Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.872
Filtrar
1.
Cells ; 13(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38891120

RESUMEN

Methyl-CpG-binding protein 2 (Mecp2) is an epigenetic modulator and numerous studies have explored its impact on the central nervous system manifestations. However, little attention has been given to its potential contributions to the peripheral nervous system (PNS). To investigate the regulation of Mecp2 in the PNS on specific central regions, we generated Mecp2fl/flAdvillincre mice with the sensory-neuron-specific deletion of the Mecp2 gene and found the mutant mice had a heightened sensitivity to temperature, which, however, did not affect the sense of motion, social behaviors, and anxiety-like behavior. Notably, in comparison to Mecp2fl/fl mice, Mecp2fl/flAdvillincre mice exhibited improved learning and memory abilities. The levels of hippocampal synaptophysin and PSD95 proteins were higher in Mecp2fl/flAdvillincre mice than in Mecp2fl/fl mice. Golgi staining revealed a significant increase in total spine density, and dendritic arborization in the hippocampal pyramidal neurons of Mecp2fl/flAdvillincre mice compared to Mecp2fl/fl mice. In addition, the activation of the BDNF-TrkB-CREB1 pathway was observed in the hippocampus and spinal cord of Mecp2fl/flAdvillincre mice. Intriguingly, the hippocampal BDNF/CREB1 signaling pathway in mutant mice was initiated within 5 days after birth. Our findings suggest a potential therapeutic strategy targeting the BDNF-TrkB-CREB1 signaling pathway and peripheral somasensory neurons to treat learning and cognitive deficits associated with Mecp2 disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cognición , Espinas Dendríticas , Hipocampo , Proteína 2 de Unión a Metil-CpG , Animales , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/deficiencia , Hipocampo/metabolismo , Hipocampo/patología , Espinas Dendríticas/metabolismo , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Receptoras Sensoriales/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Masculino , Transducción de Señal , Ratones Endogámicos C57BL , Receptor trkB/metabolismo , Receptor trkB/genética
2.
Mol Brain ; 17(1): 33, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840181

RESUMEN

Loss-of-function mutations in the progranulin (GRN) gene are an autosomal dominant cause of Frontotemporal Dementia (FTD). These mutations typically result in haploinsufficiency of the progranulin protein. Grn+/- mice provide a model for progranulin haploinsufficiency and develop FTD-like behavioral abnormalities by 9-10 months of age. In previous work, we demonstrated that Grn+/- mice develop a low dominance phenotype in the tube test that is associated with reduced dendritic arborization of layer II/III pyramidal neurons in the prelimbic region of the medial prefrontal cortex (mPFC), a region key for social dominance behavior in the tube test assay. In this study, we investigated whether progranulin haploinsufficiency induced changes in dendritic spine density and morphology. Individual layer II/III pyramidal neurons in the prelimbic mPFC of 9-10 month old wild-type or Grn+/- mice were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and 3D reconstruction for morphometry analysis. Dendritic spine density in Grn+/- mice was comparable to wild-type littermates, but the apical dendrites in Grn+/- mice had a shift in the proportion of spine types, with fewer stubby spines and more thin spines. Additionally, apical dendrites of Grn+/- mice had longer spines and smaller thin spine head diameter in comparison to wild-type littermates. These changes in spine morphology may contribute to altered circuit-level activity and social dominance deficits in Grn+/- mice.


Asunto(s)
Espinas Dendríticas , Haploinsuficiencia , Corteza Prefrontal , Progranulinas , Animales , Espinas Dendríticas/metabolismo , Corteza Prefrontal/patología , Corteza Prefrontal/metabolismo , Progranulinas/deficiencia , Progranulinas/genética , Ratones , Células Piramidales/metabolismo , Células Piramidales/patología , Masculino , Ratones Endogámicos C57BL
3.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791517

RESUMEN

Maternal immune activation (MIA) is a risk factor for multiple neurodevelopmental disorders; however, animal models developed to explore MIA mechanisms are sensitive to experimental factors, which has led to complexity in previous reports of the MIA phenotype. We sought to characterize an MIA protocol throughout development to understand how prenatal immune insult alters the trajectory of important neurodevelopmental processes, including the microglial regulation of synaptic spines and complement signaling. We used polyinosinic:polycytidylic acid (polyI:C) to induce MIA on gestational day 9.5 in CD-1 mice, and measured their synaptic spine density, microglial synaptic pruning, and complement protein expression. We found reduced dendritic spine density in the somatosensory cortex starting at 3-weeks-of-age with requisite increases in microglial synaptic pruning and phagocytosis, suggesting spine density loss was caused by increased microglial synaptic pruning. Additionally, we showed dysregulation in complement protein expression persisting into adulthood. Our findings highlight disruptions in the prenatal environment leading to alterations in multiple dynamic processes through to postnatal development. This could potentially suggest developmental time points during which synaptic processes could be measured as risk factors or targeted with therapeutics for neurodevelopmental disorders.


Asunto(s)
Proteínas del Sistema Complemento , Espinas Dendríticas , Microglía , Poli I-C , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/inmunología , Ratones , Femenino , Embarazo , Espinas Dendríticas/metabolismo , Poli I-C/farmacología , Proteínas del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/inmunología , Efectos Tardíos de la Exposición Prenatal , Fagocitosis , Modelos Animales de Enfermedad , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos
4.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785269

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in MECP2, which encodes methyl-CpG-binding protein 2, a transcriptional regulator of many genes, including brain-derived neurotrophic factor (BDNF). BDNF levels are lower in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of LM22A-4, a brain-penetrant, small-molecule ligand of the BDNF receptor TrkB (encoded by Ntrk2), on dendritic spine density and form in hippocampal pyramidal neurons and on behavioral phenotypes in female Mecp2 heterozygous (HET) mice. A 4-week systemic treatment of Mecp2 HET mice with LM22A-4 restored spine volume in MeCP2-expressing neurons to wild-type (WT) levels, whereas spine volume in MeCP2-lacking neurons remained comparable to that in neurons from female WT mice. Female Mecp2 HET mice engaged in aggressive behaviors more than WT mice, the levels of which were reduced to WT levels by the 4-week LM22A-4 treatment. These data provide additional support to the potential usefulness of novel therapies not only for RTT but also to other BDNF-related disorders.


Asunto(s)
Conducta Animal , Espinas Dendríticas , Proteína 2 de Unión a Metil-CpG , Fenotipo , Receptor trkB , Síndrome de Rett , Animales , Síndrome de Rett/patología , Síndrome de Rett/tratamiento farmacológico , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Femenino , Receptor trkB/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Conducta Animal/efectos de los fármacos , Ligandos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/patología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Heterocigoto , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Benzamidas
5.
Zool Res ; 45(3): 535-550, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38747058

RESUMEN

Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function. Synaptic abnormalities, such as defects in the density and morphology of postsynaptic dendritic spines, underlie the pathology of various neuropsychiatric disorders. Protocadherin 17 (PCDH17) is associated with major mood disorders, including bipolar disorder and depression. However, the molecular mechanisms by which PCDH17 regulates spine number, morphology, and behavior remain elusive. In this study, we found that PCDH17 functions at postsynaptic sites, restricting the number and size of dendritic spines in excitatory neurons. Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety- and depression-like behaviors in mice. Mechanistically, PCDH17 interacts with actin-relevant proteins and regulates actin filament (F-actin) organization. Specifically, PCDH17 binds to ROCK2, increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3 (Ser3). Inhibition of ROCK2 activity with belumosudil (KD025) ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression, suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development. Hence, these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior, providing pathological insights into the neurobiological basis of mood disorders.


Asunto(s)
Citoesqueleto de Actina , Cadherinas , Espinas Dendríticas , Protocadherinas , Quinasas Asociadas a rho , Animales , Ratones , Citoesqueleto de Actina/metabolismo , Cadherinas/metabolismo , Cadherinas/genética , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Regulación de la Expresión Génica , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Protocadherinas/genética , Protocadherinas/metabolismo
6.
Commun Biol ; 7(1): 642, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802535

RESUMEN

Alterations in the experience-dependent and autonomous elaboration of neural circuits are assumed to underlie autism spectrum disorder (ASD), though it is unclear what synaptic traits are responsible. Here, utilizing a valproic acid-induced ASD marmoset model, which shares common molecular features with idiopathic ASD, we investigate changes in the structural dynamics of tuft dendrites of upper-layer pyramidal neurons and adjacent axons in the dorsomedial prefrontal cortex through two-photon microscopy. In model marmosets, dendritic spine turnover is upregulated, and spines are generated in clusters and survived more often than in control marmosets. Presynaptic boutons in local axons, but not in commissural long-range axons, demonstrate hyperdynamic turnover in model marmosets, suggesting alterations in projection-specific plasticity. Intriguingly, nasal oxytocin administration attenuates clustered spine emergence in model marmosets. Enhanced clustered spine generation, possibly unique to certain presynaptic partners, may be associated with ASD and be a potential therapeutic target.


Asunto(s)
Callithrix , Modelos Animales de Enfermedad , Plasticidad Neuronal , Oxitocina , Animales , Oxitocina/metabolismo , Masculino , Sinapsis/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Espinas Dendríticas/efectos de los fármacos , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , Ácido Valproico/farmacología , Terminales Presinápticos/metabolismo , Femenino , Axones/metabolismo
7.
Neuropharmacology ; 254: 109988, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744401

RESUMEN

Neuropathic pain (NP) is usually treated with analgesics and symptomatic therapy with poor efficacy and numerous side effects, highlighting the urgent need for effective treatment strategies. Recent studies have reported an important role for peroxisome proliferator-activated receptor alpha (PPARα) in regulating metabolism as well as inflammatory responses. Through pain behavioral assessment, we found that activation of PPARα prevented chronic constriction injury (CCI)-induced mechanical allodynia and thermal hyperalgesia. In addition, PPARα ameliorated inflammatory cell infiltration at the injury site and decreased microglial activation, NOD-like receptor protein 3 (NLRP3) inflammasome production, and spinal dendritic spine density, as well as improved serum and spinal cord metabolic levels in mice. Administration of PPARα antagonists eliminates the analgesic effect of PPARα agonists. PPARα relieves NP by inhibiting neuroinflammation and functional synaptic plasticity as well as modulating metabolic mechanisms, suggesting that PPARα may be a potential molecular target for NP alleviation. However, the effects of PPARα on neuroinflammation and synaptic plasticity should be further explored.


Asunto(s)
Ratones Endogámicos C57BL , Neuralgia , PPAR alfa , Médula Espinal , Animales , PPAR alfa/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Masculino , Ratones , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Metabolómica , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos
8.
Sci Rep ; 14(1): 12252, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806649

RESUMEN

Sex hormones affect structural and functional plasticity in the rodent hippocampus. However, hormone levels not only differ between males and females, but also fluctuate across the female estrous cycle. While sex- and cycle-dependent differences in dendritic spine density and morphology have been found in the rodent CA1 region, but not in the CA3 or the dentate gyrus, comparable structural data on CA2, i.e. the hippocampal region involved in social recognition memory, is so far lacking. In this study, we, therefore, used wildtype male and female mice in diestrus or proestrus to analyze spines on dendritic segments from identified CA2 neurons. In basal stratum oriens, we found no differences in spine density, but a significant shift towards larger spine head areas in male mice compared to females. Conversely, in apical stratum radiatum diestrus females had a significantly higher spine density, and females in either cycle stage had a significant shift towards larger spine head areas as compared to males, with diestrus females showing the larger shift. Our results provide further evidence for the sexual dimorphism of hippocampal area CA2, and underscore the importance of considering not only the sex, but also the stage of the estrous cycle when interpreting morphological data.


Asunto(s)
Región CA2 Hipocampal , Espinas Dendríticas , Ciclo Estral , Animales , Masculino , Femenino , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Ratones , Ciclo Estral/fisiología , Región CA2 Hipocampal/fisiología , Región CA2 Hipocampal/metabolismo , Caracteres Sexuales , Neuronas/metabolismo
9.
Sci Rep ; 14(1): 11713, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778177

RESUMEN

The development of neurons is regulated by several spatiotemporally changing factors, which are crucial to give the ability of neurons to form functional networks. While external physical stimuli may impact the early developmental stages of neurons, the medium and long-term consequences of these influences have yet to be thoroughly examined. Using an animal model, this study focuses on the morphological and transcriptome changes of the hippocampus that may occur as a consequence of fetal ultrasound examination. We selectively labeled CA1 neurons of the hippocampus with in-utero electroporation to analyze their morphological features. Furthermore, certain samples also went through RNA sequencing after repetitive ultrasound exposure. US exposure significantly changed several morphological properties of the basal dendritic tree. A notable increase was also observed in the density of spines on the basal dendrites, accompanied by various alterations in individual spine morphology. Transcriptome analysis revealed several up or downregulated genes, which may explain the molecular background of these alterations. Our results suggest that US-derived changes in the dendritic trees of CA1 pyramidal cells might be connected to modification of the transcriptome of the hippocampus and may lead to an increased dendritic input.


Asunto(s)
Región CA1 Hipocampal , Dendritas , Transcriptoma , Animales , Región CA1 Hipocampal/metabolismo , Dendritas/metabolismo , Femenino , Embarazo , Células Piramidales/metabolismo , Ratones , Hipocampo/metabolismo , Perfilación de la Expresión Génica , Espinas Dendríticas/metabolismo , Ultrasonografía Prenatal
10.
Cell Rep ; 43(5): 114117, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38630590

RESUMEN

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico , Gangliósido G(M1) , Gangliosidosis GM1 , Receptores de N-Metil-D-Aspartato , Animales , Humanos , Ratones , Calcio/metabolismo , Membrana Celular/metabolismo , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Gangliósido G(M1)/metabolismo , Gangliosidosis GM1/metabolismo , Gangliosidosis GM1/patología , Plasticidad Neuronal , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Masculino , Femenino
11.
J Biol Chem ; 300(5): 107263, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582451

RESUMEN

Synapse formation depends on the coordinated expression and regulation of scaffold proteins. The JNK family kinases play a role in scaffold protein regulation, but the nature of this functional interaction in dendritic spines requires further investigation. Here, using a combination of biochemical methods and live-cell imaging strategies, we show that the dynamics of the synaptic scaffold molecule SAP102 are negatively regulated by JNK inhibition, that SAP102 is a direct phosphorylation target of JNK3, and that SAP102 regulation by JNK is restricted to neurons that harbor mature synapses. We further demonstrate that SAP102 and JNK3 cooperate in the regulated trafficking of kainate receptors to the cell membrane. Specifically, we observe that SAP102, JNK3, and the kainate receptor subunit GluK2 exhibit overlapping expression at synaptic sites and that modulating JNK activity influences the surface expression of the kainate receptor subunit GluK2 in a neuronal context. We also show that SAP102 participates in this process in a JNK-dependent fashion. In summary, our data support a model in which JNK-mediated regulation of SAP102 influences the dynamic trafficking of kainate receptors to postsynaptic sites, and thus shed light on common pathophysiological mechanisms underlying the cognitive developmental defects associated with diverse mutations.


Asunto(s)
Espinas Dendríticas , Receptor de Ácido Kaínico GluK2 , Receptores de Ácido Kaínico , Animales , Humanos , Ratas , Membrana Celular/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/genética , Neuronas/metabolismo , Neuropéptidos , Fosforilación , Transporte de Proteínas , Receptores de Ácido Kaínico/metabolismo , Receptores de Ácido Kaínico/genética , Sinapsis/metabolismo , Células Cultivadas
12.
EMBO Rep ; 25(5): 2348-2374, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589666

RESUMEN

Microglia sculpt developing neural circuits by eliminating excess synapses in a process called synaptic pruning, by removing apoptotic neurons, and by promoting neuronal survival. To elucidate the role of microglia during embryonic and postnatal brain development, we used a mouse model deficient in microglia throughout life by deletion of the fms-intronic regulatory element (FIRE) in the Csf1r locus. Surprisingly, young adult Csf1rΔFIRE/ΔFIRE mice display no changes in excitatory and inhibitory synapse number and spine density of CA1 hippocampal neurons compared with Csf1r+/+ littermates. However, CA1 neurons are less excitable, receive less CA3 excitatory input and show altered synaptic properties, but this does not affect novel object recognition. Cytokine profiling indicates an anti-inflammatory state along with increases in ApoE levels and reactive astrocytes containing synaptic markers in Csf1rΔFIRE/ΔFIRE mice. Notably, these changes in Csf1rΔFIRE/ΔFIRE mice closely resemble the effects of acute microglial depletion in adult mice after normal development. Our findings suggest that microglia are not mandatory for synaptic pruning, and that in their absence pruning can be achieved by other mechanisms.


Asunto(s)
Hipocampo , Microglía , Sinapsis , Animales , Microglía/metabolismo , Sinapsis/metabolismo , Ratones , Hipocampo/metabolismo , Hipocampo/citología , Espinas Dendríticas/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Plasticidad Neuronal , Neuronas/metabolismo , Ácido Glutámico/metabolismo
13.
Mol Biol Cell ; 35(6): mr3, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630519

RESUMEN

Dendritic spines, the mushroom-shaped extensions along dendritic shafts of excitatory neurons, are critical for synaptic function and are one of the first neuronal structures disrupted in neurodevelopmental and neurodegenerative diseases. Microtubule (MT) polymerization into dendritic spines is an activity-dependent process capable of affecting spine shape and function. Studies have shown that MT polymerization into spines occurs specifically in spines undergoing plastic changes. However, discerning the function of MT invasion of dendritic spines requires the specific inhibition of MT polymerization into spines, while leaving MT dynamics in the dendritic shaft, synaptically connected axons and associated glial cells intact. This is not possible with the unrestricted, bath application of pharmacological compounds. To specifically disrupt MT entry into spines we coupled a MT elimination domain (MTED) from the Efa6 protein to the actin filament-binding peptide LifeAct. LifeAct was chosen because actin filaments are highly concentrated in spines and are necessary for MT invasions. Temporally controlled expression of this LifeAct-MTED construct inhibits MT entry into dendritic spines, while preserving typical MT dynamics in the dendrite shaft. Expression of this construct will allow for the determination of the function of MT invasion of spines and more broadly, to discern how MT-actin interactions affect cellular processes.


Asunto(s)
Espinas Dendríticas , Microtúbulos , Polimerizacion , Microtúbulos/metabolismo , Espinas Dendríticas/metabolismo , Animales , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Neuronas/metabolismo , Ratas , Proteínas de Microfilamentos/metabolismo
14.
Brain Res ; 1835: 148929, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599510

RESUMEN

Temporal order memory is impaired in autism spectrum disorder (ASD) and schizophrenia (SCZ). These disorders, more prevalent in males, result in abnormal dendritic spine pruning during adolescence in layer 3 (L3) medial prefrontal cortex (mPFC), yielding either too many (ASD) or too few (SCZ) spines. Here we tested whether altering spine density in neural circuits including the mPFC could be associated with impaired temporal order memory in male mice. We have shown that α4ßδ GABAA receptors (GABARs) emerge at puberty on spines of L5 prelimbic mPFC (PL) where they trigger pruning. We show here that α4ßδ receptors also increase at puberty in L3 PL (P < 0.0001) and used these receptors as a target to manipulate spine density here. Pubertal injection (14 d) of the GABA agonist gaboxadol, at a dose (3 mg/kg) selective for α4ßδ, reduced L3 spine density by half (P < 0.0001), while α4 knock-out increased spine density âˆ¼ 40 % (P < 0.0001), mimicking spine densities in SCZ and ASD, respectively. In both cases, performance on the mPFC-dependent temporal order recognition task was impaired, resulting in decreases in the discrimination ratio which assesses preference for the novel object: -0.39 ± 0.15, gaboxadol versus 0.52 ± 0.09, vehicle; P = 0.0002; -0.048 ± 0.10, α4 KO versus 0.49 ± 0.04, wild-type; P < 0.0001. In contrast, the number of approaches was unaltered, reflecting unchanged locomotion. These data suggest that altering α4ßδ GABAR expression/activity alters spine density in L3 mPFC and impairs temporal order memory to mimic changes in ASD and SCZ. These findings may provide insight into these disorders.


Asunto(s)
Espinas Dendríticas , Corteza Prefrontal , Receptores de GABA-A , Esquizofrenia , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Animales , Receptores de GABA-A/metabolismo , Masculino , Esquizofrenia/metabolismo , Ratones , Espinas Dendríticas/metabolismo , Espinas Dendríticas/efectos de los fármacos , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Ratones Endogámicos C57BL , Isoxazoles/farmacología , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Agonistas de Receptores de GABA-A/farmacología , Trastorno del Espectro Autista/metabolismo , Reconocimiento en Psicología/fisiología , Reconocimiento en Psicología/efectos de los fármacos
15.
Cell Mol Neurobiol ; 44(1): 42, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668880

RESUMEN

Lewy Body Dementias (LBD), including Parkinson's disease dementia and Dementia with Lewy Bodies, are characterized by widespread accumulation of intracellular alpha-Synuclein protein deposits in regions beyond the brainstem, including in the cortex. However, the impact of local pathology in the cortex is unknown. To investigate this, we employed viral overexpression of human alpha-Synuclein protein targeting the mouse prefrontal cortex (PFC). We then used in vivo 2-photon microscopy to image awake head-fixed mice via an implanted chronic cranial window to assess the early consequences of alpha-Synuclein overexpression in the weeks following overexpression. We imaged apical tufts of Layer V pyramidal neurons in the PFC of Thy1-YFP transgenic mice at 1-week intervals from 1 to 2 weeks before and 9 weeks following viral overexpression, allowing analysis of dynamic changes in dendritic spines. We found an increase in the relative dendritic spine density following local overexpression of alpha-Synuclein, beginning at 5 weeks post-injection, and persisting for the remainder of the study. We found that alpha-Synuclein overexpression led to an increased percentage and longevity of newly-persistent spines, without significant changes in the total density of newly formed or eliminated spines. A follow-up study utilizing confocal microscopy revealed that the increased spine density is found in cortical cells within the alpha-Synuclein injection site, but negative for alpha-Synuclein phosphorylation at Serine-129, highlighting the potential for effects of dose and local circuits on spine survival. These findings have important implications for the physiological role and early pathological stages of alpha-Synuclein in the cortex.


Asunto(s)
Espinas Dendríticas , Ratones Transgénicos , Corteza Prefrontal , alfa-Sinucleína , Animales , Humanos , Masculino , Ratones , alfa-Sinucleína/metabolismo , Supervivencia Celular/fisiología , Espinas Dendríticas/metabolismo , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Células Piramidales/metabolismo , Células Piramidales/patología
16.
Mol Biol Cell ; 35(5): ar67, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38507236

RESUMEN

During neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1-dependent axon guidance and branching. Here, we demonstrate that TRIM9 also localizes to dendritic filopodia and spines of murine cortical and hippocampal neurons during synaptogenesis and is required for synaptic responses to netrin. In particular, TRIM9 is enriched in the postsynaptic density (PSD) within dendritic spines and loss of Trim9 alters the PSD proteome, including the actin cytoskeleton landscape. While netrin exposure induces accumulation of the Arp2/3 complex and filamentous actin in dendritic spine heads, this response is disrupted by genetic deletion of Trim9. In addition, we document changes in the synaptic receptors associated with loss of Trim9. These defects converge on a loss of netrin-dependent increases in neuronal firing rates, indicating TRIM9 is required downstream of synaptic netrin-1 signaling. We propose that TRIM9 regulates cytoskeletal dynamics in dendritic spines and is required for the proper response to synaptic stimuli.


Asunto(s)
Actinas , Ubiquitina-Proteína Ligasas , Ratones , Animales , Actinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Netrina-1 , Neuronas/metabolismo , Hipocampo/metabolismo , Espinas Dendríticas/metabolismo , Proteínas del Tejido Nervioso/metabolismo
17.
Exp Neurol ; 376: 114752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484863

RESUMEN

Dendritic spines play a pivotal role in synaptic communication and are crucial for learning and memory processes. Abnormalities in spine morphology and plasticity are observed in neurodevelopmental and neuropsychiatric disorders, yet the underlying signaling mechanisms remain poorly understood. The microtubule affinity regulating kinase 1 (MARK1) has been implicated in neurodevelopmental disorders, and the MARK1 gene shows accelerated evolution in the human lineage suggesting a role in cognition. However, the in vivo role of MARK1 in synaptogenesis and cognitive functions remains unknown. Here we show that forebrain-specific conditional knockout (cKO) of Mark1 in mice causes defects in dendritic spine morphogenesis in hippocampal CA1 pyramidal neurons with a significant reduction in spine density. In addition, we found loss of MARK1 causes synaptic accumulation of GKAP and GluA2. Furthermore, we found that MARK1 cKO mice show defects in spatial learning in the Morris water maze and reduced anxiety-like behaviors in the elevated plus maze. Taken together, our data show a novel role for MARK1 in regulating dendritic spine morphogenesis and cognitive functions in vivo.


Asunto(s)
Cognición , Espinas Dendríticas , Ratones Noqueados , Proteínas Serina-Treonina Quinasas , Animales , Masculino , Ratones , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/metabolismo , Cognición/fisiología , Espinas Dendríticas/metabolismo , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Morfogénesis/fisiología , Morfogénesis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Células Piramidales/metabolismo
18.
Cell Rep ; 43(4): 113966, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507408

RESUMEN

Perceptual learning improves our ability to interpret sensory stimuli present in our environment through experience. Despite its importance, the underlying mechanisms that enable perceptual learning in our sensory cortices are still not fully understood. In this study, we used in vivo two-photon imaging to investigate the functional and structural changes induced by visual stimulation in the mouse primary visual cortex (V1). Our results demonstrate that repeated stimulation leads to a refinement of V1 circuitry by decreasing the number of responsive neurons while potentiating their response. At the synaptic level, we observe a reduction in the number of dendritic spines and an overall increase in spine AMPA receptor levels in the same subset of neurons. In addition, visual stimulation induces synaptic potentiation in neighboring spines within individual dendrites. These findings provide insights into the mechanisms of synaptic plasticity underlying information processing in the neocortex.


Asunto(s)
Espinas Dendríticas , Plasticidad Neuronal , Corteza Visual Primaria , Animales , Plasticidad Neuronal/fisiología , Ratones , Corteza Visual Primaria/fisiología , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Receptores AMPA/metabolismo , Estimulación Luminosa , Ratones Endogámicos C57BL , Sinapsis/fisiología , Sinapsis/metabolismo , Neuronas/fisiología , Neuronas/metabolismo , Corteza Visual/fisiología
19.
Adv Sci (Weinh) ; 11(17): e2306630, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493494

RESUMEN

The modification of synaptic and neural connections in adults, including the formation and removal of synapses, depends on activity-dependent synaptic and structural plasticity. MicroRNAs (miRNAs) play crucial roles in regulating these changes by targeting specific genes and regulating their expression. The fact that somatic and dendritic activity in neurons often occurs asynchronously highlights the need for spatial and dynamic regulation of protein synthesis in specific milieu and cellular loci. MicroRNAs, which can show distinct patterns of enrichment, help to establish the localized distribution of plasticity-related proteins. The recent study using atomic force microscopy (AFM)-based nanoscale imaging reveals that the abundance of miRNA(miR)-134 is inversely correlated with the functional activity of dendritic spine structures. However, the miRNAs that are selectively upregulated in potentiated synapses, and which can thereby support prospective changes in synaptic efficacy, remain largely unknown. Using AFM force imaging, significant increases in miR-132 in the dendritic regions abutting functionally-active spines is discovered. This study provides evidence for miR-132 as a novel positive miRNA regulator residing in dendritic shafts, and also suggests that activity-dependent miRNAs localized in distinct sub-compartments of neurons play bi-directional roles in controlling synaptic transmission and synaptic plasticity.


Asunto(s)
MicroARNs , Microscopía de Fuerza Atómica , Plasticidad Neuronal , Sinapsis , Animales , Ratones , Espinas Dendríticas/metabolismo , Espinas Dendríticas/genética , Espinas Dendríticas/ultraestructura , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Microscopía de Fuerza Atómica/métodos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo , Sinapsis/genética
20.
Exp Neurol ; 376: 114756, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508482

RESUMEN

Overexpression of the Ube3a gene and the resulting increase in Ube3a protein are linked to autism spectrum disorder (ASD). However, the cellular and molecular processes underlying Ube3a-dependent ASD remain unclear. Using both male and female mice, we find that neurons in the somatosensory cortex of the Ube3a 2× Tg ASD mouse model display reduced dendritic spine density and increased immature filopodia density. Importantly, the increased gene dosage of Ube3a in astrocytes alone is sufficient to confer alterations in neurons as immature dendritic protrusions, as observed in primary hippocampal neuron cultures. We show that Ube3a overexpression in astrocytes leads to a loss of astrocyte-derived spinogenic protein, thrombospondin-2 (TSP2), due to a suppression of TSP2 gene transcription. By neonatal intraventricular injection of astrocyte-specific virus, we demonstrate that Ube3a overexpression in astrocytes in vivo results in a reduction in dendritic spine maturation in prelimbic cortical neurons, accompanied with autistic-like behaviors in mice. These findings reveal an astrocytic dominance in initiating ASD pathobiology at the neuronal and behavior levels. SIGNIFICANCE STATEMENT: Increased gene dosage of Ube3a is tied to autism spectrum disorders (ASDs), yet cellular and molecular alterations underlying autistic phenotypes remain unclear. We show that Ube3a overexpression leads to impaired dendritic spine maturation, resulting in reduced spine density and increased filopodia density. We find that dysregulation of spine development is not neuron autonomous, rather, it is mediated by an astrocytic mechanism. Increased gene dosage of Ube3a in astrocytes leads to reduced production of the spinogenic glycoprotein thrombospondin-2 (TSP2), leading to abnormalities in spines. Astrocyte-specific Ube3a overexpression in the brain in vivo confers dysregulated spine maturation concomitant with autistic-like behaviors in mice. These findings indicate the importance of astrocytes in aberrant neurodevelopment and brain function in Ube3a-depdendent ASD.


Asunto(s)
Trastorno del Espectro Autista , Espinas Dendríticas , Neuroglía , Ubiquitina-Proteína Ligasas , Animales , Ratones , Astrocitos/metabolismo , Astrocitos/patología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Células Cultivadas , Espinas Dendríticas/patología , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/patología , Trombospondinas/metabolismo , Trombospondinas/genética , Trombospondinas/biosíntesis , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...