Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731855

RESUMEN

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Asunto(s)
Esfingomielina Fosfodiesterasa , Canales Catiónicos TRPM , beta-Ciclodextrinas , Animales , Humanos , Ratones , Analgésicos/farmacología , Analgésicos/uso terapéutico , beta-Ciclodextrinas/farmacología , Supervivencia Celular/efectos de los fármacos , Células CHO , Colesterol/metabolismo , Cricetulus , Modelos Animales de Enfermedad , Células HEK293 , Microdominios de Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Dolor/metabolismo , Pregnenolona/farmacología , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Pirimidinonas/farmacología
2.
Bioconjug Chem ; 34(6): 1037-1044, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37204067

RESUMEN

Sphingomyelinase (SMase), a hydrolase of sphingomyelin (SM) enriched in the outer leaflet of the plasma membrane of mammalian cells, is closely associated with the onset and development of many diseases, but the specific mechanisms of SMase on the cell structure, function, and behavior are not yet fully understood due to the complexity of the cell structure. Artificial cells are minimal biological systems constructed from various molecular components designed to mimic cellular processes, behaviors, and structures, which are excellent models for studying biochemical reactions and dynamic changes in cell membranes. In this work, we presented an artificial cell model that mimics the lipid composition and content of the outer leaflet of mammalian plasma membranes for studying the effect of SMase on cell behavior. The results confirmed that the artificial cells can respond to SM degradation by producing ceramides that enrich and alter the membrane charge and permeability, thus inducing the budding and fission of the artificial cells. Thus, the artificial cells developed here provide a powerful tool to study the mechanism of action of cell membrane lipids on cell biological behavior, paving the way for further molecular mechanism studies.


Asunto(s)
Células Artificiales , Esfingomielinas , Animales , Esfingomielinas/análisis , Esfingomielinas/metabolismo , Esfingomielinas/farmacología , Ceramidas/química , Ceramidas/metabolismo , Ceramidas/farmacología , Membrana Celular/metabolismo , Esfingomielina Fosfodiesterasa/química , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Mamíferos/metabolismo
3.
Mol Ther ; 31(7): 2169-2187, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37211762

RESUMEN

Hypertrophic lysosomes are critical for tumor progression and drug resistance; however, effective and specific lysosome-targeting compounds for cancer therapy are lacking. Here we conducted a lysosomotropic pharmacophore-based in silico screen in a natural product library (2,212 compounds), and identified polyphyllin D (PD) as a novel lysosome-targeted compound. PD treatment was found to cause lysosomal damage, as evidenced by the blockade of autophagic flux, loss of lysophagy, and the release of lysosomal contents, thus exhibiting anticancer effects on hepatocellular carcinoma (HCC) cell both in vitro and in vivo. Closer mechanistic examination revealed that PD suppressed the activity of acid sphingomyelinase (SMPD1), a lysosomal phosphodieserase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine, by directly occupying its surface groove, with Trp148 in SMPD1 acting as a major binding residue; this suppression of SMPD1 activity irreversibly triggers lysosomal injury and initiates lysosome-dependent cell death. Furthermore, PD-enhanced lysosomal membrane permeabilization to release sorafenib, augmenting the anticancer effect of sorafenib both in vivo and in vitro. Overall, our study suggests that PD can potentially be further developed as a novel autophagy inhibitor, and a combination of PD with classical chemotherapeutic anticancer drugs could represent a novel therapeutic strategy for HCC intervention.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Esfingomielina Fosfodiesterasa/farmacología , Neoplasias Hepáticas/metabolismo , Lisosomas/metabolismo , Autofagia , Resistencia a Medicamentos , Punciones
4.
Clin Transl Med ; 13(3): e1229, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36959764

RESUMEN

BACKGROUND: T cell malignancies proliferate vigorously, are highly dependent on lysosomal function, with limited therapeutic options. Deregulation of lysosomal structure and function has been confirmed to be a key role in the treatment of hematologic malignant disease. METHODS: Cell counting kit 8 and Annexin V/PI staining were used to assess the cell viability and apoptosis rate. Flow cytometry, liquid chromatography mass spectrometry, immunofluorescence and western blot were performed to detect the effect on lysosomes. Drug affinity responsive target stability, molecular docking and cellular thermal shift assay were employed to confirm the target protein of V8 on lysosomes. A xenograft model was constructed in NOD/SCID mice to assess the effect and mechanism. RESULTS: V8, a new lysosomotropic compound, could be rapidly trapped by lysosomes and accumulation in lysosomes, contributing to lysosomal-dependent cell death by evoking lysosomal membrane permeabilization (LMP), accompanied with disrupted lysosome and autophagic flux. Mechanistically, heat shock protein 70 (HSP70) was identified as the binding target of V8 in lysosome. As a downstream effect of targeting HSP70, enzymatic activity of acid sphingomyelinase (ASM) was inhibited, which induced disturbance of lipid metabolism, instability of lysosomal membrane, and leakage of cathepsin B and D, leading to LMP-mediated cell death. In vivo study showed V8 well controlled the growth of the tumour and confirmed lysosomal cell death induced by V8. CONCLUSIONS: Collectively, this study suggests targeting lysosomal HSP70-ASM axis by V8 illustrates the great value of drug therapy for T cell malignancies and the unlimited potential of lysosomal targeting for cancer therapy.


Asunto(s)
Neoplasias , Esfingomielina Fosfodiesterasa , Ratones , Animales , Humanos , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Metabolismo de los Lípidos , Simulación del Acoplamiento Molecular , Ratones Endogámicos NOD , Ratones SCID , Linfocitos T/metabolismo , Muerte Celular , Neoplasias/patología , Lisosomas/metabolismo
5.
Cardiovasc Diabetol ; 22(1): 25, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732747

RESUMEN

BACKGROUND: Increased acid sphingomyelinase (ASMase) activity is associated with insulin resistance and cardiac dysfunction. However, the effects of ASMase on diabetic cardiomyopathy (DCM) and the molecular mechanism(s) underlying remain to be elucidated. We here investigated whether ASMase caused DCM through NADPH oxidase 4-mediated apoptosis. METHODS AND RESULTS: We used pharmacological and genetic approaches coupled with study of murine and cell line samples to reveal the mechanisms initiated by ASMase in diabetic hearts. The protein expression and activity of ASMase were upregulated, meanwhile ceramide accumulation was increased in the myocardium of HFD mice. Inhibition of ASMase with imipramine (20 mg Kg-1 d-1) or siRNA reduced cardiomyocyte apoptosis, fibrosis, and mitigated cardiac hypertrophy and cardiac dysfunction in HFD mice. The similar effects were observed in cardiomyocytes treated with high glucose (HG, 30 mmol L-1) + palmitic acid (PA, 100 µmol L-1) or C16 ceramide (CER, 20 µmol L-1). Interestingly, the cardioprotective effect of ASMase inhibition was not accompanied by reduced ceramide accumulation, indicating a ceramide-independent manner. The mechanism may involve activated NADPH oxidase 4 (NOX4), increased ROS generation and triggered apoptosis. Suppression of NOX4 with apocynin prevented HG + PA and CER incubation induced Nppb and Myh7 pro-hypertrophic gene expression, ROS production and apoptosis in H9c2 cells. Furthermore, cardiomyocyte-specific ASMase knockout (ASMaseMyh6KO) restored HFD-induced cardiac dysfunction, remodeling, and apoptosis, whereas NOX4 protein expression was downregulated. CONCLUSIONS: These results demonstrated that HFD-mediated activation of cardiomyocyte ASMase could increase NOX4 expression, which may stimulate oxidative stress, apoptosis, and then cause metabolic cardiomyopathy.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Ratones , Animales , NADPH Oxidasa 4/genética , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Especies Reactivas de Oxígeno/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/prevención & control , Ceramidas/farmacología , Ceramidas/metabolismo , Miocitos Cardíacos/metabolismo , Apoptosis , NADPH Oxidasas
6.
J Invest Dermatol ; 143(7): 1279-1288.e9, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36708950

RESUMEN

Although effective in treating actinic damage, topical photodynamic therapy (PDT) has been shown to be immunosuppressive through unknown mechanisms, which could potentially limit its effectiveness. Multiple types of environmental stressors, including PDT, can produce the immunosuppressive lipid mediator platelet-activating factor (PAF). Because PAF can produce subcellular microvesicle particles (MVPs), these studies tested whether PDT can generate PAF and MVP release and whether these are involved in PDT-induced immunosuppression. Previously, topical PDT using blue light and 5-aminolevulinic acid was found to be a potent stimulus for PAF production in mice and human skin explants and human patients, and we show that experimental PDT also generates high levels of MVP. PDT-generated MVPs were independent of the PAF receptor but were dependent on the MVP-generating enzyme acid sphingomyelinase. Patients undergoing topical PDT treatment to at least 10% of body surface area showed local and systemic immunosuppression as measured by inhibition of delayed-type hypersensitivity reactions. Finally, using a murine model of contact hypersensitivity, PDT immunosuppression was blocked by genetic and pharmacologic inhibition of acid sphingomyelinase and genetic inhibition of PAF receptor signaling. These studies describe a mechanism involving MVP through which PDT exerts immunomodulatory effects, providing a potential target to improve its effectiveness.


Asunto(s)
Fotoquimioterapia , Esfingomielina Fosfodiesterasa , Humanos , Ratones , Animales , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Piel/metabolismo , Ácido Aminolevulínico , Tolerancia Inmunológica , Inmunosupresores/farmacología , Fármacos Fotosensibilizantes
7.
Cell Biochem Funct ; 41(2): 189-201, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36540015

RESUMEN

The administration of intermittent parathyroid hormone (iPTH) is anabolic to the skeleton. Recent studies with cultured osteoblasts have revealed that the expression of PHOSPHO1, a bone-specific phosphatase essential for the initiation of mineralisation, is regulated by PTH. Therefore, this study sought to determine whether the bone anabolic response to iPTH involves modulation of expression of Phospho1 and of other enzymes critical for bone matrix mineralisation. To mimic iPTH treatment, primary murine osteoblasts were challenged with 50 nM PTH for 6 h in every 48 h period for 8 days (4 cycles), 14 days (7 cycles) and 20 days (10 cycles) in total. The expression of both Phospho1 and Smpd3 was almost completely inhibited after 4 cycles, whereas 10 cycles were required to stimulate a similar response in Alpl expression. To explore the in vivo role of PHOSPHO1 in PTH-mediated osteogenesis, the effects of 14- and 28-day iPTH (80 µg/kg/day) administration was assessed in male wild-type (WT) and Phospho1-/- mice. The expression of Phospho1, Alpl, Smpd3, Enpp1, Runx2 and Trps1 expression was enhanced in the femora of WT mice following iPTH administration but remained unchanged in the femora of Phospho1-/- mice. After 28 days of iPTH administration, the anabolic response in the femora of WT was greater than that noted in Phospho1-/- mice. Specifically, cortical and trabecular bone volume/total volume, as well as cortical thickness, were increased in femora of iPTH-treated WT but not in iPTH-treated Phospho1-/- mice. Trabecular bone osteoblast number was also increased in iPTH-treated WT mice but not in iPTH-treated Phospho1-/-  mice. The increased levels of Phospho1, Alpl, Enpp1 and Smpd3 in WT mice in response to iPTH administration is consistent with their contribution to the potent anabolic properties of iPTH in bone. Furthermore, as the anabolic response to iPTH was attenuated in mice deficient in PHOSPHO1, this suggests that the osteoanabolic effects of iPTH are at least partly mediated via bone mineralisation processes.


Asunto(s)
Fosfatasa Alcalina , Hormona Paratiroidea , Masculino , Ratones , Animales , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/farmacología , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/farmacología , Huesos/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Densidad Ósea , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Monoéster Fosfórico Hidrolasas/metabolismo
8.
J Cachexia Sarcopenia Muscle ; 13(5): 2551-2561, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852046

RESUMEN

BACKGROUND: Activation of sphingomyelinase (SMase) as a result of a general inflammatory response has been implicated as a mechanism underlying disease-related loss of skeletal muscle mass and function in several clinical conditions including heart failure. Here, for the first time, we characterize the effects of SMase activity on human muscle fibre contractile function and assess skeletal muscle SMase activity in heart failure patients. METHODS: The effects of SMase on force production and intracellular Ca2+ handling were investigated in single intact human muscle fibres. Additional mechanistic studies were performed in single mouse toe muscle fibres. RNA sequencing was performed in human muscle bundles exposed to SMase. Intramuscular SMase activity was measured from heart failure patients (n = 61, age 69 ± 0.8 years, NYHA III-IV, ejection fraction 25 ± 1.0%, peak VO2 14.4 ± 0.6 mL × kg × min) and healthy age-matched control subjects (n = 10, age 71 ± 2.2 years, ejection fraction 60 ± 1.2%, peak VO2 25.8 ± 1.1 mL × kg × min). SMase activity was related to circulatory factors known to be associated with progression and disease severity in heart failure. RESULTS: Sphingomyelinase reduced muscle fibre force production (-30%, P < 0.05) by impairing sarcoplasmic reticulum (SR) Ca2+ release (P < 0.05) and reducing myofibrillar Ca2+ sensitivity. In human muscle bundles exposed to SMase, RNA sequencing analysis revealed 180 and 291 genes as up-regulated and down-regulated, respectively, at a FDR of 1%. Gene-set enrichment analysis identified 'proteasome degradation' as an up-regulated pathway (average fold-change 1.1, P = 0.008), while the pathway 'cytoplasmic ribosomal proteins' (average fold-change 0.8, P < 0.0001) and factors involving proliferation of muscle cells (average fold-change 0.8, P = 0.0002) where identified as down-regulated. Intramuscular SMase activity was ~20% higher (P < 0.05) in human heart failure patients than in age-matched healthy controls and was positively correlated with markers of disease severity and progression, and with several circulating inflammatory proteins, including TNF-receptor 1 and 2. In a longitudinal cohort of heart failure patients (n = 6, mean follow-up time 2.5 ± 0.2 years), SMase activity was demonstrated to increase by 30% (P < 0.05) with duration of disease. CONCLUSIONS: The present findings implicate activation of skeletal muscle SMase as a mechanism underlying human heart failure-related loss of muscle mass and function. Moreover, our findings strengthen the idea that SMase activation may underpin disease-related loss of muscle mass and function in other clinical conditions, acting as a common patophysiological mechanism for the myopathy often reported in diseases associated with a systemic inflammatory response.


Asunto(s)
Insuficiencia Cardíaca , Esfingomielina Fosfodiesterasa , Anciano , Animales , Atrofia/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/farmacología , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/farmacología
9.
Clin Sci (Lond) ; 135(3): 515-534, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33479769

RESUMEN

In chronic kidney disease (CKD), hyperphosphatemia is a key factor promoting medial vascular calcification, a common complication associated with cardiovascular events and high mortality. Vascular calcification involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs), but the complex signaling events inducing pro-calcific pathways are incompletely understood. The present study investigated the role of acid sphingomyelinase (ASM)/ceramide as regulator of VSMC calcification. In vitro, both, bacterial sphingomyelinase and phosphate increased ceramide levels in VSMCs. Bacterial sphingomyelinase as well as ceramide supplementation stimulated osteo-/chondrogenic transdifferentiation during control and high phosphate conditions and augmented phosphate-induced calcification of VSMCs. Silencing of serum- and glucocorticoid-inducible kinase 1 (SGK1) blunted the pro-calcific effects of bacterial sphingomyelinase or ceramide. Asm deficiency blunted vascular calcification in a cholecalciferol-overload mouse model and ex vivo isolated-perfused arteries. In addition, Asm deficiency suppressed phosphate-induced osteo-/chondrogenic signaling and calcification of cultured VSMCs. Treatment with the functional ASM inhibitors amitriptyline or fendiline strongly blunted pro-calcific signaling pathways in vitro and in vivo. In conclusion, ASM/ceramide is a critical upstream regulator of vascular calcification, at least partly, through SGK1-dependent signaling. Thus, ASM inhibition by repurposing functional ASM inhibitors to reduce the progression of vascular calcification during CKD warrants further study.


Asunto(s)
Transdiferenciación Celular , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Calcificación Vascular/patología , Amitriptilina/farmacología , Animales , Células Cultivadas , Ceramidas/metabolismo , Condrogénesis/efectos de los fármacos , Fendilina/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Fosfatos/farmacología
10.
J Med Chem ; 63(11): 6028-6056, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32298582

RESUMEN

Neutral sphingomyelinase 2 (nSMase2) catalyzes the cleavage of sphingomyelin to phosphorylcholine and ceramide, an essential step in the formation and release of exosomes from cells that is critical for intracellular communication. Chronic increase of brain nSMase2 activity and related exosome release have been implicated in various pathological processes, including the progression of Alzheimer's disease (AD), making nSMase2 a viable therapeutic target. Recently, we identified phenyl (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)carbamate 1 (PDDC), the first nSMase2 inhibitor that possesses both favorable pharmacodynamics and pharmacokinetic (PK) parameters, including substantial oral bioavailability, brain penetration, and significant inhibition of exosome release from the brain in vivo. Herein we demonstrate the efficacy of 1 (PDDC) in a mouse model of AD and detail extensive structure-activity relationship (SAR) studies with 70 analogues, unveiling several that exert similar or higher activity against nSMase2 with favorable pharmacokinetic properties.


Asunto(s)
Inhibidores Enzimáticos/química , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Exosomas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Piridazinas/química , Piridazinas/metabolismo , Piridazinas/uso terapéutico , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Relación Estructura-Actividad
11.
Biochimie ; 162: 88-96, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30980844

RESUMEN

Glucose is a preferred metabolite in most mammalian cells, and proper regulation of uptake is critical for organism homeostasis. The glucose transporter 1 (GLUT1) is responsible for glucose uptake in a wide variety of cells and appears to be regulated in a tissue specific manner. Therefore, a better understanding of GLUT1 regulation within its various cellular environments is essential for developing therapeutic strategies to treat disorders associated with glucose homeostasis. Previous findings suggest that plasma membrane subdomains called lipid rafts may play a role in regulation of GLUT1 uptake activity. While studying this phenomenon in L929 mouse fibroblast cells, we observed that GLUT1 associates with a low density lipid microdomain distinct from traditionally-defined lipid rafts. These structures are not altered by cholesterol removal with methyl-ß-cyclodextrin and lack resistance to cold Triton X-100 extraction. Our data indicate that the GLUT1-containing membrane microdomains in L929 cells, as well as GLUT1's basal activity, are instead sphingolipid-dependent, being sensitive to both myriocin and sphingomyelinase treatment. These microdomains appear to be organized primarily by their lipid composition, as disruption of the actin cytoskeleton or microtubules does not alter the association of GLUT1 with them. Furthermore, the association of GLUT1 with these microdomains appears not to require palmitoylation or glycosylation, as pharmacologic inhibition of these processes had no impact on GLUT1 density in membrane fractions. Importantly, we find no evidence that GLUT1 is actively translocated into or out of low density membrane fractions in response to acute activation in L929 cell.


Asunto(s)
Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Microdominios de Membrana/metabolismo , Animales , Transporte Biológico , Línea Celular , Ácidos Grasos Monoinsaturados/farmacología , Fibroblastos/metabolismo , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Lípidos de la Membrana/análisis , Ratones , Octoxinol/farmacología , Esfingomielina Fosfodiesterasa/farmacología , beta-Ciclodextrinas/farmacología
12.
Acta Neuropathol Commun ; 6(1): 131, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30497524

RESUMEN

Exposure to the ß-amyloid peptide (Aß) is toxic to neurons and other cell types, but the mechanism(s) involved are still unresolved. Synthetic Aß oligomers can induce ion-permeable pores in synthetic membranes, but whether this ability to damage membranes plays a role in the ability of Aß oligomers to induce tau hyperphosphorylation, or other disease-relevant pathological changes, is unclear. To examine the cellular responses to Aß exposure independent of possible receptor interactions, we have developed an in vivo C. elegans model that allows us to visualize these cellular responses in living animals. We find that feeding C. elegans E. coli expressing human Aß induces a membrane repair response similar to that induced by exposure to the CRY5B, a known pore-forming toxin produced by B. thuringensis. This repair response does not occur when C. elegans is exposed to an Aß Gly37Leu variant, which we have previously shown to be incapable of inducing tau phosphorylation in hippocampal neurons. The repair response is also blocked by loss of calpain function, and is altered by loss-of-function mutations in the C. elegans orthologs of BIN1 and PICALM, well-established risk genes for late onset Alzheimer's disease. To investigate the role of membrane repair on tau phosphorylation directly, we exposed hippocampal neurons to streptolysin O (SLO), a pore-forming toxin that induces a well-characterized membrane repair response. We find that SLO induces tau hyperphosphorylation, which is blocked by calpain inhibition. Finally, we use a novel biarsenical dye-tagging approach to show that the Gly37Leu substitution interferes with Aß multimerization and thus the formation of potentially pore-forming oligomers. We propose that Aß-induced tau hyperphosphorylation may be a downstream consequence of induction of a membrane repair process.


Asunto(s)
Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/toxicidad , Endosomas/efectos de los fármacos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/toxicidad , Acrilatos/farmacología , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/toxicidad , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Embrión de Mamíferos , Endosomas/metabolismo , Endotoxinas/toxicidad , Inhibidores Enzimáticos/farmacología , Proteínas Hemolisinas/toxicidad , Hipocampo/citología , Humanos , Intestinos/citología , Intestinos/efectos de los fármacos , Modelos Animales , Morfolinos/farmacología , Fragmentos de Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Esfingomielina Fosfodiesterasa/farmacología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Cicatrización de Heridas/efectos de los fármacos
13.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29070689

RESUMEN

Rubella virus (RuV) causes a systemic infection, and transplacental fetal infection causes congenital rubella syndrome. In this study, we showed that treatment of cells with sphingomyelinase inhibited RuV infection. Assays using inhibitors of serine palmitoyl transferase and ceramide transport protein demonstrated the contribution of sphingomyelin (SM) to RuV infection. Compelling evidence for direct binding of RuV to lipid membranes at neutral pH was obtained using liposome coflotation assays. The absence of either SM or cholesterol (Chol) abrogated the RuV-liposome interaction. SM and Chol (SM/Chol) were also critical for RuV binding to erythrocytes and lymphoid cells. Removal of Ca2+ from the assay buffer or mutation of RuV envelope E1 protein Ca2+-binding sites abrogated RuV binding to liposomes, erythrocytes, and lymphoid cells. However, RuV bound to various nonlymphoid adherent cell lines independently of extracellular Ca2+ or SM/Chol. Even in these adherent cell lines, both the E1 protein Ca2+-binding sites and cellular SM/Chol were essential for the early stage of RuV infection, possibly affecting envelope-membrane fusion in acidic compartments. Myelin oligodendrocyte glycoprotein (MOG) has recently been identified as a cellular receptor for RuV. However, RuV bound to MOG-negative cells in a Ca2+-independent manner. Collectively, our data demonstrate that RuV has two distinct binding mechanisms: one is Ca2+ dependent and the other is Ca2+ independent. Ca2+-dependent binding observed in lymphoid cells occurs by the direct interaction between E1 protein fusion loops and SM/Chol-enriched membranes. Clarification of the mechanism of Ca2+-independent RuV binding is an important next step in understanding the pathology of RuV infection.IMPORTANCE Rubella has a significant impact on public health as infection during early pregnancy can result in babies being born with congenital rubella syndrome. Even though effective rubella vaccines are available, rubella outbreaks still occur in many countries. We studied the entry mechanism of rubella virus (RuV) and found that RuV binds directly to the host plasma membrane in the presence of Ca2+ at neutral pH. This Ca2+-dependent binding is specifically directed to membranes enriched in sphingomyelin and cholesterol and is critical for RuV infection. Importantly, RuV also binds to many cell lines in a Ca2+-independent manner. An unidentified RuV receptor(s) is involved in this Ca2+-independent binding. We believe that the data presented here may aid the development of the first anti-RuV drug.


Asunto(s)
Calcio/metabolismo , Colesterol/metabolismo , Virus de la Rubéola/fisiología , Rubéola (Sarampión Alemán)/metabolismo , Esfingomielinas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Sitios de Unión , Línea Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Mutación , Glicoproteína Mielina-Oligodendrócito/metabolismo , Rubéola (Sarampión Alemán)/prevención & control , Virus de la Rubéola/efectos de los fármacos , Esfingomielina Fosfodiesterasa/farmacología , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Internalización del Virus/efectos de los fármacos
14.
Mol Ther ; 25(7): 1686-1696, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28606376

RESUMEN

Acid sphingomyelinase deficiency in type B Niemann-Pick disease leads to lysosomal sphingomyelin storage, principally affecting lungs, liver, and spleen. Infused recombinant enzyme is beneficial, yet its delivery to the lungs is limited and requires higher dosing than liver and spleen, leading to potentially adverse reactions. Previous studies showed increased enzyme pulmonary uptake by nanocarriers targeted to ICAM-1, a protein overexpressed during inflammation. Here, using polystyrene and poly(lactic-co-glycolic acid) nanocarriers, we optimized lung delivery by varying enzyme dose and nanocarrier concentration, verified endocytosis and lysosomal trafficking in vivo, and evaluated delivered activity and effects. Raising the enzyme load of nanocarriers progressively increased absolute enzyme delivery to all lung, liver, and spleen, over the naked enzyme. Varying nanocarrier concentration inversely impacted lung versus liver and spleen uptake. Mouse intravital and postmortem examination verified endocytosis, transcytosis, and lysosomal trafficking using nanocarriers. Compared to naked enzyme, nanocarriers increased enzyme activity in organs and reduced lung sphingomyelin storage and macrophage infiltration. Although old mice with advanced disease showed reactivity (pulmonary leukocyte infiltration) to injections, including buffer without carriers, antibody, or enzyme, younger mice with mild disease did not. We conclude that anti-ICAM nanocarriers may result in effective lung enzyme therapy using low enzyme doses.


Asunto(s)
Anticuerpos Monoclonales/química , Portadores de Fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Nanopartículas/química , Enfermedad de Niemann-Pick Tipo B/terapia , Esfingomielina Fosfodiesterasa/farmacología , Animales , Anticuerpos Monoclonales/metabolismo , Transporte Biológico , Composición de Medicamentos , Endocitosis , Humanos , Molécula 1 de Adhesión Intercelular/genética , Ácido Láctico/química , Ácido Láctico/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/enzimología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Nanopartículas/administración & dosificación , Enfermedad de Niemann-Pick Tipo B/enzimología , Enfermedad de Niemann-Pick Tipo B/genética , Enfermedad de Niemann-Pick Tipo B/patología , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Poliestirenos/química , Poliestirenos/metabolismo , Esfingomielina Fosfodiesterasa/química , Esfingomielina Fosfodiesterasa/deficiencia , Esfingomielinas/metabolismo , Bazo/efectos de los fármacos , Bazo/enzimología , Bazo/patología
15.
Sci Rep ; 7(1): 2931, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592822

RESUMEN

Sphingomyelinase C (SMase) inhibits CFTR chloride channel activity in multiple cell systems, an effect that could exacerbate disease in CF and COPD patients. The mechanism by which sphingomyelin catalysis inhibits CFTR is not known but evidence suggests that it occurs independently of CFTR's regulatory "R" domain. In this study we utilized the Xenopus oocyte expression system to shed light on how CFTR channel activity is reduced by SMase. We found that the pathway leading to inhibition is not membrane delimited and that inhibited CFTR channels remain at the cell membrane, indicative of a novel silencing mechanism. Consistent with an effect on CFTR gating behavior, we found that altering gating kinetics influenced the sensitivity to inhibition by SMase. Specifically, increasing channel activity by introducing the mutation K1250A or pretreating with the CFTR potentiator VX-770 (Ivacaftor) imparted resistance to inhibition. In primary bronchial epithelial cells, we found that basolateral, but not apical, application of SMase leads to a redistribution of sphingomyelin and a reduction in forskolin- and VX-770-stimulated currents. Taken together, these data suggest that SMase inhibits CFTR channel function by locking channels into a closed state and that endogenous CFTR in HBEs is affected by SMase activity.


Asunto(s)
Proteínas Bacterianas/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/farmacología , Animales , Proteínas Bacterianas/química , Catálisis , Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Activación Enzimática , Humanos , Potenciales de la Membrana , Modelos Moleculares , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Unión Proteica , Conformación Proteica , Esfingomielina Fosfodiesterasa/química , Staphylococcus aureus/enzimología
16.
Thorax ; 72(5): 460-471, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27701117

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is frequently observed in patients with acute respiratory distress syndrome (ARDS) and it is associated with an increased risk of mortality. Both acid sphingomyelinase (aSMase) activity and interleukin 6 (IL-6) levels are increased in patients with sepsis and correlate with worst outcomes, but their role in pulmonary vascular dysfunction pathogenesis has not yet been elucidated. Therefore, the aim of this study was to determine the potential contribution of aSMase and IL-6 in the pulmonary vascular dysfunction induced by lipopolysaccharide (LPS). METHODS: Rat or human pulmonary arteries (PAs) or their cultured smooth muscle cells (SMCs) were exposed to LPS, SMase or IL-6 in the absence or presence of a range of pharmacological inhibitors. The effects of aSMase inhibition in vivo with D609 on pulmonary arterial pressure and inflammation were assessed following intratracheal administration of LPS. RESULTS: LPS increased ceramide and IL-6 production in rat pulmonary artery smooth muscle cells (PASMCs) and inhibited pulmonary vasoconstriction induced by phenylephrine or hypoxia (HPV), induced endothelial dysfunction and potentiated the contractile responses to serotonin. Exogenous SMase and IL-6 mimicked the effects of LPS on endothelial dysfunction, HPV failure and hyperresponsiveness to serotonin in PA; whereas blockade of aSMase or IL-6 prevented LPS-induced effects. Finally, administration of the aSMase inhibitor D609 limited the development of endotoxin-induced PH and ventilation-perfusion mismatch. The protective effects of D609 were validated in isolated human PAs. CONCLUSIONS: Our data indicate that aSMase and IL-6 are not simply biomarkers of poor outcomes but pathogenic mediators of pulmonary vascular dysfunction in ARDS secondary to Gram-negative infections.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacología , Arteria Pulmonar/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Animales , Hidrocarburos Aromáticos con Puentes/farmacología , Células Cultivadas , Ceramidasas/metabolismo , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Interleucina-1beta/metabolismo , Lipopolisacáridos , Masculino , Músculo Liso Vascular/citología , Norbornanos , Ratas , Ratas Wistar , Tiocarbamatos , Tionas/farmacología , Vasoconstricción/efectos de los fármacos
17.
Eur Rev Med Pharmacol Sci ; 19(11): 2076-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26125272

RESUMEN

OBJECTIVE: Ovarian cancer is the sixth most common cancer and the main cause of death in women. However, the molecular mechanism for the cause of the ovarian cancer has not been fully elucidated. Acid sphingomyelinase (ASM), a lipid hydrolase, has been suggested for treating cancer and may affect the development of ovarian cancer. We want to find the function of ASM in the development of ovarian cancer. PATIENTS AND METHODS: Human ovarian cancer cells HO 8910 (HOCC) and human primary ovarian cells (HPOC) were transfected with ASM gene and ASM RNAi. Real-time qPCR and western blot analysis was carried out to examine the level of ASM. The growth rate of transfected and non-transfected cells was measured. Ovarian biopsies were collected from 80 ovarian cancer patients and 20 healthy subjects. RESULTS: The growth rate of HOCC and HPOC was decreased by 22% and 19% in the ASM-transfected group compared with non-transfected group. Inversely, the growth rate of HOCC and HPOC was increased by 16% and 35% in the ASM-RNAi-transfected group compared with non-transfected group. In the transfected and non-transfected cells, the change level of SAM was approved by Real-time qPCR and western blot analysis. The levels of SAM were reducing with the development of ovarian cancer. CONCLUSIONS: SAM is higher expressed in normal cell than that in ovarian cancer, and can be a negative biomarker for the diagnosis of ovarian cancer. SAM can be developed a new drug for the ovarian cancer therapy.


Asunto(s)
Biomarcadores , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Esfingomielina Fosfodiesterasa/genética , Adulto , Secuencia de Bases , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/tratamiento farmacológico , Interferencia de ARN , Esfingomielina Fosfodiesterasa/análisis , Esfingomielina Fosfodiesterasa/farmacología , Transfección
18.
Neuroscience ; 295: 117-25, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25813703

RESUMEN

Sphingomyelin derivatives like sphingosine have been shown to enhance secretion in a variety of systems, including neuroendocrine and neuronal cells. By studying the mechanisms underlying this effect, we demonstrate here that sphingomyelin rafts co-localize strongly with synaptosomal-associated protein of 25Kda (SNAP-25) clusters in cultured bovine chromaffin cells and that they appear to be linked in a dynamic manner. In functional terms, when cultured rat chromaffin cells are treated with sphingomyelinase (SMase), producing sphingomyelin derivatives, the secretion elicited by repetitive depolarizations is enhanced. This increase was independent of cell size and it was significant 15min after initiating stimulation. Interestingly, by evaluating the membrane capacitance we found that the events in control untreated cells corresponded to two populations of microvesicles and granules, and the fusion of both these populations is clearly enhanced after treatment with SMase. Furthermore, SMase does not increase the size of chromaffin granules. Together, these results strongly suggest that SNARE-mediated exocytosis is enhanced by the generation of SMase derivatives, reflecting an increase in the frequency of fusion of both microvesicles and chromaffin granules rather than an increase in the size of these vesicles.


Asunto(s)
Células Cromafines/citología , Gránulos Cromafines/fisiología , Exocitosis/fisiología , Esfingomielinas/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Fenómenos Biofísicos/efectos de los fármacos , Bovinos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/efectos de los fármacos , Micropartículas Derivadas de Células/fisiología , Células Cultivadas , Células Cromafines/efectos de los fármacos , Gránulos Cromafines/efectos de los fármacos , Gránulos Cromafines/ultraestructura , Capacidad Eléctrica , Exocitosis/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Microscopía Electrónica , Técnicas de Placa-Clamp , Proteínas SNARE/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Estadísticas no Paramétricas , Proteína 25 Asociada a Sinaptosomas/genética , Transfección
19.
Respir Physiol Neurobiol ; 205: 47-52, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25448394

RESUMEN

Sphingomyelinase (SMase) activity is elevated in inflammatory states and may contribute to muscle weakness in these conditions. Exogenous SMase depresses muscle force in an oxidant-dependent manner. However, the pathway stimulated by SMase that leads to muscle weakness is unclear. In non-muscle cells, SMase activates the Nox2 isoform of NADPH oxidase, which requires the p47(phox) subunit for enzyme function. We targeted p47(phox) genetically and pharmacologically (apocynin) to examine the role of NADPH oxidase on SMase-induced increase in oxidants and diaphragm weakness. SMase increased cytosolic oxidants (arbitrary units: control 203±15, SMase 276±22; P<0.05) and depressed maximal force in wild type mice (N/cm(2): control 20±1, SMase 16±0.6; P<0.05). However, p47(phox) deficient mice were protected from increased oxidants (arbitrary units: control 217±27, SMase 224±17) and loss of force elicited by SMase (N/cm(2): control 20±1, SMase 19±1). Apocynin appeared to partially prevent the decrease in force caused by SMase (n=3 mice/group). Thus, our study suggests that NADPH oxidase plays an important role on oxidant-mediated diaphragm weakness triggered by SMase. These observations provide further evidence that NADPH oxidase modulates skeletal muscle function.


Asunto(s)
Diafragma/metabolismo , NADPH Oxidasas/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Western Blotting , Diafragma/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Esfingomielina Fosfodiesterasa/farmacología
20.
J Invest Dermatol ; 134(8): 2114-2121, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24468745

RESUMEN

Atopic dermatitis (AD) is an inflammatory skin disease characterized by increased T-helper type 2 (Th2) cytokine expression. AD skin lesions are often exacerbated by Staphylococcus aureus-mediated secretion of the lytic virulence factor, alpha toxin. In the current study, we report that alpha toxin-induced cell death is greater in the skin from patients with AD compared with controls. Furthermore, we find that keratinocyte differentiation and Th2 cytokine exposure influence sensitivity to S. aureus alpha toxin-induced cell death. Differentiated keratinocytes are protected from cell death, whereas cells treated with Th2 cytokines have increased sensitivity to alpha toxin-induced lethality. Our data demonstrate that the downstream effects mediated by Th2 cytokines are dependent upon host expression of STAT6. We determine that Th2 cytokines induce biochemical changes that decrease levels of acid sphingomyelinase (SMase), an enzyme that cleaves sphingomyelin, an alpha toxin receptor. Furthermore, Th2 cytokines inhibit the production of lamellar bodies, organelles critical for epidermal barrier formation. Finally, we determine that SMase and its enzymatic product, phosphocholine, prevent Th2-mediated increases in alpha toxin-induced cell death. Therefore, our studies may help explain the increased propensity for Th2 cytokines to exacerbate S. aureus-induced skin disease, and provide a potential therapeutic target for treatment of AD.


Asunto(s)
Toxinas Bacterianas/farmacología , Citocinas/farmacología , Proteínas Hemolisinas/farmacología , Queratinocitos/efectos de los fármacos , Factor de Transcripción STAT6/fisiología , Células Th2/inmunología , Muerte Celular , Células Cultivadas , Ceramidas/análisis , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Humanos , Interleucina-13/farmacología , Interleucina-4/farmacología , Queratinocitos/patología , Fosforilcolina/farmacología , Esfingomielina Fosfodiesterasa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...