Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 930
Filtrar
1.
Anal Chim Acta ; 1320: 343034, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142776

RESUMEN

BACKGROUND: Bacillus cereus (B. cereus) is a widespread conditional pathogen that affects food safety and human health. Conventional methods such as bacteria culture and polymerase chain reaction (PCR) are difficult to use for rapid identification of bacterial spores because of the relatively long analysis times. From a human health perspective, there is an urgent need to develop an ultrasensitive, rapid, and accurate method for the detection of B. cereus spores. RESULTS: The study proposed a new method for rapidly and sensitively detecting the biomarkers of bacterial spores via surface-enhanced Raman spectroscopy (SERS) combined with electrochemical enrichment. The 2,6-Pyridinedicarboxylic acid (DPA) was used as the model analyte to acts as a biomarker of B. cereus spores. The SERS substrate was developed via the in-situ generation of Ag nanoparticles (AgNPs) in a cuttlebone-derived organic matrix (CDOM). Because of the depletion of chitin reduction sites on the CDOM, the pores of the porous channels expanded. The pores diameter of the AgNPs/CDOM porous channel was found to be in the range of 0.7-1.3 nm through molecular diffusion experiments. Based on the porosity of AgNPs/CDOM substrates and the high sensitivity of SERS substrates, the sensor can rapidly and accurately electronically enrich DPA in 40 s with the limit of detection (LOD) of 0.3 nM. SIGNIFICANCE: The results demonstrate that electrochemically assisted SERS substrates can be served as a high sensitivity electrochemical-enrichment device for the rapid and sensitive detection of bacterial spores with minimal interference from potentially coexisting species in biological samples. In this study, it opens up a platform to explore the application of porous channels in natural bio-derived materials in the field of food safety.


Asunto(s)
Bacillus cereus , Biomarcadores , Plata , Espectrometría Raman , Esporas Bacterianas , Bacillus cereus/aislamiento & purificación , Bacillus cereus/metabolismo , Espectrometría Raman/métodos , Esporas Bacterianas/aislamiento & purificación , Esporas Bacterianas/química , Plata/química , Porosidad , Biomarcadores/análisis , Nanopartículas del Metal/química , Ácidos Picolínicos/análisis , Ácidos Picolínicos/química , Límite de Detección , Propiedades de Superficie
2.
Food Res Int ; 190: 114610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945575

RESUMEN

Spore-forming bacteria are the most complex group of microbes to eliminate from the dairy production line due to their ability to withstand heat treatment usually used in dairy processing. These ubiquitous microorganisms have ample opportunity for multiple points of entry into the milk chain, creating issues for food quality and safety. Certain spore-formers, namely bacilli and clostridia, are more problematic to the dairy industry due to their possible pathogenicity, growth, and production of metabolites and spoilage enzymes. This research investigated the spore-forming population from raw milk reception at two Norwegian dairy plants through the cheesemaking stages until ripening. Samples were collected over two years and examined by amplicon sequencing in a culture independent manner and after an anaerobic spore-former enrichment step. In addition, a total of 608 isolates from the enriched samples were identified at the genus or species level using MALDI-TOF analysis. Most spore-forming isolates belong to the genera Bacillus or Clostridium, with the latter dominating the enriched MPN tubes of raw milk and bactofugate. Results showed a great variation among the clostridia and bacilli detected in the enriched MPN tubes. However, B. licheniformis and C. tyrobutyricum were identified in all sample types from both plants throughout the 2-year study. In conclusion, our results shed light on the fate of different spore-formers at different processing stages in the cheese production chain, which could facilitate targeted actions to reduce quality problems.


Asunto(s)
Queso , Microbiología de Alimentos , Esporas Bacterianas , Noruega , Queso/microbiología , Esporas Bacterianas/aislamiento & purificación , Leche/microbiología , Clostridium/aislamiento & purificación , Clostridium/genética , Animales , Bacillus/aislamiento & purificación , Bacillus/genética , Bacillus/clasificación , Manipulación de Alimentos/métodos , Industria Lechera
3.
Int J Food Microbiol ; 418: 110731, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38733637

RESUMEN

Alicyclobacillus spp. is the cause of great concern for the food industry due to their spores' resistance (thermal and chemical) and the spoilage potential of some species. Despite this, not all Alicyclobacillus strains can spoil fruit juices. Thus, this study aimed to identify Alicyclobacillus spp. strains isolated from fruit-based products produced in Argentina, Brazil, and Italy by DNA sequencing. All Alicyclobacillus isolates were tested for guaiacol production by the peroxidase method. Positive strains for guaiacol production were individually inoculated at concentration of 103 CFU/mL in 10 mL of orange (pH 3.90) and apple (pH 3.50) juices adjusted to 11°Brix, following incubation at 45 °C for at least 5 days to induce the production of the following spoilage compounds: Guaiacol, 2,6-dichlorophenol (2,6-DCP) and 2,6-dibromophenol (2,6-DBP). The techniques of micro-solid phase extraction by headspace (HS-SPME) and gas-chromatography with mass spectrometry (GC-MS) were used to identify and quantify the spoilage compounds. All GC-MS data was analyzed by principal component analysis (PCA). The effects of different thermal shock conditions on the recovery of Alicyclobacillus spores inoculated in orange and apple juice (11°Brix) were also tested. A total of 484 strains were isolated from 48 brands, and the species A. acidocaldarius and A. acidoterrestris were the most found among all samples analyzed. In some samples from Argentina, the species A. vulcanalis and A. mali were also identified. The incidence of these two main species of Alicyclobacillus in this study was mainly in products from pear (n = 108; 22.3 %), peach (n = 99; 20.5 %), apple (n = 86; 17.8 %), and tomato (n = 63; 13 %). The results indicated that from the total isolates from Argentina (n = 414), Brazil (n = 54) and Italy (n = 16) were able to produce guaiacol: 107 (25.8 %), 33 (61.1 %) and 13 (81.2 %) isolates from each country, respectively. The PCA score plot indicated that the Argentina and Brazil isolates correlate with higher production of guaiacol and 2,6-DCP/2,6-DBP, respectively. Heatmaps of cell survival after heat shock demonstrated that strains with different levels of guaiacol production present different resistances according to spoilage ability. None of the Alicyclobacillus isolates survived heat shocks at 120 °C for 3 min. This work provides insights into the incidence, spoilage potential, and thermal shock resistance of Alicyclobacillus strains isolated from fruit-based products.


Asunto(s)
Alicyclobacillus , Jugos de Frutas y Vegetales , Frutas , Cromatografía de Gases y Espectrometría de Masas , Guayacol , Esporas Bacterianas , Alicyclobacillus/aislamiento & purificación , Alicyclobacillus/genética , Alicyclobacillus/clasificación , Alicyclobacillus/crecimiento & desarrollo , Jugos de Frutas y Vegetales/microbiología , Guayacol/análogos & derivados , Guayacol/metabolismo , Guayacol/farmacología , Frutas/microbiología , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/aislamiento & purificación , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Brasil , Microextracción en Fase Sólida , Argentina , Malus/microbiología , Italia , Calor , Citrus sinensis/microbiología
4.
Anal Chim Acta ; 1308: 342616, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740451

RESUMEN

BACKGROUND: Bacterial spores are the main potential hazard in medium- and high-temperature sterilized meat products, and their germination and subsequent reproduction and metabolism can lead to food spoilage. Moreover, the spores of some species pose a health and safety threat to consumers. The rapid detection, prevention, and control of bacterial spores has always been a scientific problem and a major challenge for the medium and high-temperature meat industry. Early and sensitive identification of spores in meat products is a decisive factor in contributing to consumer health and safety. RESULTS: In this study, we developed a novel and stable Ag@AuNP array substrate by using a two-step synthesis approach and a liquid-interface self-assembly method that can directly detect bacterial spores in actual meat product samples without the need for additional in vitro bacterial culture. The results indicate that the Ag@AuNP array substrate exhibits high reproducibility and Raman enhancement effects (1.35 × 105). The differentiation in the Surface enhanced Raman scattering (SERS) spectra of five bacterial spores primarily arises from proteins in the spore coat and inner membrane, peptidoglycan of cortex, and Ca2⁺-DPA within the spore core. The correct recognition rate of linear discriminant analysis for spores in the meat product matrix can reach 100 %. The average recovery accuracy of the SERS quantitative model was at around 101.77 %, and the limit of detection can reach below 10 CFU/mL. SIGNIFICANCE: It provides a promising technological strategy for the characteristic substance analysis and timely monitoring of spores in meat products.


Asunto(s)
Productos de la Carne , Plata , Espectrometría Raman , Esporas Bacterianas , Espectrometría Raman/métodos , Plata/química , Esporas Bacterianas/aislamiento & purificación , Esporas Bacterianas/química , Productos de la Carne/microbiología , Productos de la Carne/análisis , Nanopartículas del Metal/química , Contaminación de Alimentos/análisis , Propiedades de Superficie , Microbiología de Alimentos/métodos , Culinaria
5.
Foodborne Pathog Dis ; 21(8): 478-484, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38682437

RESUMEN

A microbiological study was conducted on 41 insect product samples (29 raw frozen [21 domestic and 8 imported], 10 powdered, and 2 processed), which were commercially available in Japan. The total aerobic count for raw frozen insects was 5.61 log cfu/g (range: 2.52-8.40), whereas the powdered insect count was 2.89 log cfu/g (range: 1.00-4.57). The bacterial count was significantly higher in raw frozen insects (p < 0.05). The coliform count for the raw frozen insects ranged from <1 to 6.90 log cfu/g, and that for the powdered insects ranged from <1 to 1.00 log cfu/g. The number of samples with values above the detection limit was significantly higher in raw frozen insects (p < 0.05). The detection frequencies of aerobic spores (<1-4.63 log cfu/g), anaerobic spores (<0-4.40 log cfu/g), and Bacillus cereus (<1.7-3.83 log cfu/g) showed no sample type-related significant difference. Listeria spp. was isolated from four samples of raw frozen insects, one of which was Listeria monocytogenes. We did not detect any of the following: Salmonella spp., Shiga toxin-producing E. coli (STEC), Campylobacter jejuni/coli, or pathogenic Yersinia. We isolated insect products retailed in Japan harboring food poisoning bacteria, including L. monocytogenes and B. cereus. In particular, raw frozen products displayed high levels of hygienic indicator bacteria.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes , Japón , Animales , Listeria monocytogenes/aislamiento & purificación , Recuento de Colonia Microbiana , Bacillus cereus/aislamiento & purificación , Esporas Bacterianas/aislamiento & purificación , Contaminación de Alimentos/análisis , Insectos/microbiología , Alimentos Congelados/microbiología , Insectos Comestibles/microbiología , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Salmonella/aislamiento & purificación
6.
J Biophotonics ; 17(5): e202300510, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38302112

RESUMEN

Marine bacteria have been considered as important participants in revealing various carbon/sulfur/nitrogen cycles of marine ecosystem. Thus, how to accurately identify rare marine bacteria without a culture process is significant and valuable. In this work, we constructed a single-cell Raman spectra dataset from five living bacteria spores and utilized convolutional neural network to rapidly, accurately, nondestructively identify bacteria spores. The optimal CNN architecture can provide a prediction accuracy of five bacteria spore as high as 94.93% ± 1.78%. To evaluate the classification weight of extracted spectra features, we proposed a novel algorithm by occluding fingerprint Raman bands. Based on the relative classification weight arranged from large to small, four Raman bands located at 1518, 1397, 1666, and 1017 cm-1 mostly contribute to producing such high prediction accuracy. It can be foreseen that, LTRS combined with CNN approach have great potential for identifying marine bacteria, which cannot be cultured under normal condition.


Asunto(s)
Aprendizaje Profundo , Pinzas Ópticas , Análisis de la Célula Individual , Espectrometría Raman , Esporas Bacterianas , Esporas Bacterianas/aislamiento & purificación , Factores de Tiempo , Organismos Acuáticos
7.
J Dairy Sci ; 107(6): 3478-3491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38246545

RESUMEN

Laboratory pasteurization count (LPC) enumerates thermoduric bacteria and is one parameter used to assess raw milk quality. No regulatory limit has presently been set for LPC, but LPC data are used by some dairy processors and cooperatives to designate raw milk quality premiums paid to farmers and may also be used for troubleshooting bacterial contamination issues. Although it is occasionally used as a proxy for levels of bacterial spores in raw milk, limited knowledge is available on the types of organisms that are enumerated by LPC in contemporary raw milk supplies. Although historical studies have reported that thermoduric bacteria quantified by LPC may predominantly represent gram-positive cocci, updated knowledge on microbial populations enumerated by LPC in contemporary organic raw milk supplies is needed. To address this gap, organic raw milk samples from across the United States (n = 94) were assessed using LPC, and bacterial isolates were characterized. LPC ranged from below detection (<0.70 log cfu/mL) to 4.07 log cfu/mL, with a geometric mean of 1.48 log cfu/mL. Among 380 isolates characterized by 16S rDNA sequencing, 52.6%, 44.5%, and 2.4% were identified as gram-positive sporeformers, gram-positive nonsporeformers, and gram-negatives, respectively; 0.5% could not be categorized into those groups because they could only be assigned a higher level of taxonomy. Isolates identified as gram-positive sporeformers were predominantly Bacillus (168/200), and gram-positive nonsporeformers were predominantly Brachybacterium (56/169) and Kocuria (47/169). To elucidate if the LPC level can be an indicator of the type of thermoduric (e.g., sporeforming bacteria) present in raw milk, we evaluated the proportion of sporeformers in raw milk samples with LPC of ≤100 cfu/mL, 100 to 200 cfu/mL, and ≥200 cfu/mL (51%, 67%, and 35%), showing a trend for sporeformers to represent a smaller proportion of the total thermoduric population when LPC increases, although overall linear regression showed no significant association between the proportion of sporeformers and the LPC concentration. Hence, LPC level alone provides no insight into the makeup of the thermoduric population in raw milk, and further characterization is needed to elucidate the bacterial drivers of elevated LPC in raw milk. We therefore further characterized the isolates from this study using MALDI-TOF mass spectrometry (MALDI-TOF MS), a rapid microbial identification tool that is more readily available to dairy producers than 16S rDNA PCR and sequencing. Although our data indicated agreement between 16S rDNA sequencing and MALDI-TOF MS for 66.6% of isolates at the genus level, 24.2% and 9.2% could not be reliably identified or were mischaracterized using MALDI-TOF MS, respectively. This suggests that further optimization of this method is needed to allow for accurate characterization of thermoduric organisms commonly found in raw milk. Ultimately, our study provides a contemporary perspective on thermoduric bacteria selected by the LPC method and establishes that the LPC alone is not sufficient for identifying the bacterial drivers of LPC levels. Further development of rapid characterization methods that are accessible to producers, cooperatives, and processors will support milk quality troubleshooting efforts and ultimately improve outcomes for dairy industry community members.


Asunto(s)
Leche , Pasteurización , Esporas Bacterianas , Leche/microbiología , Animales , Esporas Bacterianas/aislamiento & purificación , Recuento de Colonia Microbiana
9.
PLoS One ; 17(2): e0263602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35130328

RESUMEN

Three commercial honey bee operations in Saskatchewan, Canada, with outbreaks of American foulbrood (AFB) and recent or ongoing metaphylactic antibiotic use were intensively sampled to detect spores of Paenibacillus larvae during the summer of 2019. Here, we compared spore concentrations in different sample types within individual hives, assessed the surrogacy potential of honey collected from honey supers in place of brood chamber honey or adult bees within hives, and evaluated the ability of pooled, extracted honey to predict the degree of spore contamination identified through individual hive testing. Samples of honey and bees from hives within apiaries with a recent, confirmed case of AFB in a single hive (index apiaries) and apiaries without clinical evidence of AFB (unaffected apiaries), as well as pooled, apiary-level honey samples from end-of-season extraction, were collected and cultured to detect and enumerate spores. Only a few hives were heavily contaminated by spores in any given apiary. All operations were different from one another with regard to both the overall degree of spore contamination across apiaries and the distribution of spores between index apiaries and unaffected apiaries. Within operations, individual hive spore concentrations in unaffected apiaries were significantly different from index apiaries in the brood chamber (BC) honey, honey super (HS) honey, and BC bees of one of three operations. Across all operations, BC honey was best for discriminating index apiaries from unaffected apiaries (p = 0.001), followed by HS honey (p = 0.06), and BC bees (p = 0.398). HS honey positively correlated with both BC honey (rs = 0.76, p < 0.0001) and bees (rs = 0.50, p < 0.0001) and may be useful as a surrogate for either. Spore concentrations in pooled, extracted honey seem to have predictive potential for overall spore contamination within each operation and may have prognostic value in assessing the risk of future AFB outbreaks at the apiary (or operation) level.


Asunto(s)
Abejas/microbiología , Miel/microbiología , Paenibacillus larvae/fisiología , Esporas Bacterianas/aislamiento & purificación , Enfermedades de los Animales/diagnóstico , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/prevención & control , Animales , Antibacterianos/uso terapéutico , Apicultura/estadística & datos numéricos , Colapso de Colonias/microbiología , Colapso de Colonias/prevención & control , Brotes de Enfermedades , Análisis de los Alimentos , Infecciones por Bacterias Grampositivas/diagnóstico , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/prevención & control , Miel/análisis , Paenibacillus larvae/aislamiento & purificación , Saskatchewan/epidemiología , Estaciones del Año
10.
Biosensors (Basel) ; 11(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34562883

RESUMEN

Clostridium tyrobutyricum represents the main spoiling agent responsible for late blowing defects (LBD) in hard and semi-hard cheeses. Its spores are resistant to manufacturing procedures and can germinate during the long ripening process, causing the burst of the cheese paste with a consequent undesirable taste. The lower quality of blown cheeses leads to considerable financial losses for the producers. The early identification of spore contaminations in raw milk samples thus assumes a pivotal role in industrial quality control. Herein, we developed a point of care (POC) testing method for the sensitive detection of C. tyrobutyricum in milk samples, combining fast DNA extraction (with no purification steps) with a robust colorimetric loop-mediated isothermal amplification (LAMP) technique. Our approach allows for the sensitive and specific detection of C. tyrobutyricum spores (limit of detection, LoD: ~2 spores/mL), with the advantage of a clear naked-eye visualization of the results and a potential semi-quantitative discrimination of the contamination level. In addition, we demonstrated the feasibility of this strategy using a portable battery-operated device that allowed both DNA extraction and amplification steps, proving its potential for on-site quality control applications without the requirement of sophisticated instrumentation and trained personnel.


Asunto(s)
Clostridium tyrobutyricum , Leche/microbiología , Sistemas de Atención de Punto , Esporas Bacterianas/aislamiento & purificación , Animales , Clostridium tyrobutyricum/genética , Colorimetría , ADN , Análisis de los Alimentos
11.
J Microbiol Methods ; 190: 106336, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560161

RESUMEN

Use of flow cytometry (FCM) for bacteria quantification is growing in the food industry. We report here a FCM method using a double-staining LDS751/SYTO24 for the quantification of probiotic Bacillus viable cells and its spores, with potential application for the control of commercial product specifications.


Asunto(s)
Bacillus/aislamiento & purificación , Carga Bacteriana/métodos , Citometría de Flujo/métodos , Esporas Bacterianas/aislamiento & purificación , Viabilidad Microbiana , Probióticos , Coloración y Etiquetado
12.
J Microbiol Methods ; 188: 106293, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34324928

RESUMEN

A rapid method that provides information on the viability of organisms is needed to protect public health and ensure that remediation efforts following a release of a biological agent are effective. The rapid viability-polymerase chain reaction (RV-PCR) method combines broth culture and molecular methods to provide results on whether viable organisms are present in less than 15 h. In this study, a modified RV-PCR (mRV-PCR) method was compared to a membrane-filtration culture method for the detection of viable Bacillus spores in water matrices. Samples included small and large volumes of chlorine and non­chlorine treated tap water. Large volume water samples (up to 100 L), were processed by ultrafiltration using a semi-automated waterborne pathogen concentrator, followed by centrifugation as a secondary concentration technique. The concentrated samples were analyzed by mRV-PCR and culture methods. The overall agreement between the mRV-PCR and culture methods when seed concentrations were greater than 10 spores per sample volume analyzed was 96%. The total time from the start of sample processing to the final sample result for the mRV-PCR method was decreased by approximately 2 h, in comparison to the previously published RV-PCR method because of the incorporation of shorter, more efficient primary and secondary concentration steps and a shorter DNA extraction technique. Overall, this study confirmed that RV-PCR is a promising approach for identifying viable Bacillus spores in small- and large-volume water samples and for producing results in less time than traditional culture methods.


Asunto(s)
Bacillus/genética , Técnicas Bacteriológicas/métodos , Reacción en Cadena de la Polimerasa/métodos , Esporas Bacterianas/genética , Microbiología del Agua , Bacillus/aislamiento & purificación , ADN Bacteriano/aislamiento & purificación , Viabilidad Microbiana , Sensibilidad y Especificidad , Esporas Bacterianas/aislamiento & purificación , Ultrafiltración/métodos , Agua
13.
Acta Biochim Pol ; 68(2): 301-307, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33969671

RESUMEN

The genus Alicyclobacillus comprises a group of Gram-positive, thermo-acidophilic bacteria that are capable of producing highly resistant endospores during unfavorable environmental conditions. The members of this genus inhabit natural environments, including hot springs and soils. The main reason behind the spoilage of final commercial fruit products by Alicyclobacillus is the contamination of fruits with soil at the time of harvesting. Some of the Alicyclobacillus species, including Alicyclobacillus acidoterrestris, are categorized as spoilage bacteria due to their ability to produce off-flavor compounds (e.g., guaiacol and halophenols) that adversely affect the taste and aroma of beverages. In our study, Alicyclobacillus species were isolated from Polish orchard soils and fruits and were subjected to 16S rDNA sequencing. The results of the analysis showed that the isolated strains belonged to A. acidoterrestris and Alicyclobacillus fastidiosus species. All the three isolated strains of A. fastidiosus (f1, f2, f3) exhibited similar morphological and biochemical properties as the strain described in the literature. However, these isolated strains were able to produce guaiacol at temperatures of 20°C, 25°C, and 45°C. Thus, the strains of A. fastidiosus discovered in the present study can be included in the group of spoilage species as they possessed the gene responsible for the production of guaiacol.


Asunto(s)
Alicyclobacillus/genética , Alicyclobacillus/aislamiento & purificación , Frutas/microbiología , Guayacol/aislamiento & purificación , Microbiología del Suelo , Alicyclobacillus/clasificación , Bebidas/microbiología , ADN Bacteriano/genética , Microbiología de Alimentos/métodos , Frutas/química , Jugos de Frutas y Vegetales/microbiología , Guayacol/metabolismo , Polonia , ARN Ribosómico 16S/genética , Esporas Bacterianas/aislamiento & purificación , Temperatura
14.
J Microbiol Methods ; 186: 106240, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33992680

RESUMEN

Aerobic plate counting assays based on the pour-plate technique are frequently used to enumerate microbial products; however, colony swarming and merging at the agar surface can reduce the accuracy of these assays. Some plating methods mitigate this risk through the inclusion of strategies including agar overlays; however, these interventions may be inadequate to mitigate swarming and merging of certain Bacillus colonies. In the present study, we assessed the accuracy of several pour-plate techniques for the enumeration of a mixed-species Bacillus assemblage. Tested modifications included a customized culture medium formulation, agar overlays, decreased incubation times and increased incubation temperature. Methods which produced countable plates were assessed for agreement with a Bacillus-specific plate counting assay and with total cell counts rendered by flow cytometry. While all tested pour-plate methods underestimated Bacillus endospore concentrations relative to flow cytometry and customized spread-plating, our results suggest that increasing incubation temperature and the inclusion of bile salts into culture medium formulations can improve the accuracy of pour-plate techniques when used to enumerate Bacillus assemblages by decreasing the incidence of spreading colonies. As Bacillus endospore preparations become more ubiquitous in the market, familiar enumeration methods such as the pour-plate technique may require methodological modifications to ensure that the cGMP compliance of Bacillus-based microbial products is assessed accurately.


Asunto(s)
Bacillus/crecimiento & desarrollo , Recuento de Colonia Microbiana/métodos , Medios de Cultivo/metabolismo , Bacillus/clasificación , Bacillus/aislamiento & purificación , Bacillus/metabolismo , Recuento de Colonia Microbiana/instrumentación , Medios de Cultivo/química , Esporas Bacterianas/clasificación , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/aislamiento & purificación , Esporas Bacterianas/metabolismo , Temperatura
15.
Eur J Drug Metab Pharmacokinet ; 46(3): 375-384, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33683700

RESUMEN

BACKGROUND AND OBJECTIVE: Probiotics are live microorganisms that may provide benefits including the prevention of gastrointestinal disorders and other diseases. Enterogermina is a probiotic mix of spores from four strains of Bacillus clausii (O/C, T, N/R and SIN), available in several oral formulations. The objective of this analysis was to evaluate and compare the kinetic profiles of different formulations of Enterogermina-vial [E4 once daily (OD) and E2 twice daily (BID)], capsule [EC2 three times daily (TID)], oral powder for suspension (ES6 OD) and oral powder not requiring suspension (E6 OD) from two studies from 2012 (EUDRACT 2010-024497-19 and 2010-023187-41) and one study from 2016 (EUDRACT 2015-003330-27). METHODS: B. clausii spores were counted in homogenised faecal samples (results expressed as counts per gram) or after culture at 37 °C for 24-36 h (results expressed as colony-forming units). Kinetics were assessed by area under the concentration-time curve (AUC), maximum concentration (Cmax), time to maximum concentration (Tmax) and spore presence/persistence. RESULTS: In total, 22 subjects in each of the 2012 studies and 30 subjects in the 2016 study were randomised (mean age 25.0-33.8 years across studies). The mean (±SD) absolute faecal spore counts (in millions) expressed as AUC per hour were 270.7 ± 147.7 (E2 BID) and 213.8 ± 60.2 (E4 OD) in 2012 EGKINETIC4, 312.7 ± 218.0 (EC2 TID) and 319.0 ± 221.1 (ES6 OD) in 2012 EGKINETIC6, and 212.6 ± 118.0 (E6 OD) and 293.2 ± 247.2 (ES6 OD) in 2016 EGKINETIC6OP. The kinetic profiles of the different formulations of Enterogermina were similar, with superimposable AUC and daily curve profiles in each study up to the 8th day post dose. B. clausii spore presence/persistence in the intestine of healthy volunteers did not differ between the two formulations within each of the three studies. Enterogermina was well tolerated across all formulations and studies. CONCLUSION: These results show different formulations of Enterogermina had similar kinetic profiles within each study; however, they also showed that probiotics could be associated with high variability. The European Medicines Agency guidelines are the current bioequivalence reference, although only the Tmax parameter is used for high variability drugs. Due to the specific kinetics of probiotics, new parameters of bioequivalence could be necessary, considering, for example, variability via a parameter such as AUC. TRIAL REGISTRATION: EUDRACT 2010-024497-19, 2010-023187-41 and 2015-003330-27.


Asunto(s)
Bacillus clausii , Intestinos/microbiología , Probióticos/administración & dosificación , Esporas Bacterianas/aislamiento & purificación , Administración Oral , Adulto , Área Bajo la Curva , Estudios Cruzados , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Probióticos/efectos adversos , Probióticos/farmacocinética , Adulto Joven
16.
Int J Food Microbiol ; 343: 109088, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33621831

RESUMEN

Bacterial spores are a major challenge in industrial decontamination processes owing to their extreme resistance. High-pressure (HP) of 150 MPa at 37 °C can trigger the germination of spores, making them lose their extreme resistance. Once their resistance is lost, germinated spores can easily be inactivated by a mild decontamination step. The implementation of this gentle germination-inactivation strategy is hindered by the presence of a subpopulation of so-called high-pressure superdormant (HPSD) spores, which resist germination or germinate only very slowly in response to HP. It is essential to understand the properties of HPSD spores and the underlying causes of superdormancy to tackle superdormant spores and further develop germination-inactivation strategies involving HP. This study investigated factors influencing the prevalence of HPSD spores and successfully isolated them by combining buoyant density centrifugation and fluorescence-activated cell sorting, which allowed further characterisation of HPSD spores for the first time. The prevalence of HPSD spores was shown to be strongly dependent on the HP dwell time, with increasing treatment times reducing their prevalence. Spore mutants lacking major germinant receptors further showed a highly increased prevalence of HPSD spores; 93% of the spores remained dormant even after a prolonged HP dwell time of 40 min. In contrast to nutrient germination, sublethal heat treatment of 75 °C for 30 min prior to pressure treatment did not induce spore activation and increase germination. The isolated HPSD spores did not show visible structural differences compared to the initial dormant spores when investigated with transmission electron microscopy. Re-sporulated HPSD spores showed similar germination capacity compared to the initial dormant spores, indicating that HPSD spores are most likely not genetically different from the rest of the population. Moreover, the majority of HPSD spores germinated when exposed a second time to the same germination treatment; however, the germination capacity was lower than that of the initial population. The fact that the majority of spores lost superdormancy when exposed a second time to the same trigger makes it unlikely that there is one factor that determines whether a spore germinates with a certain HP treatment or not. Instead, it seems possible that there are other reversible or cumulative causes. This study investigated the factors influencing spore HP superdormancy to improve the understanding of HPSD spores with regard to their stability, germination capacity, and potential underlying causes of spore HP superdormancy. This knowledge will contribute to the development of HP-based germination-inactivation strategies for gentle but effective spore control.


Asunto(s)
Bacillus subtilis/fisiología , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/aislamiento & purificación , Esporas Bacterianas/fisiología , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Descontaminación , Citometría de Flujo , Mutación , Presión , Esporas Bacterianas/genética , Temperatura , Factores de Tiempo
17.
Gut Microbes ; 13(1): 1-17, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33406976

RESUMEN

The human gut microbiome is a diverse and complex ecosystem that plays a critical role in health and disease. The composition of the gut microbiome has been well studied across all stages of life. In recent years, studies have investigated the production of endospores by specific members of the gut microbiome. An endospore is a tough, dormant structure formed by members of the Firmicutes phylum, which allows for greater resistance to otherwise inhospitable conditions. This innate resistance has consequences for human health and disease, as well as in biotechnology. In particular, the formation of endospores is strongly linked to antibiotic resistance and the spread of antibiotic resistance genes, also known as the resistome. The term sporobiota has been used to define the spore-forming cohort of a microbial community. In this review, we present an overview of the current knowledge of the sporobiota in the human gut. We discuss the development of the sporobiota in the infant gut and the perinatal factors that may have an effect on vertical transmission from mother to infant. Finally, we examine the sporobiota of critically important food sources for the developing infant, breast milk and powdered infant formula.


Asunto(s)
Bacterias Formadoras de Endosporas/fisiología , Microbioma Gastrointestinal , Adulto , Farmacorresistencia Bacteriana , Bacterias Formadoras de Endosporas/clasificación , Bacterias Formadoras de Endosporas/aislamiento & purificación , Humanos , Lactante , Fórmulas Infantiles/microbiología , Transmisión Vertical de Enfermedad Infecciosa , Leche Humana/microbiología , Esporas Bacterianas/clasificación , Esporas Bacterianas/aislamiento & purificación , Esporas Bacterianas/fisiología
18.
Am J Phys Med Rehabil ; 100(1): 44-47, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32889863

RESUMEN

OBJECTIVE: Clostridium difficile infection is a common hospital-associated infection spread via patient contact or contaminated environments. The risk for spread of C difficile may be greater in inpatient rehabilitation units than in some hospital units as patients are not confined to their rooms and often share equipment. Environmental disinfection is challenging in shared medical equipment, especially in equipment with complex designs. The study aimed to examine the presence of C difficile spores within an acute rehabilitation environment and to evaluate disinfection effectiveness. DESIGN: Cultures were performed on 28 rehabilitation rooms, 28 rehabilitation floor surfaces, and 80 shared devices and equipment. Two disinfection interventions were implemented, and environmental cultures then were repeated postintervention. RESULTS: Environmental cultures positive for CD spores were rehabilitation rooms (1/28), rehabilitation floors (13/28), and wheelchairs (3/20). After the implementation of new disinfection methods, repeat cultures were obtained and produced negative results. CONCLUSIONS: Nonsporicidal disinfectant was not effective on hospital floors. Sporicidal disinfection of the floor is important when rates of C difficile infection are increased. Wheelchairs are complex devices and difficult to properly clean. The hospital purchased an ultraviolent device for wheelchair cleaning with a subsequent reduction in spores on repeat cultures. TO CLAIM CME CREDITS: Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME. CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) Recognize the impact of Clostridium difficile infections on the healthcare system; (2) Describe potential reservoirs of Clostridium difficile in the inpatient rehabilitation environment; and (3) Discuss interventions that may be implemented to reduce the reservoirs of Clostridium difficile on the rehabilitation unit. LEVEL: Advanced. ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this Journal-based CME activity for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.


Asunto(s)
Clostridioides difficile/aislamiento & purificación , Infecciones por Clostridium/microbiología , Infección Hospitalaria/prevención & control , Reservorios de Enfermedades/microbiología , Microbiología Ambiental , Centros de Rehabilitación/organización & administración , Infecciones por Clostridium/prevención & control , Contaminación de Equipos/prevención & control , Humanos , Habitaciones de Pacientes , Esporas Bacterianas/aislamiento & purificación
19.
J Appl Microbiol ; 130(4): 1173-1180, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32970936

RESUMEN

AIM: Rapid detection of biological agents in biodefense is critical for operational, tactical and strategic levels as well as for medical countermeasures. Yersinia pestis, Francisella tularensis, and Bacillus anthracis are high priority agents of biological warfare or bioterrorism and many response forces use lateral flow assays (LFAs) for their detection. Several companies produce these assays, which offer results in short time and are easy to use. Despite their importance, only few publications on the limits of detection (LOD) for LFAs are available. Most of these studies used inactivated bacteria or risk group-2 strains. As the inactivation process in previous studies might have affected the tests' performances, it was our aim in this study to determine and compare the LOD of several commercially available LFAs using viable risk group-3 strains. METHODS AND RESULTS: Lateral flow assays from four different companies for the detection of following bacteria were evaluated: Y. pestis, F. tularensis and B. anthracis spores. Two independent quantification methods for each target organism were applied, in order to ensure high quantification accuracy. LODs varied greatly between tests and organisms and ranged between 104 for Y. pestis-tests and as high as >109 for one B. anthracis-test. CONCLUSION: This work precisely determined the LODs of LFAs from four commercial suppliers. The herein determined LODs differed from results of previous studies. This illustrates the need for using accurately quantified viable risk group 3-strains for determining such LODs. SIGNIFICANCE AND IMPACT OF THE STUDY: Our work bridges an important knowledge gap with regard to LFA LOD. The LODs determined in this study will facilitate better assessment of LFA-results. They illustrate that a negative LFA result is not suited to exclude the presence of the respective agent in the analyzed sample.


Asunto(s)
Bacillus anthracis/aislamiento & purificación , Técnicas Bacteriológicas/métodos , Francisella tularensis/aislamiento & purificación , Inmunoensayo/métodos , Yersinia pestis/aislamiento & purificación , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/microbiología , Humanos , Límite de Detección , Viabilidad Microbiana , Esporas Bacterianas/aislamiento & purificación
20.
Anal Biochem ; 612: 113957, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32961249

RESUMEN

We describe herein a simple procedure for quantifying endospore abundances in ancient and organic-rich permafrost. We repeatedly (10x) extracted and fractionated permafrost using a tandem filter assembly composed of 3 and 0.2 µm filters. Then, the 0.2 µm filter was washed (7x), autoclaved, and the contents eluted, including dipicolinic acid (DPA). Time-resolved luminescence using Tb(EDTA) yielded a LOD of 1.46 nM DPA (6.55 × 103 endospores/mL). In review, DPA/endospore abundances were ~2.2-fold greater in older 33 ky permafrost (258 ± 36 pmol DPA gdw-1; 1.15 × 106 ± 0.16 × 106 spores gdw-1) versus younger 19 ky permafrost (p = 0.007297). This suggests that dormancy increases with permafrost age.


Asunto(s)
Hielos Perennes/química , Espectrometría de Fluorescencia/métodos , Esporas Bacterianas/química , Esporas Bacterianas/aislamiento & purificación , Quelantes/análisis , Quelantes/química , Quelantes/aislamiento & purificación , Ácidos Picolínicos/análisis , Ácidos Picolínicos/química , Ácidos Picolínicos/aislamiento & purificación , Terbio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...