Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 733
Filtrar
1.
Sci Rep ; 14(1): 14980, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951137

RESUMEN

Polyethylene glycols (PEGs) are used in industrial, medical, health care, and personal care applications. The cycling and disposal of synthetic polymers like PEGs pose significant environmental concerns. Detecting and monitoring PEGs in the real world calls for immediate attention. This study unveils the efficacy of time-of-flight secondary ion mass spectrometry (ToF-SIMS) as a reliable approach for precise analysis and identification of reference PEGs and PEGs used in cosmetic products. By comparing SIMS spectra, we show remarkable sensitivity in pinpointing distinctive ion peaks inherent to various PEG compounds. Moreover, the employment of principal component analysis effectively discriminates compositions among different samples. Notably, the application of SIMS two-dimensional image analysis visually portrays the spatial distribution of various PEGs as reference materials. The same is observed in authentic cosmetic products. The application of ToF-SIMS underscores its potential in distinguishing PEGs within intricate environmental context. ToF-SIMS provides an effective solution to studying emerging environmental challenges, offering straightforward sample preparation and superior detection of synthetic organics in mass spectral analysis. These features show that SIMS can serve as a promising alternative for evaluation and assessment of PEGs in terms of the source, emission, and transport of anthropogenic organics.


Asunto(s)
Cosméticos , Polietilenglicoles , Espectrometría de Masa de Ion Secundario , Cosméticos/análisis , Cosméticos/química , Espectrometría de Masa de Ion Secundario/métodos , Polietilenglicoles/química , Polietilenglicoles/análisis , Análisis de Componente Principal
2.
J Oleo Sci ; 73(6): 825-837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825536

RESUMEN

Hair is important to our appearance as well as to protect our heads. Human hair mainly consists of proteins (80-85%), melanin pigments (0-5%), water (10-13%), and lipids (1-6%). The physicochemical properties of hair have been studied for over 100 years. However, they are not yet thoroughly understood. In this review, recent progress and the latest findings are summarized from the following three perspectives: structural characteristics, delivery and distribution of active ingredients, and hair as a template. The structural characteristics of hair have been mainly investigated by microscopic and/or spectroscopic techniques such as atomic force microscopy integrated with infrared spectroscopy (AFM-IR) and rheological measurements. The distribution of active ingredients has been generally evaluated through techniques such as nanoscale secondary ion mass spectrometry (NanoSIMS). And finally, attempts to explore the potential of hair to be used as a substrate for flexible device fabrication will be introduced.


Asunto(s)
Cabello , Cabello/química , Humanos , Microscopía de Fuerza Atómica , Melaninas , Fenómenos Químicos , Espectrometría de Masa de Ion Secundario/métodos , Reología , Espectrofotometría Infrarroja/métodos , Lípidos/análisis , Lípidos/química , Agua , Proteínas/análisis
3.
Methods Cell Biol ; 186: 213-231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705600

RESUMEN

Advancements in multiplexed tissue imaging technologies are vital in shaping our understanding of tissue microenvironmental influences in disease contexts. These technologies now allow us to relate the phenotype of individual cells to their higher-order roles in tissue organization and function. Multiplexed Ion Beam Imaging (MIBI) is one of such technologies, which uses metal isotope-labeled antibodies and secondary ion mass spectrometry (SIMS) to image more than 40 protein markers simultaneously within a single tissue section. Here, we describe an optimized MIBI workflow for high-plex analysis of Formalin-Fixed Paraffin-Embedded (FFPE) tissues following antigen retrieval, metal isotope-conjugated antibody staining, imaging using the MIBI instrument, and subsequent data processing and analysis. While this workflow is focused on imaging human FFPE samples using the MIBI, this workflow can be easily extended to model systems, biological questions, and multiplexed imaging modalities.


Asunto(s)
Adhesión en Parafina , Humanos , Adhesión en Parafina/métodos , Espectrometría de Masa de Ion Secundario/métodos , Fijación del Tejido/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Formaldehído/química
4.
Talanta ; 272: 125762, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394748

RESUMEN

Membrane lipids have been known to influence multiple signalling and cellular processes. Dysregulation of lipids at the neuronal membrane is connected to a significant alteration of the brain function and morphology, leading to brain diseases and neurodegeneration. Understanding the lipid composition and turnover of neuronal membrane will provide a significant insight into the molecular events underlying the regulatory effects of these biomolecules in a neuronal system. In this study, we aimed to characterize the composition and turnover of the plasma membrane lipids in human neural progenitor cells (NPCs) at an early differentiation stage into midbrain neurons using ToF-SIMS imaging. Lipid composition of the native plasma membrane was explored, followed by an examination of the lipid turnover using different isotopically labelled lipid precursors, including 13C-choline, 13C-lauric acid, 15N-linoleic, and 13C-stearic. Our results showed that differentiating NPCs contain a high abundance of ceramides, glycerophosphoserines, neutral glycosphingolipids, diradylglycerols, and glycerophosphocholines at the plasma membrane. In addition, different precursors were found to incorporate into different membrane lipids which are specific for the short- or long-carbon chains, and the unsaturation or saturation stage of the precursors. The lipid structure of neuronal membrane reflects the differentiation status of NPCs, and it can be altered significantly using a particular lipid precursor. Our study illustrates a potential of ToF-SIMS imaging to study native plasma membrane lipids and elucidate complex cellular processes by providing molecular -rich information at a single cell level.


Asunto(s)
Lípidos de la Membrana , Espectrometría de Masa de Ion Secundario , Humanos , Espectrometría de Masa de Ion Secundario/métodos , Membrana Celular , Membranas , Células Madre
5.
Biointerphases ; 19(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38341772

RESUMEN

In-source fragmentation (ISF) poses a significant challenge in secondary ion mass spectrometry (SIMS). These fragment ions increase the spectral complexity and can lead to incorrect annotation of fragments as intact species. The presence of salt that is ubiquitous in biological samples can influence the fragmentation and ionization of analytes in a significant manner, but their influences on SIMS have not been well characterized. To elucidate the effect of substrates and salt on ISF in SIMS, we have employed experimental SIMS in combination with atomistic simulations of a sphingolipid on a gold surface with various NaCl concentrations as a model system. Our results revealed that a combination of bond dissociation energy and binding energy between N-palmitoyl-sphingomyelin and a gold surface is a good predictor of fragment ion intensities in the absence of salt. However, ion-fragment interactions play a significant role in determining fragment yields in the presence of salt. Additionally, the charge distribution on fragment species may be a major contributor to the varying effects of salt on fragmentation. This study demonstrates that atomistic modeling can help predict ionization potential when salts are present, providing insights for more accurate interpretations of complex biological spectra.


Asunto(s)
Cloruro de Sodio , Espectrometría de Masa de Ion Secundario , Estudios de Seguimiento , Espectrometría de Masa de Ion Secundario/métodos , Iones/química
6.
Anal Chem ; 96(9): 3717-3721, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38262943

RESUMEN

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has become a promising analytical tool for molecular profiling in biological applications. However, its ultrahigh vacuum environment and matrix effects hamper the absolute quantitation of solution samples. Herein, we present a rapid high-throughput platform for quantitative ToF-SIMS analysis of amino acids in matrix deposits formed from freeze-dried solution drops through ice sublimation on a parylene film microarray substrate. Droplets of the amino acid solutions, which were mixed with stable isotope-labeled phenylalanine (F*) of high concentration (10 mM), were loaded on wells of the microarray, then frozen and evaporated slowly below the freezing point, forming continuous solid-phase F* matrix deposits. The amino acids (≤500 µM), adequately well dispersed throughout the F* matrix deposits on each well, were quantitatively analyzed by ToF-SIMS in a rapid and high-throughput fashion. The lower limit of quantitation reached below 10 µM.


Asunto(s)
Aminoácidos , Espectrometría de Masa de Ion Secundario , Espectrometría de Masa de Ion Secundario/métodos , Congelación , Fenilalanina , Análisis por Micromatrices
7.
Rapid Commun Mass Spectrom ; 38(2): e9658, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38124172

RESUMEN

RATIONALE: The use of secondary ion mass spectrometry (SIMS) to perform micrometer-scale in situ carbon isotope (δ13 C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole-shell δ13 C values measured by gas source mass spectrometry (GSMS). METHODS: Paired SIMS and GSMS δ13 C values measured from final chamber fragments of the same shell of the planktic foraminifer Orbulina universa are compared. The SIMS-GSMS δ13 C differences (Δ13 CSIMS-GSMS ) were determined via paired analysis of hydrogen peroxide-cleaned fragments of modern cultured specimens and of fossil specimens from deep-sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT-253 or a Fisons Optima isotope ratio mass spectrometer (GSMS). RESULTS: Paired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS-GSMS δ13 C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13 CSIMS-GSMS values of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS-GSMS δ13 C difference. CONCLUSIONS: The noted Δ13 CSIMS-GSMS values are most likely due to matrix effects causing sample-standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105 times smaller than that analyzed by GSMS; hence, the extent to which these Δ13 CSIMS-GSMS values represent differences in analyte or instrument factors remains unclear.


Asunto(s)
Peróxido de Hidrógeno , Espectrometría de Masa de Ion Secundario , Espectrometría de Masa de Ion Secundario/métodos , Isótopos de Carbono/análisis , Gases
8.
Anal Chem ; 95(49): 18287-18294, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38044628

RESUMEN

Bacterial biofilms are structured communities consisting of cells enmeshed in a self-generated extracellular matrix usually attached to a surface. They contain diverse classes of molecules including polysaccharides, lipids, proteins, nucleic acids, and diverse small organic molecules (primary and secondary metabolites) which are organized to optimize survival and facilitate dispersal to new colonization sites. In situ characterization of the chemical composition and structure of bacterial biofilms is necessary to fully understand their development on surfaces relevant to biofouling in health, industry, and the environment. Biofilm development has been extensively studied using confocal microscopy using targeted fluorescent labels providing important insights into the architecture of biofilms. Recently, cryopreparation has been used to undertake targeted in situ chemical characterization using Orbitrap secondary ion mass spectrometry (OrbiSIMS), providing a label-free method for imaging biofilms in their native state. Although the high mass resolution of OrbiSIMS enables more confident peak assignments, it is still very challenging to assign most of the peaks in the spectra due to complexity of SIMS spectra and lack of automatic peak assignment methods. Here, we analyze the same OrbiSIMS depth profile data generated from the frozen-hydrated biofilm, but employ a new untargeted chemical filtering process utilizing mass spectral databases to assign secondary ions to decipher the large number of fragments present in the SIMS spectra. To move towards comprehensive analysis of different chemistries in the sample, we apply a molecular formula prediction approach which putatively assigns 81% of peaks in the 3D OrbiSIMS depth profile analysis. This enables us to catalog over 1000 lipids and their fragments, 3500 protein fragments, 71 quorum sensing-related molecules (2-alkyl-4-quinolones and N-acylhomoserine lactones), 150 polysaccharide fragments, and glycolipids simultaneously from one data set and map these separated molecular classes spatially through a Pseudomonas aeruginosa biofilm. Assignment of different chemistries in this sample facilitates identification of differences between biofilms grown on biofilm-promoting and biofilm-resistant polymers.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/química , Percepción de Quorum , Espectrometría de Masa de Ion Secundario/métodos , Glucolípidos
9.
J Am Soc Mass Spectrom ; 34(10): 2259-2268, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37712225

RESUMEN

The potential of mass spectrometry imaging, and especially ToF-SIMS 2D and 3D imaging, for submicrometer-scale, label-free molecular localization in biological tissues is undisputable. Nevertheless, sensitivity issues remain, especially when one wants to achieve the best lateral and vertical (nanometer-scale) resolution. In this study, the interest of in situ matrix transfer for tissue analysis with cluster ion beams (Bin+, Arn+) is explored in detail, using a series of six low molecular weight acidic (MALDI) matrices. After estimating the sensitivity enhancements for phosphatidylcholine (PC), an abundant lipid type present in almost any kind of cell membrane, the most promising matrices were softly transferred in situ on mouse brain and human uterine tissue samples using a 10 keV Ar3000+ cluster beam. Signal enhancements up to 1 order of magnitude for intact lipid signals were observed in both tissues under Bi5+ and Ar3000+ bombardment. The main findings of this study lie in the in-depth characterization of uterine tissue samples, the demonstration that the transferred matrices also improve signal efficiency in the negative ion polarity and that they perform as well when using Bin+ and Arn+ primary ions for analysis and imaging.


Asunto(s)
Imagenología Tridimensional , Espectrometría de Masa de Ion Secundario , Ratones , Animales , Humanos , Espectrometría de Masa de Ion Secundario/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fosfatidilcolinas , Iones , Encéfalo
10.
Astrobiology ; 23(9): 936-950, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37459147

RESUMEN

The ability to detect and map lipids, including potential lipid biomarkers, within a sedimentary matrix using mass spectrometry (MS) imaging may be critical to determine whether potential lipids detected in samples returned from Mars are indigenous to Mars or are contaminants. Here, we use gas chromatography-mass spectrometry (GC-MS) and time-of-flight-secondary ion mass spectrometry (ToF-SIMS) datasets collected from an organic-rich, thermally immature Jurassic geologic sample to constrain MS imaging analysis of indigenous lipid biomarkers in geologic samples. GC-MS data show that the extractable fractions are dominated by C27-C30 steranes and sterenes as well as isorenieratene derivatives. ToF-SIMS spectra from organic matter-rich laminae contain a strong, spatially restricted signal for ions m/z 370.3, m/z 372.3, and m/z 386.3, which we assign to C27 sterenes, cholestane (C27), and 4- or 24-methyl steranes (C28), respectively, as well as characteristic fragment ions of isorenieratene derivatives, including m/z 133.1, m/z 171.1, and m/z 237.1. We observed individual steroid spatial heterogeneity at the scale of tens to hundreds of microns. The fine-scale heterogeneity observed implies that indigenous lipid biomarkers concentrated within specific regions may be detectable via ToF-SIMS in samples with even low amounts of organic carbon, including in samples returned from Mars.


Asunto(s)
Lípidos , Espectrometría de Masa de Ion Secundario , Espectrometría de Masa de Ion Secundario/métodos , Biomarcadores , Lípidos/análisis , Iones
11.
Analyst ; 148(16): 3690-3707, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37458146

RESUMEN

The cell is the most basic structural unit and plays a vital role in the function of an organism. Studying the heterogeneity of cells, especially the qualitative and quantitative analyses of proteins and lipids at the cellular level and even at the subcellular level, is of great significance for the study of some important pathological or physiological processes. Due to the small size of a single cell, low content of analytes and large interference from the biological matrix within the single cell, analytical methods at the single cell level must be highly sensitive and selective. Mass spectrometry is a powerful technology for single-cell analysis, because it has high sensitivity, high selectivity and the ability to monitor multiple chemicals at the same time. In this review, four mass spectrometry-based methods applied to single-cell analysis are introduced and discussed in detail; these are electrospray ionization mass spectrometry (ESI-MS), laser desorption ionization mass spectrometry (LDI-MS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS). The recent advances in single-cell analysis with these mass spectrometry-based techniques are summarized. We believe that this review can provide some help and reference for single-cell analysis by mass spectrometry.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa de Ion Secundario , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa de Ion Secundario/métodos , Proteínas , Rayos Láser , Análisis de la Célula Individual/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
12.
Biointerphases ; 18(3)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37125849

RESUMEN

This is the second half of a two-part Tutorial on the basics of the time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of bio-related samples. Part I of this Tutorial series covers planning for a ToF-SIMS experiment, preparing and shipping samples, and collecting ToF-SIMS data. This Tutorial aims at helping the ToF-SIMS user to process, display, and interpret ToF-SIMS data. ToF-SIMS provides detailed chemical information about surfaces but comes with a steep learning. The purpose of this Tutorial is to provide the reader with a solid foundation in the ToF-SIMS data analysis.


Asunto(s)
Espectrometría de Masa de Ion Secundario , Espectrometría de Masa de Ion Secundario/métodos
13.
Biointerphases ; 18(3)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37255379

RESUMEN

In the study of degenerative brain diseases, changes in lipids, the main component of neurons, are particularly important because they are used as indicators of pathological changes. One method for the sensitive measurement of biomolecules, especially lipids, is time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed argon cluster ions. In this study, biomolecules including various lipids present in normal mouse brain tissue were measured using ToF-SIMS equipped with pulsed argon cluster primary ions. Based on the ToF-SIMS measurement results, hybrid SIMS (OrbiSIMS), which is a ToF-SIMS system with the addition of an orbitrap mass analyzer, was used to directly identify the biomolecules by the region in the real tissue samples. For this, the results of ToF-SIMS, which measured the tissue samples from a single mouse brain within static limits, were compared with those from OrbiSIMS measured beyond the static limits in terms of the differences in molecular profiling. From this analysis, two types of positive and negative ions were selected for identification, with the OrbiSIMS MS/MS results indicating that the positive ions were glycerophosphocholine and the negative ions were glycerophosphoinositol and sulfatide, a sphingolipid. Then, to confirm the identification of the molecular candidates, lipids were extracted from mirror image tissue samples, and LC-MS/MS also using an orbitrap mass analyzer was performed. As a result, the direct identification of molecular candidate groups distributed in particular regions of the tissue samples via OrbiSIMS was found to be consistent with the identification results by LC-MS/MS for extracted samples.


Asunto(s)
Espectrometría de Masa de Ion Secundario , Espectrometría de Masas en Tándem , Ratones , Animales , Espectrometría de Masa de Ion Secundario/métodos , Espectrometría de Masas en Tándem/métodos , Argón/química , Cromatografía Liquida , Sulfoglicoesfingolípidos , Iones/química , Encéfalo
14.
Biointerphases ; 18(3)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37255380

RESUMEN

Surface functionalization with biological molecules, such as peptides or proteins, is a very promising method for developing new biomaterials with many potential applications. However, due to their chemical complexity, the characterization of biological materials is often a very challenging task. In this context, time-of-flight secondary ion mass spectrometry is a very helpful characterization tool due to its ability to provide very detailed spatially resolved chemical information of the topmost layer. The peculiar emission/ion formation mechanisms involved in ToF-SIMS analysis often do not allow the detection of the molecular ion of proteins and peptides, providing a rich fragmentation pattern, which is difficult to be related to the surface composition using a univariate approach, due to the relevant number of peaks in the SIMS spectra of peptides and proteins and the slight differences in intensities between different samples. Therefore, we used multivariate analysis to extract the information contained in the ToF-SIMS spectra of four peptides with high amino acid sequence similarity along the peptide chain. The reference peptide (TAT1) is a 12-unit sequence of six amino acids (GRKKRRQRRRPS). The other three peptides have been obtained by inserting a bAla-H dipeptide (carnosine) in three different positions inside the TAT1 chain, namely, GRKKRRQRRRPS-bAla-H (TAT1-Car), bAla-HGRKKRRQRRRPS (Car-TAT1), and GRKKRRQ-bAla-H-RRRPS (T-Car-T). We show that these peptides can be distinguished by ToF-SIMS combined with multivariate data analysis.


Asunto(s)
Péptidos , Espectrometría de Masa de Ion Secundario , Péptidos/análisis , Espectrometría de Masa de Ion Secundario/métodos , Secuencia de Aminoácidos , Análisis Multivariante
15.
J Microsc ; 290(2): 125-133, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36864642

RESUMEN

A secondary ion mass spectrometry (SIMS)-based isotopic imaging technique of ion microscopy was used for observing calcium influx in single renal epithelial LLC-PK1 cells. The CAMECA IMS-3f SIMS instrument, used in the study, is capable of producing isotopic images of single cells at 500 nm spatial resolution. Due to the high-vacuum requirements of the instrument the cells were prepared cryogenically with a freeze-fracture method and frozen freeze-dried cells were used for SIMS analysis. The influx of calcium was imaged directly by exposure of cells to 44 Ca stable isotope in the extracellular buffer for 10 min. The 44 Ca influx was measured at mass 44 and the distribution of endogenous calcium at mass 40 (40 Ca) in the same cell. A direct comparison of interphase cells to cells undergoing division revealed that calcium influx is restricted in metaphase and post-metaphase stages of cell division. This restriction is lifted in late cytokinesis. The net influx of 44 Ca in 10 min was approximately half under calcium influx restriction in comparison to interphase cells. Under calcium influx restriction the 44 Ca concentration was the same between the mitotic chromosome and the cytoplasm. These observations indicate that the endoplasmic reticulum (ER) calcium uptake is compromised under calcium influx restriction in cells undergoing division.


Asunto(s)
Calcio , Espectrometría de Masa de Ion Secundario , Metafase , Calcio/análisis , Espectrometría de Masa de Ion Secundario/métodos , División Celular , Citoplasma/química
16.
Biointerphases ; 18(2): 021201, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36990800

RESUMEN

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used widely throughout industrial and academic research due to the high information content of the chemically specific data it produces. Modern ToF-SIMS instruments can generate high mass resolution data that can be displayed as spectra and images (2D and 3D). This enables determining the distribution of molecules across and into a surface and provides access to information not obtainable from other methods. With this detailed chemical information comes a steep learning curve in how to properly acquire and interpret the data. This Tutorial is aimed at helping ToF-SIMS users to plan for and collect ToF-SIMS data. The second Tutorial in this series will cover how to process, display, and interpret ToF-SIMS data.


Asunto(s)
Espectrometría de Masa de Ion Secundario , Espectrometría de Masa de Ion Secundario/métodos , Recolección de Datos
17.
Small Methods ; 7(6): e2201157, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36978251

RESUMEN

Identifying characteristic extracellular matrix (ECM) variants is a key challenge in mechanistic biology, bioengineering, and medical diagnostics. The reported study demonstrates the potential of time-of-flight secondary ion mass spectrometry (ToF-SIMS) to detect subtle differences between human mesenchymal stromal cell (MSC)-secreted ECM types as induced by exogenous stimulation or emerging pathology. ToF-SIMS spectra of decellularized ECM samples are evaluated by discriminant principal component analysis (DPCA), an advanced multivariate analysis technique, to decipher characteristic compositional features. To establish the approach, signatures of major ECM proteins are determined from samples of pre-defined mixtures. Based on that, sets of ECM variants produced by MSCs in vitro are analyzed. Differences in the content of collagen, fibronectin, and laminin in the ECM resulting from the combined supplementation of MSC cultures with polymers that induce macromolecular crowding and with ascorbic acid are detected from the DPCA of ToF-SIMS spectra. The results are verified by immunostaining. Finally, the comparative ToF-SIMS analysis of ECM produced by MSCs of healthy donors and patients suffering from myelodysplastic syndrome display the potential of the novel methodology to reveal disease-associated alterations of the ECM composition.


Asunto(s)
Células Madre Mesenquimatosas , Espectrometría de Masa de Ion Secundario , Humanos , Espectrometría de Masa de Ion Secundario/métodos , Análisis de Componente Principal , Análisis Multivariante , Matriz Extracelular
18.
J Am Soc Mass Spectrom ; 34(4): 720-727, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36891615

RESUMEN

Mass spectrometry imaging (MSI) is a surface analysis technique that produces chemical images and is commonly used for biological and biomedical research. Multimodal imaging combines multiple imaging modes in order to get a more comprehensive view of a sample. Multimodal MSI images are often acquired using multiple MSI instruments, which leads to issues regarding image registration and increases the chance of sample damage or degradation during sample transfer. These problems can be solved by using a single instrument that can image in multiple modes. In order to improve the efficiency of multimodal imaging and investigate complementary modes of MSI, we have modified a prototype Bruker timsTOF fleX by adding secondary ion mass spectrometry (SIMS) and secondary electron (SE) imaging capabilities while preserving the ability to perform matrix-assisted laser desorption/ionization (MALDI). We show multimodal images collected on this instrument that required only trivial registration and were acquired without sample transfer between imaging trials. Furthermore, we characterize the performance of SIMS, SE, and MALDI imaging and compare the performance of the modified instrument to a commercial timsTOF fleX.


Asunto(s)
Electrones , Espectrometría de Masa de Ion Secundario , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masa de Ion Secundario/métodos
19.
Acc Chem Res ; 56(7): 752-762, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36913670

RESUMEN

Characterizing the subcellular distributions of biomolecules of interest is a basic inquiry that helps inform on the potential roles of these molecules in biological functions. Presently, the functions of specific lipid species and cholesterol are not well understood, partially because cholesterol and lipid species of interest are difficult to image with high spatial resolution but without perturbing them. Because cholesterol and lipids are relatively small and their distributions are influenced by noncovalent interactions with other biomolecules, functionalizing them with relatively large labels that permit their detection may alter their distributions in membranes and between organelles. This challenge has been surmounted by exploiting rare stable isotopes as labels that may be metabolically incorporated into cholesterol and lipids without altering their chemical compositions, and the Cameca NanoSIMS 50 instrument's ability to image rare stable isotope labels with high spatial resolution. This Account covers the use of secondary ion mass spectrometry (SIMS) performed with a Cameca NanoSIMS 50 instrument for imaging cholesterol and sphingolipids in the membranes of mammalian cells. The NanoSIMS 50 detects monatomic and diatomic secondary ions ejected from the sample to map the elemental and isotopic composition at the surface of the sample with better than 50 nm lateral resolution and 5 nm depth resolution. Much effort has focused on using NanoSIMS imaging of rare isotope-labeled cholesterol and sphingolipids for testing the long-standing hypothesis that cholesterol and sphingolipids colocalize within distinct domains in the plasma membrane. By using a NanoSIMS 50 to image rare isotope-labeled cholesterol and sphingolipids in parallel with affinity-labeled proteins of interest, a hypothesis regarding the colocalization of specific membrane proteins with cholesterol and sphingolipids in distinct plasma membrane domains has been tested. NanoSIMS performed in a depth profiling mode has enabled imaging the intracellular distributions of cholesterol and sphingolipids. Important progress has also been made in developing a computational depth correction strategy for constructing more accurate three-dimensional (3D) NanoSIMS depth profiling images of intracellular component distribution without requiring additional measurements with complementary techniques or signal collection. This Account provides an overview of this exciting progress, focusing on the studies from our laboratory that shifted understanding of plasma membrane organization, and the development of enabling tools for visualizing intracellular lipids.


Asunto(s)
Espectrometría de Masa de Ion Secundario , Esfingolípidos , Animales , Esfingolípidos/metabolismo , Membrana Celular/metabolismo , Espectrometría de Masa de Ion Secundario/métodos , Proteínas/metabolismo , Colesterol/química , Mamíferos/metabolismo
20.
Environ Pollut ; 323: 121229, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804146

RESUMEN

The mass and volume concentration of nanoplastics is extremely low, but incredibly high in terms of surface area; this is expected to increase their toxicity through the ab/adsorption and transport of chemical co-pollutants such as trace metals. In this context, we studied the interactions between nanoplastics model materials functionalized with carboxylated groups, with either smooth or raspberry-like surface morphologies, and copper as representative of trace metals. For this purpose, a new methodology, using two complementary surface analysis techniques: Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) was developed. In addition, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the total mass of sorbed metal on the nanoplastics. This innovative analytical approach from the top surface to the core of nanoplastics demonstrated not only the interactions with copper at the surface level, but also the ability of nanoplastics to absorb metal at their core. Indeed, after 24 h of exposition, the copper concentration at the nanoplastic surface remained constant due to saturation whereas the copper concentration inside the nanoplastic keeps increasing with the time. The sorption kinetic was evaluated to increase with the density of charge of the nanoplastic and the pH. This study confirmed the ability of nanoplastics to act as metal pollutant carriers by both adsorption and absorption phenomena.


Asunto(s)
Microplásticos , Oligoelementos , Cobre/química , Análisis Espectral , Espectrometría de Masa de Ion Secundario/métodos , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...