ; 6: 21837, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26903273

RESUMEN

Shiga toxin 2 (Stx2) is a major virulence factor in infections with Stx-producing Escherichia coli (STEC), which can cause serious clinical complications in humans, such as hemolytic uremic syndrome (HUS). Recently, we screened and identified two peptide-based Stx2 neutralizers, TF-1 and WA-8, which specifically and directly bind to Stx2. Computer simulations suggested that the majority of TF-1 or WA-8 binds tightly at the receptor-binding site 3 of Stx2. The two peptides also effectively inhibited the cytotoxic activity of Stx2 by blocking the binding of Stx2 to target cells. TF-1 exhibits remarkable therapeutic potency in both mice and rat toxicity models. In mice toxicity models, TF-1 provided full protection when mice were injected with 5 LD50 of Stx2. In rat toxicity models, TF-1 reduced fatal tissue damage and completely protected rats from the lethal challenges of Stx2. In these rats, TF-1 significantly decreased the concentration of Stx2 in blood and diminished tissue distribution levels of Stx2. Furthermore, TF-1 effectively protected rats from the pathological effects caused by Stx2, especially in the kidney, thymus, adrenal gland, and lung. Taken together, these results indicate that TF-1 is a promising therapeutic agent against the pathogenicity of Stx2.


Asunto(s)
Antídotos/farmacología , Escherichia coli Enterohemorrágica/química , Péptidos/farmacología , Toxina Shiga II/antagonistas & inhibidores , Factores de Virulencia/antagonistas & inhibidores , Administración Intravenosa , Secuencia de Aminoácidos , Animales , Antídotos/síntesis química , Antídotos/química , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enterohemorrágica/patogenicidad , Femenino , Células HeLa , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Biblioteca de Péptidos , Péptidos/síntesis química , Péptidos/química , Estructura Secundaria de Proteína , Ratas , Ratas Wistar , Proteínas Recombinantes/síntesis química , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Toxina Shiga II/biosíntesis , Toxina Shiga II/química , Toxina Shiga II/toxicidad , Análisis de Supervivencia , Factores de Virulencia/biosíntesis , Factores de Virulencia/química , Factores de Virulencia/toxicidad
8.
J Microbiol Methods ; 119: 233-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26554940

RESUMEN

O157, O26, and O111 are the most important O serogroups of enterohemorrhagic Escherichia coli worldwide. Recently we reported a strategy for discriminating these serotypes from the others using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) based on the S10-spc-alpha operon gene-encoded ribosomal protein mass spectrum (S10-GERMS) method. To realize the fully automated identification of microorganisms at species- or serotype-level with the concept of S10-GERMS method, novel software named Strain Solution for MALDI-TOF MS was developed. In this study, the Strain Solution was evaluated with a total of 45 E. coli isolates including O26, O91, O103, O111, O115, O121, O128, O145, O157, O159, and untyped serotypes. The Strain Solution could accurately discriminate 92% (11/12) of O157 strains, 100% (13/13) of O26 and O111 strains from the others with three biomarkers in an automated manner. In addition, this software could identify 2 different E. coli strains (K-12 as a non-O157 representative and O157) in mixed samples. The results suggest that Strain Solution will be useful for species- or serotype-level classification of microorganisms in the fields of food safety and diagnostics.


Asunto(s)
Automatización/métodos , Técnicas de Tipificación Bacteriana/métodos , Escherichia coli Enterohemorrágica/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Automatización/instrumentación , Técnicas de Tipificación Bacteriana/instrumentación , Escherichia coli Enterohemorrágica/química , Escherichia coli Enterohemorrágica/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Programas Informáticos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación
9.
Jpn J Infect Dis ; 68(3): 216-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25672402

RESUMEN

The biochemical features and virulence gene profiles of 37 enterohemorrhagic Escherichia coli (EHEC) strains belonging to serogroups other than O157 and O26 (non-O157/O26 EHEC) were investigated. All strains were isolated from humans between 2002 and 2013 in the Yamaguchi Prefecture. Serogroup O111 strains were the most common, followed by O103, O121, and O145. Most strains (84%) were negative for sorbose fermentation, whereas only 1 and 2 were negative for sorbitol and rhamnose fermentation, respectively. Two strains lacked ß-D-glucuronidase activity. Shiga toxin (stx) subtyping revealed 6 genotypes:stx1a (n = 20), stx1a + stx2a (n = 8), stx2a (n = 4), stx2b (n = 3), stx2a + stx2c (n = 1), and stx2a + stx2d (n = 1). Polymerase chain reaction screening of other toxin and adherence genes showed that astA, subA, and cdtB were present in 5, 2, and 2 strains, respectively. The intimin gene eae was present in 30 strains (81%). Of the 7 eae-negative strains, saa and eibG were found in 3 and 2 strains, respectively; no adherence factors were detected in the remaining 2 strains. The antimicrobial susceptibility profiles of the strains to 12 drugs were examined and 11 strains (30%) showed resistance to 1 or more drugs. Our results revealed that non-O157/O26 EHEC strains exhibit various biochemical phenotypes and carry several toxins and adherence factor genes.


Asunto(s)
Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Infecciones por Escherichia coli/microbiología , Genes Bacterianos/genética , Factores de Virulencia/genética , Estudios de Cohortes , Escherichia coli Enterohemorrágica/química , Infecciones por Escherichia coli/epidemiología , Humanos , Japón/epidemiología
10.
J Struct Biol ; 182(2): 186-91, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23458689

RESUMEN

Bacteria contain several sophisticated macromolecular machineries responsible for translocating proteins across the cell envelope. One prominent example is the type II secretion system (T2SS), which contains a large outer membrane channel, called the secretin. These gated channels require specialized proteins, so-called pilotins, to reach and assemble in the outer membrane. Here we report the crystal structure of the pilotin GspS from the T2SS of enterohemorrhagic Escherichia coli (EHEC), an important pathogen that can cause severe disease in cases of food poisoning. In this four-helix protein, the straight helix α2, the curved helix α3 and the bent helix α4 surround the central N-terminal helix α1. The helices of GspS create a prominent groove, mainly formed by side chains of helices α1, α2 and α3. In the EHEC GspS structure this groove is occupied by extra electron density which is reminiscent of an α-helix and corresponds well with a binding site observed in a homologous pilotin. The residues forming the groove are well conserved among homologs, pointing to a key role of this groove in this class of T2SS pilotins. At the same time, T2SS pilotins in different species can be entirely different in structure, and the pilotins for secretins in non-T2SS machineries have yet again unrelated folds, despite a common function. It is striking that a common complex function, such as targeting and assembling an outer membrane multimeric channel, can be performed by proteins with entirely different folds.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Sistemas de Secreción Bacterianos/genética , Escherichia coli Enterohemorrágica/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Conformación Proteica , Secuencia de Aminoácidos , Cromatografía en Gel , Clonación Molecular , Cristalización , Datos de Secuencia Molecular
11.
Structure ; 20(7): 1233-43, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22658748

RESUMEN

Intimins and invasins are virulence factors produced by pathogenic Gram-negative bacteria. They contain C-terminal extracellular passenger domains that are involved in adhesion to host cells and N-terminal ß domains that are embedded in the outer membrane. Here, we identify the domain boundaries of an E. coli intimin ß domain and use this information to solve its structure and the ß domain structure of a Y. pseudotuberculosis invasin. Both ß domain structures crystallized as monomers and reveal that the previous range of residues assigned to the ß domain also includes a protease-resistant domain that is part of the passenger. Additionally, we identify 146 nonredundant representative members of the intimin/invasin family based on the boundaries of the highly conserved intimin and invasin ß domains. We then use this set of sequences along with our structural data to find and map the evolutionarily constrained residues within the ß domain.


Asunto(s)
Adhesinas Bacterianas/química , Escherichia coli Enterohemorrágica/química , Proteínas de Escherichia coli/química , Proteínas Recombinantes de Fusión/química , Yersinia pseudotuberculosis/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Secuencia de Aminoácidos , Adhesión Bacteriana , Secuencia Conservada , Cristalografía por Rayos X , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enterohemorrágica/patogenicidad , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Modelos Moleculares , Datos de Secuencia Molecular , Plásmidos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidad
12.
Structure ; 20(4): 707-17, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22483117

RESUMEN

Mucin glycoproteins with large numbers of O-linked glycosylations comprise the mucosal barrier lining the mammalian gastrointestinal tract from mouth to gut. A critical biological function of mucins is to protect the underlying epithelium from infection. Enterohemorrhagic Escherichia coli (EHEC), the mediator of severe food- and water-borne disease, can breach this barrier and adhere to intestinal cells. StcE, a ∼100 kDa metalloprotease secreted by EHEC, plays a pivotal role in remodeling the mucosal lining during infection. To obtain mechanistic insight into its function, we have determined the structure of StcE. Our data reveal a dynamic, multidomain architecture featuring an unusually large substrate-binding cleft and a prominent polarized surface charge distribution highly suggestive of an electrostatic role in substrate targeting. The observation of key conserved motifs in the active site allows us to propose the structural basis for the specific recognition of α-O-glycan-containing substrates. Complementary biochemical analysis provides further insight into its distinct substrate specificity and binding stoichiometry.


Asunto(s)
Adhesión Bacteriana/genética , Escherichia coli Enterohemorrágica/química , Proteínas de Escherichia coli/química , Metaloendopeptidasas/química , Mucinas/química , Adhesión Bacteriana/inmunología , Conformación de Carbohidratos , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli Enterohemorrágica/inmunología , Escherichia coli Enterohemorrágica/metabolismo , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Evasión Inmune , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Modelos Moleculares , Mucinas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , Estereoisomerismo , Especificidad por Sustrato
13.
Artículo en Inglés | MEDLINE | ID: mdl-21206020

RESUMEN

Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is a primarily food-borne bacterial pathogen that is capable of causing life-threatening human infections and poses a serious challenge to public health worldwide. The bacterial outer-membrane protein intimin plays a key role in the initiation process of EHEC infection. In this study, intimin from EHEC O157:H7 (Int188) and its N916Y mutant (IntN916Y) were purified and crystals of both were obtained using the hanging-drop vapour-diffusion method at 291 K. Data were collected from Int188 and IntN916Y crystals to 2.8 and 2.6 Šresolution, respectively. The crystal of Int188 belonged to the orthorhombic space group C2, with unit-cell parameters a=235.16, b=44.81, c=129.12 Å, α=γ=90, ß=97.53°. The crystal of IntN916Y belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=43.78, b=92.49, c=100.05 Å, α=ß=γ=90°.


Asunto(s)
Adhesinas Bacterianas/química , Escherichia coli Enterohemorrágica/química , Proteínas de Escherichia coli/química , Cristalización , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular
14.
J Biol Chem ; 285(42): 32336-42, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20688909

RESUMEN

We present a body of ultrastructural, biochemical, and genetic evidence that demonstrates the oligomerization of virulence-associated autotransporter proteins EspC or EspP produced by deadly human pathogens enterohemorrhagic and enteropathogenic Escherichia coli into novel macroscopic rope-like structures (>1 cm long). The rope-like structures showed high aggregation and insolubility, stability to anionic detergents and high temperature, and binding to Congo Red and thioflavin T dyes. These are properties also exhibited by human amyloidogenic proteins. These macroscopic ropes were not observed in cultures of nonpathogenic Escherichia coli or isogenic espP or espC deletion mutants of enterohemorrhagic or enteropathogenic Escherichia coli but were produced by an Escherichia coli K-12 strain carrying a plasmid expressing espP. Purified recombinant EspP monomers were able to self-assemble into macroscopic ropes upon incubation, suggesting that no other protein was required for assembly. The ropes bound to and showed cytopathic effects on cultured epithelial cells, served as a substratum for bacterial adherence and biofilm formation, and protected bacteria from antimicrobial compounds. We hypothesize that these ropes play a biologically significant role in the survival and pathogenic scheme of these organisms.


Asunto(s)
Adhesión Bacteriana , Escherichia coli Enterohemorrágica , Escherichia coli Enteropatógena , Proteínas de Escherichia coli , Serina Endopeptidasas , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli Enterohemorrágica/química , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/química , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Células HeLa , Humanos , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/ultraestructura
15.
Microbiol Immunol ; 54(7): 371-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20618683

RESUMEN

EHEC is a bacterial pathogen causing diarrhea and hemorrhagic colitis in humans. To exert virulence, EHEC exploits a subset of effectors that are translocated into host cells via the type III secretion system. EspJ, which was recently identified as a type III secreted effector, is conserved in related pathogens such as EPEC and Citrobacter rodentium. However, the exact function of EspJ remains unclear. In the present study, we found that EspJ was unstable in host cells, which might be attributable to the N-terminal part beginning from amino acid number 59. Using stable forms of EspJ derivatives, we demonstrated for the first time that EspJ has the ability to translocate into mitochondria via an atypical mitochondrial targeting signal at the N terminus (1-36 a.a.) of EspJ. It has been reported that a mitochondrial targeting effector, EspF, disrupts the mitochondrial membrane potential, resulting in an induction of host cell death. To further investigate EspJ function in mitochondria, HeLa cells were infected with wild-type EPEC, an isogenic EspJ-mutant or an EspJ-overexpressing strain. The result of LDH release assay using an EspJ-mutant showed that the EspJ effector appears not to be involved in cytotoxicity.


Asunto(s)
Escherichia coli Enterohemorrágica/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Mitocondrias/metabolismo , Señales de Clasificación de Proteína , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Escherichia coli Enterohemorrágica/química , Escherichia coli Enterohemorrágica/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Mitocondrias/genética , Datos de Secuencia Molecular , Transporte de Proteínas
16.
J Biol Chem ; 284(38): 25466-70, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19640838

RESUMEN

The pseudopilus is a key feature of the type 2 secretion system (T2SS) and is made up of multiple pseudopilins that are similar in fold to the type 4 pilins. However, pilins have disulfide bridges, whereas the major pseudopilins of T2SS do not. A key question is therefore how the pseudopilins, and in particular, the most abundant major pseudopilin, GspG, obtain sufficient stability to perform their function. Crystal structures of Vibrio cholerae, Vibrio vulnificus, and enterohemorrhagic Escherichia coli (EHEC) GspG were elucidated, and all show a calcium ion bound at the same site. Conservation of the calcium ligands fully supports the suggestion that calcium ion binding by the major pseudopilin is essential for the T2SS. Functional studies of GspG with mutated calcium ion-coordinating ligands were performed to investigate this hypothesis and show that in vivo protease secretion by the T2SS is severely impaired. Taking all evidence together, this allows the conclusion that, in complete contrast to the situation in the type 4 pili system homologs, in the T2SS, the major protein component of the central pseudopilus is dependent on calcium ions for activity.


Asunto(s)
Calcio/química , Escherichia coli Enterohemorrágica/química , Proteínas Fimbrias/química , Vibrio cholerae/química , Transporte Biológico/fisiología , Calcio/metabolismo , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Ligandos , Mutación , Unión Proteica/fisiología , Estabilidad Proteica , Estructura Terciaria de Proteína/fisiología , Homología Estructural de Proteína , Relación Estructura-Actividad , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
17.
Nature ; 454(7207): 1009-13, 2008 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-18650809

RESUMEN

During infection, enterohaemorrhagic Escherichia coli (EHEC) takes over the actin cytoskeleton of eukaryotic cells by injecting the EspF(U) protein into the host cytoplasm. EspF(U) controls actin by activating members of the Wiskott-Aldrich syndrome protein (WASP) family. Here we show that EspF(U) binds to the autoinhibitory GTPase binding domain (GBD) in WASP proteins and displaces it from the activity-bearing VCA domain (for verprolin homology, central hydrophobic and acidic regions). This interaction potently activates WASP and neural (N)-WASP in vitro and induces localized actin assembly in cells. In the solution structure of the GBD-EspF(U) complex, EspF(U) forms an amphipathic helix that binds the GBD, mimicking interactions of the VCA domain in autoinhibited WASP. Thus, EspF(U) activates WASP by competing directly for the VCA binding site on the GBD. This mechanism is distinct from that used by the eukaryotic activators Cdc42 and SH2 domains, which globally destabilize the GBD fold to release the VCA. Such diversity of mechanism in WASP proteins is distinct from other multimodular systems, and may result from the intrinsically unstructured nature of the isolated GBD and VCA elements. The structural incompatibility of the GBD complexes with EspF(U) and Cdc42/SH2, plus high-affinity EspF(U) binding, enable EHEC to hijack the eukaryotic cytoskeletal machinery effectively.


Asunto(s)
Proteínas Portadoras/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Células Cultivadas , Escherichia coli Enterohemorrágica/química , Escherichia coli Enterohemorrágica/genética , Proteínas de Escherichia coli/química , Fibroblastos/citología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
18.
Protein Sci ; 16(12): 2677-83, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18029421

RESUMEN

The translocated intimin receptor (TIR) of enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) is required for EPEC and EHEC infections, which cause widespread illness across the globe. TIR is translocated via a type-III secretion system into the intestinal epithelial cell membrane, where it serves as an anchor for E. coli attachment via its binding partner intimin. While many aspects of EPEC and EHEC infection are now well understood, the importance of the intermolecular contacts made between intimin and TIR have not been thoroughly investigated. Herein we report site-directed mutagenesis studies on the intimin-binding domain of EPEC TIR, and how these mutations affect TIR-intimin association, as analyzed by isothermal titration calorimetry and circular dichroism. These results show how two factors govern TIR's binding to intimin: A three-residue TIR hot spot is identified that largely mediates the interaction, and mutants that alter the beta-hairpin structure of TIR severely diminish binding affinity. In addition, peptides incorporating key TIR residues identified by mutagenesis are incapable of binding intimin. These results indicate that hot spot residues and structural orientation/preorganization are required for EPEC, and likely EHEC, TIR-intimin binding.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Mutantes/metabolismo , Receptores de Superficie Celular/metabolismo , Adhesinas Bacterianas/química , Adhesión Bacteriana , Sitios de Unión , Escherichia coli Enterohemorrágica/química , Escherichia coli Enteropatógena/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Proteínas Mutantes/química , Conformación Proteica , Receptores de Superficie Celular/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...