Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 987
Filtrar
1.
Int J Mol Sci ; 23(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563480

RESUMEN

Lipid modification of viral proteins with fatty acids of different lengths (S-acylation) is crucial for virus pathogenesis. The reaction is catalyzed by members of the DHHC family and proceeds in two steps: the autoacylation is followed by the acyl chain transfer onto protein substrates. The crystal structure of human DHHC20 (hDHHC20), an enzyme involved in the acylation of S-protein of SARS-CoV-2, revealed that the acyl chain may be inserted into a hydrophobic cavity formed by four transmembrane (TM) α-helices. To test this model, we used molecular dynamics of membrane-embedded hDHHC20 and its mutants either in the absence or presence of various acyl-CoAs. We found that among a range of acyl chain lengths probed only C16 adopts a conformation suitable for hDHHC20 autoacylation. This specificity is altered if the small or bulky residues at the cavity's ceiling are exchanged, e.g., the V185G mutant obtains strong preferences for binding C18. Surprisingly, an unusual hydrophilic ridge was found in TM helix 4 of hDHHC20, and the responsive hydrophilic patch supposedly involved in association was found in the 3D model of the S-protein TM-domain trimer. Finally, the exchange of critical Thr and Ser residues in the spike led to a significant decrease in its S-acylation. Our data allow further development of peptide/lipid-based inhibitors of hDHHC20 that might impede replication of Corona- and other enveloped viruses.


Asunto(s)
Aciltransferasas , COVID-19 , Acilcoenzima A/metabolismo , Acilación , Aciltransferasas/química , Aciltransferasas/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Humanos , Simulación de Dinámica Molecular , SARS-CoV-2 , Especificidad por Sustrato/fisiología
2.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35216436

RESUMEN

Endoxylanases belonging to family 10 of the glycoside hydrolases (GH10) are versatile in the use of different substrates. Thus, an understanding of the molecular mechanisms underlying substrate specificities could be very useful in the engineering of GH10 endoxylanases for biotechnological purposes. Herein, we analyzed XynA, an endoxylanase that contains a (ß/α)8-barrel domain and an intrinsically disordered region (IDR) of 29 amino acids at its amino end. Enzyme activity assays revealed that the elimination of the IDR resulted in a mutant enzyme (XynAΔ29) in which two new activities emerged: the ability to release xylose from xylan, and the ability to hydrolyze p-nitrophenyl-ß-d-xylopyranoside (pNPXyl), a substrate that wild-type enzyme cannot hydrolyze. Circular dichroism and tryptophan fluorescence quenching by acrylamide showed changes in secondary structure and increased flexibility of XynAΔ29. Molecular dynamics simulations revealed that the emergence of the pNPXyl-hydrolyzing activity correlated with a dynamic behavior not previously observed in GH10 endoxylanases: a hinge-bending motion of two symmetric regions within the (ß/α)8-barrel domain, whose hinge point is the active cleft. The hinge-bending motion is more intense in XynAΔ29 than in XynA and promotes the formation of a wider active site that allows the accommodation and hydrolysis of pNPXyl. Our results open new avenues for the study of the relationship between IDRs, dynamics and activity of endoxylanases, and other enzymes containing (ß/α)8-barrel domain.


Asunto(s)
Endo-1,4-beta Xilanasas/metabolismo , Glicósido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico/fisiología , Hidrólisis , Especificidad por Sustrato/fisiología , Xilanos/metabolismo , Xilosa/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34848541

RESUMEN

Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood. Using cryo-electron microscopy of apo human LAT2/CD98hc and a multidisciplinary approach, we elucidate key molecular determinants governing neutral amino acid specificity in HATs. A few residues in the substrate-binding pocket determine substrate preference. Here, we describe mutations that interconvert the substrate profiles of LAT2/CD98hc, LAT1/CD98hc, and Asc1/CD98hc. In addition, a region far from the substrate-binding pocket critically influences the conformation of the substrate-binding site and substrate preference. This region accumulates mutations that alter substrate specificity and cause hearing loss and cataracts. Here, we uncover molecular mechanisms governing substrate specificity within the HAT family of neutral amino acid transporters and provide the structural bases for mutations in LAT2/CD98hc that alter substrate specificity and that are associated with several pathologies.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/fisiología , Especificidad por Sustrato/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/fisiología , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Aminoácidos Neutros/metabolismo , Transporte Biológico/fisiología , Microscopía por Crioelectrón/métodos , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Células HeLa , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
4.
Biochem Pharmacol ; 194: 114824, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34748821

RESUMEN

Diphenylamine NSAIDs are taken frequently for chronic pain conditions, yet their use may potentiate hepatotoxicity risks through poorly characterized metabolic mechanisms. Our previous work revealed that seven marketed or withdrawn diphenylamine NSAIDs undergo bioactivation into quinone-species metabolites, whose reaction specificities depended on halogenation and the type of acidic group on the diphenylamine. Herein, we identified cytochromes P450 responsible for those bioactivations, determined reaction specificities, and estimated relative contributions of enzymes to overall hepatic bioactivations and detoxifications. A qualitative activity screen revealed CYP2C8, 2C9, 2C19, and 3A4 played roles in drug bioactivation. Subsequent steady-state studies with recombinant CYPs recapitulated the importance of halogenation and acidic group type on bioactivations but importantly, showed patterns unique to each CYP. CYP2C9, 2C19 and 3A4 bioactivated all NSAIDs with CYP2C9 dominating all possible bioactivation pathways. For each CYP, specificities for overall oxidative metabolism were not impacted significantly by differences in NSAID structures but the values themselves differed among the enzymes such that CYP2C9 and 3A4 were more efficient than others. When considering hepatic CYP abundance, CYP2C9 almost exclusively accounted for diphenylamine NSAID bioactivations, whereas CYP3A4 provided a critical counterbalance favoring their overall detoxification. Preference for either outcome would depend on molecular structures favoring metabolism by the CYPs as well as the influence of clinical factors altering their expression and/or activity. While focused on NSAIDs, these findings have broader implications on bioactivation risks given the expansion of the diphenylamine scaffold to other drug classes such as targeted cancer therapeutics.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Difenilamina/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Antiinflamatorios no Esteroideos/toxicidad , Difenilamina/toxicidad , Humanos , Inactivación Metabólica/efectos de los fármacos , Inactivación Metabólica/fisiología , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología
5.
Cell Rep ; 37(7): 110004, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788624

RESUMEN

Polyphosphate (polyP) is a polymer of hundreds of phosphate residues present in all organisms. In mammals, polyP is involved in crucial physiological processes, including coagulation, inflammation, and stress response. However, after decades of research, the metabolic enzymes are still unknown. Here, we purify and identify Nudt3, a NUDIX family member, as the enzyme responsible for polyP phosphatase activity in mammalian cells. We show that Nudt3 shifts its substrate specificity depending on the cation; specifically, Nudt3 is active on polyP when Zn2+ is present. Nudt3 has in vivo polyP phosphatase activity in human cells, and importantly, we show that cells with altered polyP levels by modifying Nudt3 protein amount present reduced viability upon oxidative stress and increased DNA damage, suggesting that polyP and Nudt3 play a role in oxidative stress protection. Finally, we show that Nudt3 is involved in the early stages of embryo development in zebrafish.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Estrés Oxidativo/fisiología , Polifosfatos/metabolismo , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/fisiología , Animales , Células HEK293 , Humanos , Masculino , Mamíferos/metabolismo , Oxidación-Reducción , Monoéster Fosfórico Hidrolasas/fisiología , Ratas , Ratas Sprague-Dawley , Especificidad por Sustrato/fisiología , Pez Cebra , Zinc/metabolismo
6.
J Neuroinflammation ; 18(1): 248, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711251

RESUMEN

Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS), are relatively common and devastating neurological disorders. For example, there are 6 million individuals living with AD in the United States, a number that is projected to grow to 14 million by the year 2030. Importantly, AD, PD and MS are all characterized by the lack of a true disease-modifying therapy that is able to reverse or halt disease progression. In addition, the existing standard of care for most NDs only addresses the symptoms of the disease. Therefore, alternative strategies that target mechanisms underlying the neuropathogenesis of disease are much needed. Recent studies have indicated that metabolic alterations in neurons and glia are commonly observed in AD, PD and MS and lead to changes in cell function that can either precede or protect against disease onset and progression. Specifically, single-cell RNAseq studies have shown that AD progression is tightly linked to the metabolic phenotype of microglia, the key immune effector cells of the brain. However, these analyses involve removing cells from their native environment and performing measurements in vitro, influencing metabolic status. Therefore, technical approaches that can accurately assess cell-specific metabolism in situ have the potential to be transformative to our understanding of the mechanisms driving AD. Here, we review our current understanding of metabolism in both neurons and glia during homeostasis and disease. We also evaluate recent advances in metabolic imaging, and discuss how emerging modalities, such as fluorescence lifetime imaging microscopy (FLIM) have the potential to determine how metabolic perturbations may drive the progression of NDs. Finally, we propose that the temporal, regional, and cell-specific characterization of brain metabolism afforded by FLIM will be a critical first step in the rational design of metabolism-focused interventions that delay or even prevent NDs.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Imagen Óptica/métodos , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/tendencias , Espectroscopía de Resonancia Magnética/métodos , Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Imagen Óptica/tendencias , Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/tendencias , Especificidad por Sustrato/fisiología
7.
Biochem J ; 478(17): 3179-3184, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34492095

RESUMEN

Apoptosis is a cell death program that is executed by the caspases, a family of cysteine proteases that typically cleave after aspartate residues during a proteolytic cascade that systematically dismantles the dying cell. Extensive signaling crosstalk occurs between caspase-mediated proteolysis and kinase-mediated phosphorylation, enabling integration of signals from multiple pathways into the decision to commit to apoptosis. A new study from Maluch et al. examines how phosphorylation within caspase cleavage sites impacts the efficiency of substrate cleavage. The results demonstrate that while phosphorylation in close proximity to the scissile bond is generally inhibitory, it does not necessarily abrogate substrate cleavage, but instead attenuates the rate. In some cases, this inhibition can be overcome by additional favorable substrate features. These findings suggest potential nuanced physiological roles for phosphorylation of caspase substrates with exciting implications for targeting caspases with chemical probes and therapeutics.


Asunto(s)
Caspasas/metabolismo , Fosfotransferasas/metabolismo , Proteolisis , Transducción de Señal/fisiología , Apoptosis/fisiología , Ácido Aspártico/metabolismo , Humanos , Cinética , Fosforilación/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Especificidad por Sustrato/fisiología
8.
Cells ; 10(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34571973

RESUMEN

Acyl-lipids are vital components for all life functions of plants. They are widely studied using often in vitro conditions to determine inter alia the impact of genetic modifications and the description of biochemical and physiological functions of enzymes responsible for acyl-lipid metabolism. What is currently lacking is knowledge of if these results also hold in real environments-in in vivo conditions. Our study focused on the comparative analysis of both in vitro and in vivo growth conditions and their impact on the acyl-lipid metabolism of Camelina sativa leaves. The results indicate that in vitro conditions significantly decreased the lipid contents and influenced their composition. In in vitro conditions, galactolipid and trienoic acid (16:3 and 18:3) contents significantly declined, indicating the impairment of the prokaryotic pathway. Discrepancies also exist in the case of acyl-CoA:lysophospholipid acyltransferases (LPLATs). Their activity increased about 2-7 times in in vitro conditions compared to in vivo. In vitro conditions also substantially changed LPLATs' preferences towards acyl-CoA. Additionally, the acyl editing process was three times more efficient in in vitro leaves. The provided evidence suggests that the results of acyl-lipid research from in vitro conditions may not completely reflect and be directly applicable in real growth environments.


Asunto(s)
Acilcoenzima A/metabolismo , Camellia/metabolismo , Galactolípidos/metabolismo , Lípidos/fisiología , Lisofosfolípidos/metabolismo , Hojas de la Planta/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Especificidad por Sustrato/fisiología
9.
Molecules ; 26(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34443642

RESUMEN

Among industrially important pyridoxal-5'-phosphate (PLP)-dependent transaminases of fold type IV D-amino acid transaminases are the least studied. However, the development of cascade enzymatic processes, including the synthesis of D-amino acids, renewed interest in their study. Here, we describe the identification, biochemical and structural characterization of a new D-amino acid transaminase from Haliscomenobacter hydrossis (Halhy). The new enzyme is strictly specific towards D-amino acids and their keto analogs; it demonstrates one of the highest rates of transamination between D-glutamate and pyruvate. We obtained the crystal structure of the Halhy in the holo form with the protonated Schiff base formed by the K143 and the PLP. Structural analysis revealed a novel set of the active site residues that differ from the key residues forming the active sites of the previously studied D-amino acids transaminases. The active site of Halhy includes three arginine residues, one of which is unique among studied transaminases. We identified critical residues for the Halhy catalytic activity and suggested functions of the arginine residues based on the comparative structural analysis, mutagenesis, and molecular modeling simulations. We suggested a strong positive charge in the O-pocket and the unshaped P-pocket as a structural code for the D-amino acid specificity among transaminases of PLP fold type IV. Characteristics of Halhy complement our knowledge of the structural basis of substrate specificity of D-amino acid transaminases and the sequence-structure-function relationships in these enzymes.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Bacteroidetes/metabolismo , Dominio Catalítico/fisiología , Transaminasas/metabolismo , Cristalografía por Rayos X/métodos , Modelos Moleculares , Fosfato de Piridoxal/metabolismo , Especificidad por Sustrato/fisiología
10.
Mol Biol Rep ; 48(8): 6205-6211, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34331182

RESUMEN

BACKGROUND: The enzyme that catalyzes the last step in proline synthesis, δ1-pyrroline-5-carboxylate reductase, showed in most cases a distinct preference in vitro for NADPH as the electron donor. METHODS AND RESULTS: A Zymomonas mobilis gene coding for a δ1-pyrroline-5-carboxylate reductase was cloned and heterologously expressed, and the recombinant protein was purified and characterized. The enzyme showed higher affinity to, and higher catalytic rate with NADH, with a specific activity of about 600 nkat (mg protein)-1. The molecular basis of this feature was investigated by analysis of the dinucleotide binding domain in silico. CONCLUSIONS: We postulate that the main determinants of coenzyme preference for P5C reductases are the length and the sequence of the motif A, whereas the overall sequence identity is insufficient to predict it a priori. Results are discussed in view of the obligately fermentative metabolism of this bacterium.


Asunto(s)
Pirroles/metabolismo , Zymomonas/metabolismo , Catálisis , Electrones , Cinética , NAD/metabolismo , NADP/metabolismo , Oxidorreductasas/metabolismo , Especificidad por Sustrato/fisiología
11.
Molecules ; 26(12)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204747

RESUMEN

Cytochrome P450s (P450) are important enzymes in biology with useful biochemical reactions in, for instance, drug and xenobiotics metabolisms, biotechnology, and health. Recently, the crystal structure of a new member of the CYP116B family has been resolved. This enzyme is a cytochrome P450 (CYP116B46) from Tepidiphilus thermophilus (P450-TT) and has potential for the oxy-functionalization of organic molecules such as fatty acids, terpenes, steroids, and statins. However, it was thought that the opening to its hitherto identified substrate channel was too small to allow organic molecules to enter. To investigate this, we performed molecular dynamics simulations on the enzyme. The results suggest that the crystal structure is not relaxed, possibly due to crystal packing effects, and that its tunnel structure is constrained. In addition, the simulations revealed two key amino acid residues at the mouth of the channel; a glutamyl and an arginyl. The glutamyl's side chain tightens and relaxes the opening to the channel in conjunction with the arginyl's, though the latter's side chain is less dramatically changed after the initial relaxation of its conformations. Additionally, it was observed that the effect of increased temperature did not considerably affect the dynamics of the enzyme fold, including the relative solvent accessibility of the amino acid residues that make up the substrate channel wall even as compared to the changes that occurred at room temperature. Interestingly, the substrate channel became distinguishable as a prominent tunnel that is likely to accommodate small- to medium-sized organic molecules for bioconversions. That is, P450-TT has the ability to pass appropriate organic substrates to its active site through its elaborate substrate channel, and notably, is able to control or gate any molecules at the opening to this channel.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Hydrogenophilaceae/metabolismo , Sitios de Unión/fisiología , Dominio Catalítico/fisiología , Cristalografía por Rayos X/métodos , Sistema Enzimático del Citocromo P-450/fisiología , Hydrogenophilaceae/enzimología , Simulación de Dinámica Molecular , Oxidación-Reducción , Unión Proteica/fisiología , Especificidad por Sustrato/fisiología
12.
Drug Metab Dispos ; 49(9): 729-735, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34183377

RESUMEN

Mammalian aldehyde oxidases (AOX) are molybdo-flavoenzymes of pharmacological and pathophysiologic relevance that are involved in phase I drug metabolism and, as a product of their enzymatic activity, are also involved in the generation of reactive oxygen species. So far, the physiologic role of aldehyde oxidase 1 in the human body remains unknown. The human enzyme hAOX1 is characterized by a broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into their corresponding carboxylic acids, and hydroxylating various heteroaromatic rings. The enzyme uses oxygen as terminal electron acceptor to produce hydrogen peroxide and superoxide during turnover. Since hAOX1 and, in particular, some natural variants produce not only H2O2 but also high amounts of superoxide, we investigated the effect of both ROS molecules on the enzymatic activity of hAOX1 in more detail. We compared hAOX1 to the high-O2 .--producing natural variant L438V for their time-dependent inactivation with H2O2/O2 .- during substrate turnover. We show that the inactivation of the hAOX1 wild-type enzyme is mainly based on the production of hydrogen peroxide, whereas for the variant L438V, both hydrogen peroxide and superoxide contribute to the time-dependent inactivation of the enzyme during turnover. Further, the level of inactivation was revealed to be substrate-dependent: using substrates with higher turnover numbers resulted in a faster inactivation of the enzymes. Analysis of the inactivation site of the enzyme identified a loss of the terminal sulfido ligand at the molybdenum active site by the produced ROS during turnover. SIGNIFICANCE STATEMENT: This work characterizes the substrate-dependent inactivation of human aldehyde oxidase 1 under turnover by reactive oxygen species and identifies the site of inactivation. The role of ROS in the inhibition of human aldehyde oxidase 1 will have a high impact on future studies.


Asunto(s)
Aldehído Oxidasa , Especificidad por Sustrato/fisiología , Aldehído Oxidasa/química , Aldehído Oxidasa/metabolismo , Dominio Catalítico , Activación Enzimática , Pruebas de Enzimas/métodos , Humanos , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Inactivación Metabólica/fisiología , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/análisis , Superóxidos/metabolismo
13.
Pharm Res ; 38(6): 1031-1039, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34009624

RESUMEN

PURPOSE: The purpose of this research is to analyze non-linear pharmacokinetics of P-glycoprotein (P-gp) substrates in a cell based assay of a microfluidic device, which might be affected by hydrodynamic barrier (unstirred water layer, UWL). RESULTS: Apparent permeability (Papp) were obtained using non-P-gp substrates (propranolol, metoprolol, and atenolol) and P-gp substrates (quinidine and talinolol) in a commercially available microfluidic device, organoplate ® of Caco-2 cell based assay. The previous UWL resistance model was well fitted to Papp of static and flow condition by assuming UWL including and negligible condition, while P-gp substrates of higher passive permeability (quinidine) was apart from the fitting curve. The concentration dependent non-linear kinetics of P-gp substrates, quinidine and talinolol, was more analyzed in detail, and apparent Vmax discrepancy between static and flow assay condition in the quinidine assay was observed, while that was not observed in talinolol, the lower permeable substrate. Based on the experimental results, a mathematical model for P-gp substrates including UWL compartment on the previous 3-compartment model was developed, and it indicated that the apparent Vmax was variable along with the ratio between passive permeability and UWL permeability. CONCLUSIONS: The mathematical model adding UWL compartment well explained non-linear pharmacokinetics of apparent permeability of P-gp substrate in the microfluidic device. The model also has a potential to be applied to P-gp substrate permeability analysis in vivo.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/farmacocinética , Dispositivos Laboratorio en un Chip , Modelos Teóricos , Dinámicas no Lineales , Agua/metabolismo , Células CACO-2 , Relación Dosis-Respuesta a Droga , Humanos , Propanolaminas/farmacocinética , Propranolol/farmacocinética , Especificidad por Sustrato/fisiología
14.
Toxicology ; 457: 152819, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33984406

RESUMEN

In vitro and in silico methods that can reduce the need for animal testing are being used with increasing frequency to assess chemical risks to human health and the environment. The rate of hepatic biotransformation is an important species-specific parameter for determining bioaccumulation potential and extrapolating in vitro bioactivity to in vivo effects. One approach to estimating hepatic biotransformation is to employ in vitro systems derived from liver tissue to measure chemical (substrate) depletion over time which can then be translated to a rate of intrinsic clearance (CLint). In the present study, cryopreserved hepatocytes from humans, rats, and rainbow trout were used to measure CLint values for 54 industrial and pesticidal chemicals at starting test concentrations of 0.1 and 1 µM. A data evaluation framework that emphasizes the behavior of Heat-Treated Controls (HTC) was developed to identify datasets suitable for rate reporting. Measured or estimated ("greater than" or "less than") CLint values were determined for 124 of 226 (55 %) species-chemical-substrate concentration datasets with acceptable analytical chemistry. A large percentage of tested chemicals exhibited low HTC recovery values, indicating a substantial abiotic loss of test chemical over time. An evaluation of KOW values for individual chemicals suggested that in vitro test performance declined with increasing chemical hydrophobicity, although differences in testing devices for mammals and fish also likely played a role. The current findings emphasize the value of negative controls as part of a rigorous approach to data quality assessment for in vitro substrate depletion studies. Changes in current testing protocols can be expected to result in the collection of higher quality data. However, poorly soluble chemicals are likely to remain a challenge for CLint determination.


Asunto(s)
Criopreservación , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Tasa de Depuración Metabólica/efectos de los fármacos , Tasa de Depuración Metabólica/fisiología , Adulto , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Criopreservación/métodos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Masculino , Oncorhynchus mykiss , Plaguicidas/metabolismo , Plaguicidas/toxicidad , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología
15.
PLoS Comput Biol ; 17(2): e1008101, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33617527

RESUMEN

Proteases are an important class of enzymes, whose activity is central to many physiologic and pathologic processes. Detailed knowledge of protease specificity is key to understanding their function. Although many methods have been developed to profile specificities of proteases, few have the diversity and quantitative grasp necessary to fully define specificity of a protease, both in terms of substrate numbers and their catalytic efficiencies. We have developed a concept of "selectome"; the set of substrate amino acid sequences that uniquely represent the specificity of a protease. We applied it to two closely related members of the Matrixin family-MMP-2 and MMP-9 by using substrate phage display coupled with Next Generation Sequencing and information theory-based data analysis. We have also derived a quantitative measure of substrate specificity, which accounts for both the number of substrates and their relative catalytic efficiencies. Using these advances greatly facilitates elucidation of substrate selectivity between closely related members of a protease family. The study also provides insight into the degree to which the catalytic cleft defines substrate recognition, thus providing basis for overcoming two of the major challenges in the field of proteolysis: 1) development of highly selective activity probes for studying proteases with overlapping specificities, and 2) distinguishing targeted proteolysis from bystander proteolytic events.


Asunto(s)
Modelos Biológicos , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico/genética , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Teoría de la Información , Metaloproteinasa 2 de la Matriz/química , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/química , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Modelos Moleculares , Péptido Hidrolasas/clasificación , Biblioteca de Péptidos , Pliegue de Proteína , Proteolisis , Proteómica/métodos , Proteómica/estadística & datos numéricos , Especificidad por Sustrato/genética , Especificidad por Sustrato/fisiología
16.
Mol Pharm ; 18(3): 1305-1316, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33595329

RESUMEN

Hydrolytic reactions constitute an important pathway of drug metabolism and a significant route of prodrug activation. Many ophthalmic drugs and prodrugs contain ester groups that greatly enhance their permeation across several hydrophobic barriers in the eye before the drugs are either metabolized or released, respectively, via hydrolysis. Thus, the development of ophthalmic drug therapy requires the thorough profiling of substrate specificities, activities, and expression levels of ocular esterases. However, such information is scant in the literature, especially for preclinical species often used in ophthalmology such as rabbits and pigs. Therefore, our aim was to generate systematic information on the activity and expression of carboxylesterases (CESs) and arylacetamide deacetylase (AADAC) in seven ocular tissue homogenates from these two species. The hydrolytic activities were measured using a generic esterase substrate (4-nitrophenyl acetate) and, in the absence of validated substrates for rabbit and pig enzymes, with selective substrates established for human CES1, CES2, and AADAC (d-luciferin methyl ester, fluorescein diacetate, procaine, and phenacetin). Kinetics and inhibition studies were conducted using these substrates and, again due to a lack of validated rabbit and pig CES inhibitors, with known inhibitors for the human enzymes. Protein expression levels were measured using quantitative targeted proteomics. Rabbit ocular tissues showed significant variability in the expression of CES1 (higher in cornea, lower in conjunctiva) and CES2 (higher in conjunctiva, lower in cornea) and a poor correlation of CES expression with hydrolytic activities. In contrast, pig tissues appear to express only CES1, and CES3 and AADAC seem to be either low or absent, respectively, in both species. The current study revealed remarkable species and tissue differences in ocular hydrolytic enzymes that can be taken into account in the design of esterase-dependent prodrugs and drug conjugates, the evaluation of ocular effects of systemic drugs, and in translational and toxicity studies.


Asunto(s)
Carboxilesterasa/metabolismo , Ojo/metabolismo , Animales , Femenino , Humanos , Hidrólisis/efectos de los fármacos , Masculino , Nitrofenoles/metabolismo , Profármacos/metabolismo , Proteómica/métodos , Conejos , Especificidad por Sustrato/fisiología , Porcinos
17.
PLoS Comput Biol ; 17(1): e1008634, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33497378

RESUMEN

The Metabolically Coupled Replicator System (MCRS) model of early chemical evolution offers a plausible and efficient mechanism for the self-assembly and the maintenance of prebiotic RNA replicator communities, the likely predecessors of all life forms on Earth. The MCRS can keep different replicator species together due to their mandatory metabolic cooperation and limited mobility on mineral surfaces, catalysing reaction steps of a coherent reaction network that produces their own monomers from externally supplied compounds. The complexity of the MCRS chemical engine can be increased by assuming that each replicator species may catalyse more than a single reaction of metabolism, with different catalytic activities of the same RNA sequence being in a trade-off relation: one catalytic activity of a promiscuous ribozyme can increase only at the expense of the others on the same RNA strand. Using extensive spatially explicit computer simulations we have studied the possibility and the conditions of evolving ribozyme promiscuity in an initial community of single-activity replicators attached to a 2D surface, assuming an additional trade-off between replicability and catalytic activity. We conclude that our promiscuous replicators evolve under weak catalytic trade-off, relatively strong activity/replicability trade-off and low surface mobility of the replicators and the metabolites they produce, whereas catalytic specialists benefit from very strong catalytic trade-off, weak activity/replicability trade-off and high mobility. We argue that the combination of conditions for evolving promiscuity are more probable to occur for surface-bound RNA replicators, suggesting that catalytic promiscuity may have been a significant factor in the diversification of prebiotic metabolic reaction networks.


Asunto(s)
Evolución Química , ARN Catalítico/metabolismo , Biología Computacional , Simulación por Computador , Modelos Biológicos , ARN Catalítico/química , Especificidad por Sustrato/fisiología
18.
Biochemistry ; 60(6): 440-450, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33513008

RESUMEN

Enzymatically driven change to the spectroscopic properties of a chemical substrate or product has been a linchpin in the development of continuous enzyme kinetics assays. These assays inherently necessitate substrates or products that naturally comply with the constraints of the spectroscopic technique being used, or they require structural changes to the molecules involved to make them observable. Here we demonstrate a new analytical kinetics approach with enzyme histidine triad nucleotide binding protein 1 (HINT1) that allows us to extract both useful kcat values and a rank-ordered list of substrate specificities without the need to track substrates or products directly. Instead, this is accomplished indirectly using a "switch on" competitive inhibitor that fluoresces maximally only when bound to the HINT1 enzyme active site. Kinetic information is extracted from the duration of the diminished fluorescence when the monitorable inhibitor-bound enzyme is challenged with saturating concentrations of a nonfluorescent substrate. We refer to the loss of fluorescence, while the substrate competes for the fluorescent probe in the active site, as the substrate's residence transit time (RTT). The ability to assess kcat values and substrate specificity by monitoring the RTTs for a set of substrates with a competitive "switch on" inhibitor should be broadly applicable to other enzymatic reactions in which the "switch on" inhibitor has sufficient binding affinity over the enzymatic product.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/farmacocinética , Sitios de Unión/fisiología , Fluorescencia , Colorantes Fluorescentes/química , Cinética , Especificidad por Sustrato/fisiología
19.
Drug Metab Dispos ; 49(3): 254-264, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33376106

RESUMEN

The ability to predict human liver-to-plasma unbound partition coefficient (Kpuu) is important to estimate unbound liver concentration for drugs that are substrates of hepatic organic anion-transporting peptide (OATP) transporters with asymmetric distribution into the liver relative to plasma. Herein, we explored the utility of PXB chimeric mice with humanized liver that are highly repopulated with human hepatocytes to predict human hepatic disposition of OATP substrates, including rosuvastatin, pravastatin, pitavastatin, valsartan, and repaglinide. In vitro total uptake clearance and transporter-mediated active uptake clearance in C57 mouse hepatocytes were greater than in PXB chimeric mouse hepatocytes for rosuvastatin, pravastatin, pitavastatin, and valsartan. Consistent with in vitro uptake data, enhanced hepatic uptake and resulting total systemic clearance were observed with the above four compounds in severely compromised immune-deficient (SCID) control mice compared with the PXB chimeric mice, which suggest that mouse has a stronger transporter-mediated hepatic uptake than human. In vivo liver-to-plasma Kpuu from PXB chimeric and SCID control mice were also compared, and rosuvastatin and pravastatin Kpuu in SCID mice were more than 10-fold higher than that in PXB chimeric mice, whereas pitavastatin, valsartan, and repaglinide Kpuu in SCID mice were comparable with Kpuu in PXB chimeric mice. Finally, PXB chimeric mouse liver-to-plasma Kpuu values were compared with the reported human Kpuu, and a good correlation was observed as the PXB Kpuu vales were within 3-fold of human Kpuu Our results indicate that PXB mice could be a useful tool to delineate hepatic uptake and enable prediction of human liver-to-plasma Kpuu of hepatic uptake transporter substrates. SIGNIFICANCE STATEMENT: We evaluated PXB mouse with humanized liver for its ability to predict human liver disposition of five organic anion-transporting polypeptide transporter substrates. Both in vitro and in vivo data suggest that mouse liver has a stronger transporter-mediated hepatic uptake than the humanized liver in PXB mouse. More importantly, PXB liver-to-plasma unbound partition coefficient (Kpuu) values were compared with the reported human Kpuu, and a good correlation was observed. PXB mice could be a useful tool to project human liver-to-plasma Kpuu of hepatic uptake transporter substrates.


Asunto(s)
Quimera/genética , Quimera/metabolismo , Hígado/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Predicción , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Pravastatina/farmacología , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología
20.
Drug Metab Dispos ; 49(3): 179-187, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33376147

RESUMEN

CYP2D6 is a major drug metabolizing enzyme with a buried active site. Channels leading to the active site from various enzyme surfaces are believed to facilitate ligand egress and access to the active site. The present study used molecular dynamics (MD) and in vitro studies with CYP2D6*1 and a Trp75-to-Ala mutant to examine channel gating in CYP2D6 by Trp75. MD simulations measured energy landscapes of Trp75 conformations and simulated substrate passage within channel 2b using bufuralol as a model substrate. Trp75 alternated between multiple stable states that supported substrate transport along channel 2b with low-energy barriers between states (∼ -1 kcal/mol). Trp75 conformations were stabilized primarily by hydrogen bonding between Trp75 and Glu222, Asn226, Ala225, or Gln72. Energy barriers were low between Trp75 conformations, allowing Trp75 to easily move between various conformations over time and to function in both binding to and moving substrates in the 2b channel of CYP2D6. Michaelis-Menten kinetic studies completed with purified enzyme in a reconstituted system showed overall reduced enzyme efficiency for metabolism of bufuralol and dextromethorphan by the Trp75Ala mutant compared with CYP2D6*1. In stopped-flow measurements, k off for dextromethorphan was decreased in the absence of Trp75. Our results support a role for Trp75 in substrate shuttling to the active site of CYP2D6. SIGNIFICANCE STATEMENT: Using combined molecular dynamics and in vitro assays, this study shows for the first time a role for Trp75 as a channel entrance gating residue in the mechanism of substrate binding/unbinding in CYP2D6. Energy landscapes derived from molecular dynamics were used to quantitate the strength of gating, and kinetics assays showed the impact on enzyme efficiency and k off of a Trp75Ala mutation.


Asunto(s)
Citocromo P-450 CYP2D6/metabolismo , Activación del Canal Iónico/fisiología , Triptófano/metabolismo , Animales , Cristalografía por Rayos X/métodos , Citocromo P-450 CYP2D6/química , Etanolaminas/metabolismo , Etanolaminas/farmacología , Activación del Canal Iónico/efectos de los fármacos , Estructura Secundaria de Proteína , Ratas , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología , Triptófano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA