Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 594(2): 209-226, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31468514

RESUMEN

Low Temperature Plasma (LTP) generates reactive oxygen and nitrogen species, causing cell death, similarly to radiation. Radiation resistance results in tumour recurrence, however mechanisms of LTP resistance are unknown. LTP was applied to patient-derived prostate epithelial cells and gene expression assessed. A typical global oxidative response (AP-1 and Nrf2 signalling) was induced, whereas Notch signalling was activated exclusively in progenitor cells. Notch inhibition induced expression of prostatic acid phosphatase (PAP), a marker of prostate epithelial cell differentiation, whilst reducing colony forming ability and preventing tumour formation. Therefore, if LTP is to be progressed as a novel treatment for prostate cancer, combination treatments should be considered in the context of cellular heterogeneity and existence of cell type-specific resistance mechanisms.


Asunto(s)
Gases em Plasma/uso terapéutico , Neoplasias de la Próstata/radioterapia , Tolerancia a Radiación/efectos de la radiación , Receptores Notch/genética , Fosfatasa Ácida/genética , Muerte Celular/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Células Epiteliales/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Masculino , Factor 2 Relacionado con NF-E2/genética , Gases em Plasma/efectos adversos , Próstata/patología , Próstata/efectos de la radiación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Tolerancia a Radiación/genética , Especies de Nitrógeno Reactivo/efectos de la radiación , Especies Reactivas de Oxígeno/efectos de la radiación , Transducción de Señal/efectos de la radiación , Células Madre/efectos de la radiación , Factor de Transcripción AP-1/genética
2.
Free Radic Res ; 51(3): 306-315, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28325093

RESUMEN

There is growing evidence that plasma-activated medium (PAM), which is prepared by non-thermal plasma (NTP) irradiation of cell-free medium, is a beneficial tool for cancer therapy. PAM has been reported to preferentially kill cancer cells; however, its mechanism is not fully understood. Since PAM contains reactive oxygen species (ROS) and reactive nitrogen species, the anti-cancer effects of PAM are thought to be attributed to oxidative stress induced by these reactive molecules. Oxidative stress has been shown to release zinc (Zn2+) from intracellular Zn2+ stores and provoke Zn2+-dependent cell death. We have previously demonstrated that intracellular free Zn2+ plays a critical role in PAM-induced cell death in human neuroblastoma SH-SY5Y cells. In this study, we found that normal human fibroblasts were less susceptible to PAM cytotoxicity compared with SH-SY5Y cells. PAM decreased intracellular NAD+ levels in both cells, whereas the depletion of ATP and mitochondrial ROS generation was hardly observed in fibroblasts. Intracellular mobile Zn2+ contents of fibroblasts were lower than those of SH-SY5Y cells. PAM suppressed the activity of aconitase, which is a tricarboxylic acid cycle enzyme, only in SH-SY5Y cells, and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a Zn2+ chelator, counteracted the suppression. The combination treatment with PAM and Zn2+ augmented PAM-induced ATP depletion, mitochondrial ROS generation, and cytotoxicity in fibroblasts. These findings suggest the possibility that cells with high intracellular mobile Zn2+ are susceptible to PAM cytotoxicity. Therefore, we concluded that the differences in mobile Zn2+ levels affect PAM-induced cellular responses.


Asunto(s)
Apoptosis/efectos de la radiación , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/radioterapia , Estrés Oxidativo/efectos de la radiación , Zinc/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Quelantes/administración & dosificación , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Humanos , Mitocondrias/efectos de la radiación , Neuroblastoma/patología , Estrés Oxidativo/efectos de los fármacos , Gases em Plasma , Especies de Nitrógeno Reactivo/metabolismo , Especies de Nitrógeno Reactivo/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/efectos de la radiación
3.
Cancer Lett ; 356(1): 43-51, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24530228

RESUMEN

Ionizing radiation (IR) has been described as a double-edged sword, since it is used for diagnostic and therapeutic medical applications, and at the same time it is a well known human mutagen and carcinogen, causing wide-ranging chromosomal aberrations. It is nowadays accepted that the detrimental effects of IR are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects. This review presents the role of oxidative stress in the induction of bystander effects referring to the types of the implicated oxidative DNA lesions, the contributing intercellular and intracellular stress mediators, the way they are transmitted from irradiated to bystander cells and finally, the complex role of the bystander effect in the therapeutic efficacy of radiation treatment of cancer.


Asunto(s)
Efecto Espectador/efectos de la radiación , Citocinas/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN/efectos de la radiación , Estrés Oxidativo , Aberraciones Cromosómicas/efectos de la radiación , Citocinas/efectos de la radiación , ADN/genética , Reparación del ADN , Inestabilidad Genómica/efectos de la radiación , Humanos , Mitocondrias/patología , Neoplasias/radioterapia , Especies de Nitrógeno Reactivo/efectos de la radiación , Especies Reactivas de Oxígeno/efectos de la radiación , Transducción de Señal/efectos de la radiación
4.
Cent Nerv Syst Agents Med Chem ; 12(2): 146-52, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22533509

RESUMEN

A single intraperitoneal injection of a gram-positive pathogen Clostridium perfringens (Cp) causes a remarkable down-regulation the constitutive nitric oxide synthase (cNOS) with a simultaneous increase in the activity of inducible NOS (iNOS) and the level of reactive nitrogen species in the rat brain major regions (cortex, striatum, hippocampus and hypothalamus) at 48 h post-administration of Cp. Treatment by both a semiconductor laser (SCL) and/or a light-emitting diode (LED) with same wavelength, energy density and time exposure (continuous wave, λ=654 nm, fluence=1.27 J/cm(2), time exposure=600 s) could modulate brain nitrergic response following Cp-infection. Besides, unlike the LED, the SCL-irradiation prevents the cNOS inhibition in all the studied brain regions and might be useful in restoring its function in neurotransmission and cerebral blood flow, along with providing a protective effect against nitrosative stress-induced iNOS-mediated injury in the brain regions.


Asunto(s)
Infecciones por Clostridium/radioterapia , Clostridium perfringens/efectos de la radiación , Hipotálamo/efectos de la radiación , Láseres de Semiconductores/uso terapéutico , Neuronas Nitrérgicas/efectos de la radiación , Animales , Infecciones por Clostridium/enzimología , Hipotálamo/enzimología , Hipotálamo/microbiología , Masculino , Neuronas Nitrérgicas/metabolismo , Óxido Nítrico Sintasa de Tipo I/efectos adversos , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Distribución Aleatoria , Ratas , Especies de Nitrógeno Reactivo/biosíntesis , Especies de Nitrógeno Reactivo/efectos de la radiación , Resultado del Tratamiento
5.
Oncogene ; 22(37): 5734-54, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12947383

RESUMEN

In the past few years, nuclear DNA damage-sensing mechanisms activated by ionizing radiation have been identified, including ATM/ATR and the DNA-dependent protein kinase. Less is known about sensing mechanisms for cytoplasmic ionization events and how these events influence nuclear processes. Several studies have demonstrated the importance of cytoplasmic signaling pathways in cytoprotection and mutagenesis. For cytoplasmic signaling, radiation-stimulated reactive oxygen species (ROS) and reactive nitrogen species (RNS) are essential activators of these pathways. This review summarizes recent studies on the chemistry of radiation-induced ROS/RNS generation and emphasizes interactions between ROS and RNS and the relative roles of cellular ROS/RNS generators as amplifiers of the initial ionization events. Cellular mechanisms for regulating ROS/RNS levels are discussed. The mechanisms by which cells sense ROS/RNS are examined in terms of how ROS/RNS modify protein structure and function, for example, interactions with metal-thiol clusters, protein tyrosine nitration, protein cysteine oxidation, S-thiolation and S-nitrosylation. We propose that radiation-induced ROS are the initiators and that nitric oxide (NO*) or derivatives are the effectors activating these signal transduction pathways. In responding to cellular ionization events, the cell converts an oxidative signal to a nitrosative one because ROS are too reactive and unspecific in their reactions for regulatory purposes and the cell is equipped to precisely modulate NO* levels.


Asunto(s)
Especies de Nitrógeno Reactivo/efectos de la radiación , Especies Reactivas de Oxígeno/efectos de la radiación , Transducción de Señal/efectos de la radiación , Nitratos/metabolismo , Proteínas/metabolismo
6.
Free Radic Res ; 35(6): 803-13, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11811531

RESUMEN

Solutions of N-nitrosamines, N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosomorpholine and N-nitrosopyrrolidine in phosphate buffer (pH 7.4) were irradiated by ultraviolet (UV) light at room temperature. The N-nitrosamines were extensively degraded due to irradiation for 120 min in a time-dependent fashion as monitored by UV-absorption or high performance liquid chromatographic analysis. Carbon-centered radicals were generated from four N-nitrosamines during the short time irradiation of 10-60 s as monitored by electron spin resonance (ESR) technique using 5,5-dimethyl-1-pyrroline N-oxide and N-tert-butyl-alpha-phenylnitrone as spin traps. Nitric oxide (NO) was generated during the short time irradiation as monitored by ESR technique using cysteine-Fe(II) complex, N-methyl-D-glucamine dithiocarbamate and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Significant amounts of nitrite (4-16%) from four N-nitrosamines and also a significant amount of nitrate (4%) was produced from N-nitrosodimethylamine during the irradiation time of 120 min. Released NO from the N-nitrosamines must be converted into nitrite through intermediary reactive nitrogen oxide species including nitrogen dioxide and dinitrogen trioxide in contact with dissolved oxygen.


Asunto(s)
Carbono/efectos de la radiación , Radicales Libres/efectos de la radiación , Óxido Nítrico/efectos de la radiación , Nitrosaminas/efectos de la radiación , Rayos Ultravioleta , Carbono/química , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Óxido Nítrico/química , Nitrosaminas/química , Fotoquímica , Especies de Nitrógeno Reactivo/química , Especies de Nitrógeno Reactivo/efectos de la radiación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...