Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.028
Filtrar
1.
Mikrochim Acta ; 191(5): 293, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691169

RESUMEN

To address the need for facile, rapid detection of pathogens in water supplies, a fluorescent sensing array platform based on antibiotic-stabilized metal nanoclusters was developed for the multiplex detection of pathogens. Using five common antibiotics, eight different nanoclusters (NCs) were synthesized including ampicillin stabilized copper NCs, cefepime stabilized gold and copper NCs, kanamycin stabilized gold and copper NCs, lysozyme stabilized gold NCs, and vancomycin stabilized gold/silver and copper NCs. Based on the different interaction of each NC with the bacteria strains, unique patterns were generated. Various machine learning algorithms were employed for pattern discernment, among which the artificial neural networks proved to have the highest performance, with an accuracy of 100%. The developed prediction model performed well on an independent test dataset and on real samples gathered from drinking water, tap water and the Anzali Lagoon water, with prediction accuracy of 96.88% and 95.14%, respectively. This work demonstrates how generic antibiotics can be implemented for NC synthesis and used as recognition elements for pathogen detection. Furthermore, it displays how merging machine learning techniques can elevate sensitivity of analytical devices.


Asunto(s)
Antibacterianos , Cobre , Oro , Nanopartículas del Metal , Plata , Nanopartículas del Metal/química , Antibacterianos/análisis , Antibacterianos/química , Oro/química , Cobre/química , Plata/química , Agua Potable/microbiología , Agua Potable/análisis , Redes Neurales de la Computación , Espectrometría de Fluorescencia/métodos , Aprendizaje Automático , Bacterias/aislamiento & purificación , Colorantes Fluorescentes/química , Vancomicina/química , Microbiología del Agua , Kanamicina/análisis
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731924

RESUMEN

Förster resonance energy transfer (FRET) spectrometry is a method for determining the quaternary structure of protein oligomers from distributions of FRET efficiencies that are drawn from pixels of fluorescence images of cells expressing the proteins of interest. FRET spectrometry protocols currently rely on obtaining spectrally resolved fluorescence data from intensity-based experiments. Another imaging method, fluorescence lifetime imaging microscopy (FLIM), is a widely used alternative to compute FRET efficiencies for each pixel in an image from the reduction of the fluorescence lifetime of the donors caused by FRET. In FLIM studies of oligomers with different proportions of donors and acceptors, the donor lifetimes may be obtained by fitting the temporally resolved fluorescence decay data with a predetermined number of exponential decay curves. However, this requires knowledge of the number and the relative arrangement of the fluorescent proteins in the sample, which is precisely the goal of FRET spectrometry, thus creating a conundrum that has prevented users of FLIM instruments from performing FRET spectrometry. Here, we describe an attempt to implement FRET spectrometry on temporally resolved fluorescence microscopes by using an integration-based method of computing the FRET efficiency from fluorescence decay curves. This method, which we dubbed time-integrated FRET (or tiFRET), was tested on oligomeric fluorescent protein constructs expressed in the cytoplasm of living cells. The present results show that tiFRET is a promising way of implementing FRET spectrometry and suggest potential instrument adjustments for increasing accuracy and resolution in this kind of study.


Asunto(s)
Estudios de Factibilidad , Transferencia Resonante de Energía de Fluorescencia , Microscopía Fluorescente , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Humanos , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/química , Espectrometría de Fluorescencia/métodos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Fluorescencia
3.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732024

RESUMEN

Molecular physics plays a pivotal role in various fields, including medicine, pharmaceuticals, and broader industrial applications. This study aims to enhance the methods for producing specific optically active materials with distinct spectroscopic properties at the molecular level, which are crucial for these sectors, while prioritizing human safety in both production and application. Forensic science, a significant socio-economic field, often employs hazardous substances in analyzing friction ridges on porous surfaces, posing safety concerns. In response, we formulated novel, non-toxic procedures for examining paper evidence, particularly thermal papers. Our laboratory model utilizes a polyvinyl alcohol polymer as a rigid matrix to emulate the thermal paper's environment, enabling precise control over the spectroscopic characteristics of 1,8-diazafluoro-9-one (DFO). We identified and analyzed the cyclodimer 1,8-diazafluoren-9-one (DAK DFO), which is a non-toxic and biocompatible alternative for revealing forensic marks. The reagents used to preserve fingerprints were optimized for their effectiveness and stability. Using stationary absorption and emission spectroscopy, along with time-resolved emission studies, we verified the spectroscopic attributes of the new structures under deliberate aggregation conditions. Raman spectroscopy and quantum mechanical computations substantiated the cyclodimer's configuration. The investigation provides robust scientific endorsement for the novel compound and its structural diversity, influenced by the solvatochromic sensitivity of the DFO precursor. Our approach to monitoring aggregation processes signifies a substantial shift in synthetic research paradigms, leveraging simple chemistry to yield an innovative contribution to forensic science methodologies.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos , Humanos , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Ciencias Forenses/métodos
4.
Klin Onkol ; 38(2): 102-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38697818

RESUMEN

BACKGROUND: Endometrial carcinoma (EC) is the most common cancer of the female reproductive tract in developed countries. The prognosis and 5-year survival rates are closely tied to the stage diagnosis. Current routine diagnostic methods of EC are either lacking specificity or are uncomfortable, invasive and painful for the patient. As of now, the gold diagnostic standard is endometrial biopsy. Early and non-invasive diagnosis of EC requires the identification of new biomarkers of disease and a screening test applicable to routine laboratory diagnostics. The application of untargeted metabolomics combined with artificial intelligence and biostatistics tools has the potential to qualitatively and quantitatively represent the metabolome, but its introduction into routine diagnostics is currently unrealistic due to the financial, time and interpretation challenges. Fluorescence spectral analysis of body fluids utilizes autofluorescence of certain metabolites to define the composition of the metabolome under physiological conditions. PURPOSE: This review highlights the potential of fluorescence spectroscopy in the early detection of EC. Data obtained by three-dimensional fluorescence spectroscopy define the quantitative and qualitative composition of the complex fluorescent metabolome and are useful for identifying biochemical metabolic changes associated with endometrial carcinogenesis. Autofluorescence of biological fluids has the prospect of providing new molecular markers of EC. By integrating machine learning and artificial intelligence algorithms in the data analysis of the fluorescent metabolome, this technique has great potential to be implemented in routine laboratory diagnostics.


Asunto(s)
Líquidos Corporales , Neoplasias Endometriales , Humanos , Neoplasias Endometriales/diagnóstico , Femenino , Líquidos Corporales/química , Biomarcadores de Tumor/análisis , Espectrometría de Fluorescencia/métodos , Detección Precoz del Cáncer/métodos , Metabolómica/métodos , Imagen Óptica , Inteligencia Artificial
5.
Mikrochim Acta ; 191(6): 332, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748375

RESUMEN

Nifedipine (NIF), as one of the dihydropyridine calcium channel blockers, is widely used in the treatment of hypertension. However, misuse or ingestion of NIF can result in serious health issues such as myocardial infarction, arrhythmia, stroke, and even death. It is essential to design a reliable and sensitive detection method to monitor NIF. In this work, an innovative molecularly imprinted polymer dual-emission fluorescent sensor (CDs@PDA-MIPs) strategy was successfully designed for sensitive detection of NIF. The fluorescent intensity of the probe decreased with increasing NIF concentration, showing a satisfactory linear relationship within the range 1.0 × 10-6 M ~ 5.0 × 10-3 M. The LOD of NIF was 9.38 × 10-7 M (S/N = 3) in fluorescence detection. The application of the CDs@PDA-MIPs in actual samples such as urine and Qiangli Dingxuan tablets has been verified, with recovery ranging from 97.8 to 102.8% for NIF. Therefore, the fluorescent probe demonstrates great potential as a sensing system for detecting NIF.


Asunto(s)
Carbono , Dopamina , Colorantes Fluorescentes , Límite de Detección , Polímeros Impresos Molecularmente , Nifedipino , Puntos Cuánticos , Espectrometría de Fluorescencia , Puntos Cuánticos/química , Nifedipino/química , Nifedipino/análisis , Colorantes Fluorescentes/química , Polímeros Impresos Molecularmente/química , Dopamina/orina , Dopamina/análisis , Carbono/química , Espectrometría de Fluorescencia/métodos , Humanos , Polimerizacion , Impresión Molecular , Comprimidos/análisis
6.
Mikrochim Acta ; 191(6): 310, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714566

RESUMEN

A ratiometric fluorescence sensor has been established based on dual-excitation carbon dots (D-CDs) for the detection of flavonoids (morin is chosen as the typical detecting model for flavonoids). D-CDs were prepared using microwave radiation with o-phenylenediamine and melamine and exhibit controllable dual-excitation behavior through the regulation of their concentration. Remarkably, the short-wavelength excitation of D-CDs can be quenched by morin owing to the inner filter effect, while the long-wavelength excitation remains insensitive, serving as the reference signal. This contributes to the successful design of an excitation-based ratiometric sensor. Based on the distinct and differentiated variation of excitation intensity, morin can be determined from 0.156 to 110 µM with a low detection limit of 0.156 µM. In addition, an intelligent and visually lateral flow sensing device is developed for the determination  of morin content in real samples with satisfying recoveries, which indicates the potential application for human health monitoring.


Asunto(s)
Carbono , Flavonoides , Límite de Detección , Nitrógeno , Impresión Tridimensional , Puntos Cuánticos , Espectrometría de Fluorescencia , Flavonoides/análisis , Flavonoides/química , Carbono/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Nitrógeno/química , Colorantes Fluorescentes/química , Humanos , Flavonas
7.
Mikrochim Acta ; 191(6): 303, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709340

RESUMEN

A platform was designed based on Fe3O4 and CsPbBr3@SiO2 for integrated magnetic enrichment-fluorescence detection of Salmonella typhimurium, which significantly simplifies the detection process and enhances the working efficiency. Fe3O4 served as a magnetic enrichment unit for the capture of S. typhimurium. CsPbBr3@SiO2 was employed as a fluorescence-sensing unit for quantitative signal output, where SiO2 was introduced to strengthen the stability of CsPbBr3, improve its biomodificability, and prevent lead leakage. More importantly, the SiO2 shell shows neglectable absorption or scattering towards fluorescence, making the CsPbBr3@SiO2 exhibit a high quantum yield of 74.4%. After magnetic enrichment, the decreasing rate of the fluorescence emission intensity of the CsPbBr3@SiO2 supernatant at 527 nm under excitation light at UV 365 nm showed a strong linear correlation with S. typhimurium concentration of 1 × 102~1 × 108 CFU∙mL-1, and the limit of detection (LOD) reached 12.72 CFU∙mL-1. This platform has demonstrated outstanding stability, reproducibility, and resistance to interference, which provides an alternative for convenient and quantitative detection of S. typhimurium.


Asunto(s)
Colorantes Fluorescentes , Límite de Detección , Salmonella typhimurium , Dióxido de Silicio , Salmonella typhimurium/aislamiento & purificación , Dióxido de Silicio/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Plomo/química , Sistemas de Atención de Punto , Sulfuros/química , Nanopartículas de Magnetita/química , Humanos
8.
Mikrochim Acta ; 191(6): 299, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709371

RESUMEN

Gold nanoclusters are a smart platform for sensing potassium ions (K+). They have been synthesized using bovine serum albumin (BSA) and valinomycin (Val) to protect and cap the nanoclusters. The nanoclusters (Val-AuNCs) produced have a red emission at 616 nm under excitation with 470 nm. In the presence of K+, the valinomycin polar groups switch to the molecule's interior by complexing with K+, forming a bracelet structure, and being surrounded by the hydrophobic exterior conformation. This structure allows a proposed fluorometric method for detecting K+ by switching between the Val-AuNCs' hydrophilicity and hydrophobicity, which induces the aggregation of gold nanoclusters. As a result, significant quenching is seen in fluorescence after adding K+. The quenching in fluorescence in the presence of K+ is attributed to the aggregation mechanism. This sensing technique provides a highly precise and selective sensing method for K+ in the range 0.78 to 8 µM with LOD equal to 233 nM. The selectivity of Val-AuNCs toward K+ ions was investigated compared to other ions. Furthermore, the Val-AuNCs have novel possibilities as favorable sensor candidates for various imaging applications. Our detection technique was validated by determining K+ ions in postmortem vitreous humor samples, which yielded promising results.


Asunto(s)
Colorantes Fluorescentes , Oro , Nanopartículas del Metal , Potasio , Albúmina Sérica Bovina , Valinomicina , Oro/química , Valinomicina/química , Potasio/análisis , Potasio/química , Nanopartículas del Metal/química , Albúmina Sérica Bovina/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Límite de Detección , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Bovinos
9.
Mikrochim Acta ; 191(6): 304, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710810

RESUMEN

Dual-emissive fluorescence probes were designed by integrating porphyrin into the frameworks of UiO-66 for ratiometric fluorescence sensing of amoxicillin (AMX). Porphyrin integrated UiO-66 showed dual emission in the blue and red region. AMX resulted in the quenching of blue fluorescence component, attributable to the charge neutralization and hydrogen bonds induced energy transfer. AMX was detected using (F438/F654) as output signals. Two linear relationships were observed (from 10 to 1000 nM and 1 to 100 µM), with a limit of detection of 27 nM. The porphyrin integrated UiO-66 probe was used to detect AMX in practical samples. This work widens the road for the development of dual/multiple emissive fluorescence sensors for analytical applications, providing materials and theoretical supporting for food, environmental, and human safety.


Asunto(s)
Amoxicilina , Antibacterianos , Colorantes Fluorescentes , Leche , Porfirinas , Espectrometría de Fluorescencia , Leche/química , Porfirinas/química , Antibacterianos/análisis , Antibacterianos/química , Amoxicilina/análisis , Amoxicilina/química , Colorantes Fluorescentes/química , Animales , Espectrometría de Fluorescencia/métodos , Límite de Detección , Estructuras Metalorgánicas/química , Residuos de Medicamentos/análisis , Contaminación de Alimentos/análisis
10.
Luminescence ; 39(5): e4772, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712470

RESUMEN

The current study presents the first spectrofluorimetric approach for the estimation of lactoferrin, depending on the measurement of its native fluorescence at 337 nm after excitation at 230 nm, without the need for any hazardous chemicals or reagents. It was found that the fluorescence intensity versus concentration calibration plot was linear over the concentration range of 0.1-10.0 µg/mL with quantitation and detection limits of 0.082 and 0.027 µg/mL, respectively. The method was accordingly validated according to the ICH recommendations. The developed method was applied for the estimation of lactoferrin in different dosage forms, including capsules and sachets with high percent recoveries (97.84-102.53) and low %RSD values (<1.95). Lactoferrin is one of the key nutrients in milk powder and a significant nutritional fortifier. In order to assess the quality of milk powder, it is essential to rapidly and accurately quantify the lactoferrin content of the product. Therefore, the presented study was successfully applied for the selective estimation of lactoferrin in milk powder with acceptable percent recoveries (96.45-104.92) and %RSD values (≤3.607). Finally, the green profile of the method was estimated using two assessment tools: Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE), which demonstrated its excellent greenness.


Asunto(s)
Fórmulas Infantiles , Lactoferrina , Espectrometría de Fluorescencia , Lactoferrina/análisis , Fórmulas Infantiles/química , Fórmulas Infantiles/análisis , Espectrometría de Fluorescencia/métodos , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Humanos , Lactante , Tecnología Química Verde , Leche/química , Límite de Detección , Animales
11.
Sci Rep ; 14(1): 10066, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698009

RESUMEN

The global threat of antibiotic resistance has increased the importance of the detection of antibiotics. Conventional methods to detect antibiotics are time-consuming and require expensive specialized equipment. Here, we present a simple and rapid biosensor for detecting ampicillin, a commonly used antibiotic. Our method is based on the fluorescent properties of chitosan-coated Mn-doped ZnS micromaterials combined with the ß-lactamase enzyme. The biosensors exhibited the highest sensitivity in a linear working range of 13.1-72.2 pM with a limit of detection of 8.24 pM in deionized water. In addition, due to the biological specificity of ß-lactamase, the proposed sensors have demonstrated high selectivity over penicillin, tetracycline, and glucose through the enhancing and quenching effects at wavelengths of 510 nm and 614 nm, respectively. These proposed sensors also showed promising results when tested in various matrices, including tap water, bottled water, and milk. Our work reports for the first time the cost-effective (Mn:ZnS)Chitosan micromaterial was used for ampicillin detection. The results will facilitate the monitoring of antibiotics in clinical and environmental contexts.


Asunto(s)
Ampicilina , Técnicas Biosensibles , Quitosano , Manganeso , Sulfuros , Compuestos de Zinc , Ampicilina/análisis , Ampicilina/química , Quitosano/química , Técnicas Biosensibles/métodos , Compuestos de Zinc/química , Manganeso/química , Sulfuros/química , Antibacterianos/análisis , Antibacterianos/química , beta-Lactamasas/análisis , beta-Lactamasas/metabolismo , beta-Lactamasas/química , Leche/química , Límite de Detección , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Animales
12.
Sci Rep ; 14(1): 10293, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704412

RESUMEN

In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFe2O4 nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFe2O4/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The response surface methodology (RSM) was also employed to optimize and estimate the effective parameters of pirimicarb adsorption by this polymer. According to the experimental results, the average particle size and imprinting factor (IF) of this polymer are 53.61 nm and 2.48, respectively. Moreover, this polymer has an excellent ability to adsorb pirimicarb with a removal percentage of 99.92 at pH = 7.54, initial pirimicarb concentration = 10.17 mg/L, polymer dosage = 840 mg/L, and contact time = 6.15 min. The detection of pirimicarb was performed by fluorescence spectroscopy at a concentration range of 0-50 mg/L, and a sensitivity of 15.808 a.u/mg and a limit of detection of 1.79 mg/L were obtained. Real samples with RSD less than 2 were measured using this chemosensor. Besides, the proposed chemosensor demonstrated remarkable selectivity by checking some other insecticides with similar and different molecular structures to pirimicarb, such as diazinon, deltamethrin, and chlorpyrifos.


Asunto(s)
Plaguicidas , Pirimidinas , Plaguicidas/análisis , Carbamatos/análisis , Carbamatos/química , Puntos Cuánticos/química , Polímeros Impresos Molecularmente/química , Polímeros/química , Espectrometría de Fluorescencia/métodos , Grafito/química , Impresión Molecular/métodos , Adsorción , Límite de Detección , Espectroscopía Infrarroja por Transformada de Fourier , Nanocompuestos/química , Nanocompuestos/ultraestructura
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124349, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692107

RESUMEN

Fluorine (F) is a pivotal element in the formation of human dental and skeletal tissues, and the consumption of water and tea constitutes a significant source of fluoride intake. However, prolonged ingestion of water and tea with excessive fluoride content can lead to fluorosis, which poses a serious health hazard. In this manuscript, a novel turn-on fluorescent probe DCF synthesized by bis-coumarin and tert-butyldiphenylsilane (TBDPS) was introduced for detecting F- in potable water and tea infusions. By leveraging the unique chemical affinity between fluoride and silicon, F- triggers the silicon-oxygen bond cleavage in DCF, culminating in a conspicuous emission of yellow fluorescence. Validated through a succession of optical tests, this probe exhibits remarkable advantages in terms of superior selectivity, a low detection limit, a large Stokes shift, and robust interference resistance when detecting inorganic fluoride. Moreover, it can serve as portable test strips for on-site real-time identification and quantitative analysis of F-. Furthermore, the application of DCF for in-situ monitoring and imaging of F- in zebrafish and soybean root tissues proved its significant value for F- detection in both animal and plant systems. This probe potentially functions as an efficient instrument for delving into the toxic mechanisms of fluoride in physiological processes.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , , Pez Cebra , Colorantes Fluorescentes/química , Animales , Cumarinas/química , Té/química , Agua Potable/análisis , Espectrometría de Fluorescencia/métodos , Flúor/análisis , Flúor/química , Fluoruros/análisis , Glycine max/química , Límite de Detección , Imagen Óptica/métodos
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124357, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692110

RESUMEN

This study described the preparation of an azide covalent organic framework-embedded molecularly imprinted polymers (COFs(azide)@MIPs) platform for urea adsorption and indirect ethyl carbamate (EC) removal from Chinese yellow rice wine (Huangjiu). By modifying the pore surface of COFs using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, COFs(azide) with a high fluorescence quantum yield and particular recognition ability were inventively produced. In order to selectively trap urea, the COFs(azide) were encased in an imprinted shell layer via imprinting technology. With a detection limit (LOD) of 0.016 µg L-1 (R2 = 0.9874), the COFs(azides)@MIPs demonstrated a good linear relationship with urea in the linear range of 0-5 µg L-1. Using real Huangjiu samples, the spiking recovery trials showed the viability of this sensing platform with recoveries ranging from 88.44 % to 109.26 % and an RSD of less than 3.40 %. The Huangjiu processing model system achieved 38.93 % EC reduction by COFs(azides)@MIPs. This research will open up new avenues for the treatment of health problems associated with fermented alcoholic beverages, particularly Huangjiu, while also capturing and removing hazards coming from food.


Asunto(s)
Polímeros Impresos Molecularmente , Urea , Uretano , Vino , Uretano/análisis , Uretano/química , Polímeros Impresos Molecularmente/química , Urea/análisis , Urea/química , Vino/análisis , Espectrometría de Fluorescencia/métodos , Azidas/química , Límite de Detección , Adsorción , Estructuras Metalorgánicas/química , Impresión Molecular/métodos
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124372, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703408

RESUMEN

Here, a novel fluorescence strategy was established for the detection of mirabegron (MBG) sensitively on the basis of hantzsch dihydropyridine synthesis. The developed method adopts turn-on fluorescence of MBG for the first time, permitting its selective determination in spiked human plasma at 486 nm after excitation at 410 nm. The developed method exhibited a good linear range from 0.5 µgmL-1 to 2.0 µgmL-1 with detection and quantification limits of 0.05 and 0.2 (µgmL-1), respectively. The profitable applicability of the developed method in spiked human plasma samples was demonstrated, achieving limit of detection below the previously levels reported by spectroscopic methods, allowing application of the developed method for selective determination of MBG in its tablets and spiked human plasma samples with good recovery.


Asunto(s)
Acetanilidas , Límite de Detección , Espectrometría de Fluorescencia , Tiazoles , Humanos , Tiazoles/sangre , Tiazoles/química , Acetanilidas/sangre , Acetanilidas/química , Espectrometría de Fluorescencia/métodos , Reproducibilidad de los Resultados
16.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38602359

RESUMEN

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Asunto(s)
Peces , Formaldehído , Límite de Detección , Compuestos de Tritilo , Formaldehído/análisis , Formaldehído/química , Animales , Compuestos de Tritilo/química , Compuestos de Tritilo/análisis , Gases/química , Gases/análisis , Alimentos Marinos/análisis , Contaminación de Alimentos/análisis , Soluciones , Análisis de los Alimentos/métodos , Análisis de los Alimentos/instrumentación , Espectrometría de Fluorescencia/métodos
17.
Chemosphere ; 357: 141966, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614401

RESUMEN

Chromium is widely recognized as a significant pollutant discharged into the environment by various industrial activities. The toxicity of this element is dependent on its oxidation state, making speciation analysis crucial for monitoring the quality of environmental water and assessing the potential risks associated with industrial waste. This study introduces a single-well fluorometric sensor that utilizes orange emissive thioglycolic acid stabilized CdTe quantum dots (TGA-QDs) and blue emissive carbon dots (CDs) to detect and differentiate between various chromium species, such as Cr (III) and Cr (VI) (i.e., CrO42- and Cr2O72-). The variations of fluorescence spectra of the proposed probe upon chromium species addition were analyzed using machine learning techniques such as linear discriminant analysis and partial least squares regression as a classification and multivariate calibration technique, respectively. Linear discriminant analysis (LDA) demonstrated exceptional accuracy in differentiating single-component and bicomponent samples. Additionally, the findings from the partial least squares regression (PLSR) showed that the sensor created has strong linearity within the 1.0-100.0, 1.0-100.0, and 0.1-15 µM range for Cr2O72-, CrO42-, and Cr3+, respectively. Furthermore, appropriate detection limits were successfully achieved, which were 2.6, 2.9, and 0.7 µM for Cr2O72-, CrO42-, and Cr3+, respectively. Ultimately, the successful capability of the sensing platform in the identification and quantification of chromium species in environmental water samples provides innovative insights into general speciation analytics.


Asunto(s)
Cromo , Aprendizaje Automático , Puntos Cuánticos , Contaminantes Químicos del Agua , Cromo/análisis , Cromo/química , Puntos Cuánticos/química , Contaminantes Químicos del Agua/análisis , Análisis de los Mínimos Cuadrados , Colorantes Fluorescentes/química , Análisis Discriminante , Telurio/química , Monitoreo del Ambiente/métodos , Compuestos de Cadmio/química , Espectrometría de Fluorescencia/métodos , Carbono/química
18.
Sensors (Basel) ; 24(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38676260

RESUMEN

The study presents a promising approach to enzymatic kinetics using Electrochemical Impedance Spectroscopy (EIS) to assess fundamental parameters of modified enteropeptidases. Traditional methods for determining these parameters, while effective, often lack versatility and convenience, especially under varying environmental conditions. The use of EIS provides a novel approach that overcomes these limitations. The enteropeptidase underwent genetic modification through the introduction of single amino acid modifications to assess their effect on enzyme kinetics. However, according to the one-sample t-test results, the difference between the engineered enzymes and hEKL was not statistically significant by conventional criteria. The kinetic parameters were analyzed using fluorescence spectroscopy and EIS, which was found to be an effective tool for the real-time measurement of enzyme kinetics. The results obtained through EIS were not significantly different from those obtained through traditional fluorescence spectroscopy methods (p value >> 0.05). The study validates the use of EIS for measuring enzyme kinetics and provides insight into the effects of specific amino acid changes on enteropeptidase function. These findings have potential applications in biotechnology and biochemical research, suggesting a new method for rapidly assessing enzymatic activity.


Asunto(s)
Espectroscopía Dieléctrica , Cinética , Espectroscopía Dieléctrica/métodos , Espectrometría de Fluorescencia/métodos , Técnicas Biosensibles/métodos , Ingeniería de Proteínas/métodos
19.
Methods Mol Biol ; 2790: 269-292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649576

RESUMEN

The world we live in is very fragile. Sustainable food production is increasingly under intense pressure due to changing environmental conditions on many levels. Understanding the complexities of how to optimize food production under increasingly deleterious environmental conditions is dependent upon accurate and detailed analyses of plant productivity from the molecular-to-the-remote scales. One method that can link many of these scales has been around for decades, namely, pulse amplitude modulation (PAM) chlorophyll a fluorescence. This technique is used to measure an assortment of important parameters based on chlorophyll a fluorescence. One of the parameters measured by this method is termed the steady state maximum fluorescence yield ( Φ Fm ' ). This parameter, while extremely informative when used to quantify an assortment of processes of intense scientific interest, is nonetheless subject to intrinsic underestimation. A clever approach has evolved over several decades to more accurately estimate Φ Fm ' . The underlying rationale of the methodology requires a thorough and nuanced explanation, which is lacking in the literature. Herein, we systematically develop the essential rationale for accurately measuring Φ Fm ' based on the latest evolution of this approach, called multiphase flash (MPF) methodology.


Asunto(s)
Clorofila A , Fluorescencia , Clorofila A/análisis , Clorofila A/metabolismo , Clorofila/metabolismo , Clorofila/análisis , Luz , Fotosíntesis/fisiología , Espectrometría de Fluorescencia/métodos
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124347, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678843

RESUMEN

At present, the contamination of water resources by heavy metal ions has posed a significant threat to human survival. Therefore, it is particularly critical to develop low-cost, easy-to-use, and highly efficient heavy metal detection technologies. In this work, a fast and cost-effective fluorescent probe for nitrogen-doped carbon dots (N-CDs) was prepared using one-step hydrothermal method with citric acid (CA) as carbon source, and melamine as nitrogen source. The structural and optical characterizations of the resulting N-CDs were investigated in details. The results showed that the quantum yield of the prepared fluorescent probe was as high as 45 %, and an average fluorescence lifetime was about 7.80 ns. N-CDs have excellent water solubility and dispersibility, with an average size of 2.58 nm. N-CDs exhibited excellent specific responsiveness to Fe3+ and can be used as an effective method for detecting Fe3+ at low-concentrations (the concentrations of N-CDs as low as 0.24 µg/mL) using fluorescent probes. The linear response of the fluorescent probe N-CDs to Fe3+ was formed in the concentration range of 20-80 µM, and the detection limit was 3.18 µM. In addition, in the actual water samples analysis, the recovery rate reached 97.05-100.58 %. The prepared of N-CDs provide available Fe3+ fluorescent probes in the environment.


Asunto(s)
Carbono , Colorantes Fluorescentes , Límite de Detección , Nitrógeno , Puntos Cuánticos , Espectrometría de Fluorescencia , Colorantes Fluorescentes/química , Nitrógeno/química , Carbono/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Hierro/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA