Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.395
Filtrar
1.
Biomolecules ; 14(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38785924

RESUMEN

Cytokinins (CKs) and abscisic acid (ABA) play an important role in the life of both plants and pathogenic fungi. However, the role of CKs and ABA in the regulation of fungal growth, development and virulence has not been sufficiently studied. We compared the ability of two virulent isolates (SnB and Sn9MN-3A) and one avirulent isolate (Sn4VD) of the pathogenic fungus Stagonospora nodorum Berk. to synthesize three groups of hormones (CKs, ABA and auxins) and studied the effect of exogenous ABA and zeatin on the growth, sporulation and gene expression of necrotrophic effectors (NEs) and transcription factors (TFs) in them. Various isolates of S. nodorum synthesized different amounts of CKs, ABA and indoleacetic acid. Using exogenous ABA and zeatin, we proved that the effect of these hormones on the growth and sporulation of S. nodorum isolates can be opposite, depends on both the genotype of the isolate and on the concentration of the hormone and is carried out through the regulation of carbohydrate metabolism. ABA and zeatin regulated the expression of fungal TF and NE genes, but correlation analysis of these parameters showed that this effect depended on the genotype of the isolate. This study will contribute to our understanding of the role of the hormones ABA and CKs in the biology of the fungal pathogen S. nodorum.


Asunto(s)
Ácido Abscísico , Ascomicetos , Citocininas , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Ascomicetos/genética , Ascomicetos/efectos de los fármacos , Virulencia , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Zeatina/metabolismo , Zeatina/farmacología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Esporas Fúngicas/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
2.
Curr Microbiol ; 81(7): 181, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762690

RESUMEN

Pleurotus ostreatus is one of the most widely cultivated species in the world. It can be produced in many lignocellulosic substrates after carrying out a treatment to eliminate competing microorganisms. The most commonly used is pasteurization by steam or by immersion in hot water. The aim of this work is to evaluate if ozone can be employed as treatment for decontamination of the substrate used for the production of the edible mushroom P. ostreatus to control of green mold Trichoderma. Wheat straw was employed as a substrate. We used two different methodologies: bubbling ozone into a tank with water and the substrate, and injecting ozone into a closed tank with the substrate inside. Ten treatments were carried out including two treatments with inoculation by a spray of conidia of Trichoderma. The effect of ozone on the conidia was also evaluated. We found that the treatment of the substrate with ozone in immersed water resulted more effective (lower growth of Trichoderma) than injecting ozone into a closed tank. Anyway, we found that the contaminant fungi could grow on the substrate in both treatments with ozone. We observed that although ozone affected the conidia when it was bubbled into water, some of them still managed to survive and could germinate 72 h later. P. ostreatus could grow and produce fruiting bodies on a substrate that was previously treated with ozone and yields were not affected. Based on the results obtained, we conclude that ozone may not be an effective agent to control Trichoderma in highly contaminated substrates, at least in the experimental conditions that we used, for the production of P. ostreatus.


Asunto(s)
Ozono , Pleurotus , Trichoderma , Triticum , Pleurotus/crecimiento & desarrollo , Pleurotus/metabolismo , Ozono/farmacología , Trichoderma/metabolismo , Trichoderma/crecimiento & desarrollo , Triticum/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
3.
Int J Biol Macromol ; 270(Pt 1): 132218, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750844

RESUMEN

Botrytis cinerea and Penicillium expansum are phytopathogenic fungi that produce the deterioration of fruits. Thus, essential oil (EO) has emerged as a sustainable strategy to minimize the use of synthetic fungicides, but their volatility and scarce solubility restrict their application. This study proposes the EO of Oreganum vulgare and Thymus vulgaris-loaded solid lipid nanoparticles (SLN) based chitosan/PVA hydrogels to reduce the infestation of fungi phytopathogen. EO of O. vulgare and T. vulgaris-loaded SLN had a good homogeneity (0.21-0.35) and stability (-28.8 to -33.0 mV) with a mean size of 180.4-188.4 nm. The optimization of EO-loaded SLN showed that the encapsulation of 800 and 1200 µL L-1 of EO of O vulgare and T. vulgaris had the best particle size. EO-loaded SLN significantly reduced the mycelial growth and spore germination of both fungi pathogen. EO-loaded SLN into hydrogels showed appropriate physicochemical characteristics to apply under environmental conditions. Furthermore, rheological analyses evidenced that hydrogels had solid-like characteristics and elastic behavior. EO-loaded SLN-based hydrogels inhibited the spore germination in B. cinerea (80.9 %) and P. expansum (55.7 %). These results show that SLN and hydrogels are eco-friendly strategies for applying EO with antifungal activity.


Asunto(s)
Botrytis , Quitosano , Hidrogeles , Nanopartículas , Aceites Volátiles , Penicillium , Quitosano/química , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Penicillium/efectos de los fármacos , Penicillium/crecimiento & desarrollo , Aceites Volátiles/química , Aceites Volátiles/farmacología , Hidrogeles/química , Nanopartículas/química , Lípidos/química , Antifúngicos/farmacología , Antifúngicos/química , Reología , Tamaño de la Partícula , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Liposomas
4.
Phytopathology ; 114(5): 1050-1056, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709298

RESUMEN

Auxin is an important phytohormone that regulates diverse biologic processes, including plant growth and immunity. Indole-3-acetic acid (IAA), known as one of the main forms of auxin, is able to activate plant immunity. However, it is unknown whether IAA enhances plant resistance and/or suppresses the growth of the fungal pathogen Magnaporthe oryzae. Here, we found that IAA could induce expression levels of pathogenesis-related genes to enhance disease resistance and could control the development of blast disease through inhibiting M. oryzae infection. Exogenous IAA suppressed mycelial growth and delayed spore germination by inhibiting fungal endogenous IAA biosynthesis and impairing redox homeostasis, respectively. When applied to a field test, two IAA analogues, 1-naphthaleneacetic acid and 2,4-dichlorophenoxy acetic acid, can effectively control rice blast disease. Our study advances the understanding of IAA in controlling rice blast disease through suppressing pathogen growth and enhancing plant resistance.


Asunto(s)
Resistencia a la Enfermedad , Ácidos Indolacéticos , Oryza , Enfermedades de las Plantas , Ácidos Indolacéticos/metabolismo , Oryza/microbiología , Oryza/crecimiento & desarrollo , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/prevención & control , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Ácidos Naftalenoacéticos/farmacología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
5.
J Hazard Mater ; 471: 134385, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678711

RESUMEN

Nitric oxide (NO) is a signaling molecule with diverse roles in various organisms. However, its role in the opportunistic pathogen Aspergillus flavus remains unclear. This study investigates the potential of NO, mediated by metabolites from A. oryzae (AO), as an antifungal strategy against A. flavus. We demonstrated that AO metabolites effectively suppressed A. flavus asexual development, a critical stage in its lifecycle. Transcriptomic analysis revealed that AO metabolites induced NO synthesis genes, leading to increased intracellular NO levels. Reducing intracellular NO content rescued A. flavus spores from germination inhibition caused by AO metabolites. Furthermore, exogenous NO treatment and dysfunction of flavohemoglobin Fhb1, a key NO detoxification enzyme, significantly impaired A. flavus asexual development. RNA-sequencing and metabolomic analyses revealed significant metabolic disruptions within tricarboxylic acid (TCA) cycle upon AO treatment. NO treatment significantly reduced mitochondrial membrane potential (Δψm) and ATP generation. Additionally, aberrant metabolic flux within the TCA cycle was observed upon NO treatment. Further analysis revealed that NO induced S-nitrosylation of five key TCA cycle enzymes. Genetic analysis demonstrated that the S-nitrosylated Aconitase Acon and one subunit of succinate dehydrogenase Sdh2 played crucial roles in A. flavus development by regulating ATP production. This study highlights the potential of NO as a novel antifungal strategy to control A. flavus by compromising its mitochondrial function and energy metabolism.


Asunto(s)
Aspergillus flavus , Ciclo del Ácido Cítrico , Mitocondrias , Óxido Nítrico , Ciclo del Ácido Cítrico/efectos de los fármacos , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/efectos de los fármacos , Óxido Nítrico/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Antifúngicos/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
6.
Sci Total Environ ; 929: 172701, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657811

RESUMEN

This study evaluated the effects of cadmium (Cd) exposure on the passive and active lethal efficiency of Beauveria bassiana (Bb) to Lymantria dispar larvae and analyzed the corresponding mechanism from mycelial vegetative growth, fungal and host nutrient competition, and fungal spore performance. The results showed that the passive lethal efficiency of Bb to Cd-exposed L. dispar larvae was significantly higher than that of larvae not exposed to Cd. After Bb infection, the fungal biomass in living larvae and the mycelium encapsulation index of dead larvae were significantly decreased under Cd exposure. Cd exposure damaged the mycelial structure, as well as inhibited the mycelial growth and sporulation quantity. A total of 15 and 39 differentially accumulated mycotoxin metabolites were identified in Bb mycelia treated with low Cd and high Cd, respectively, and the contents of these differentially accumulated mycotoxins in the low Cd and high Cd treatment groups were overall lower than those in the control group. Nutrient content and energy metabolism-related gene expression were significantly decreased in Cd-exposed larvae, both before and after Bb infection. Trehalose supplementation alleviated the nutritional deficiency of larvae under the combined treatment of Cd and Bb and decreased the larval susceptibility to Bb. Compared with untreated Bb, the lethal efficiency of low Cd-exposed Bb to larvae increased significantly, while high Cd-exposed Bb was significantly less lethal to larvae. Cd exposure promoted at low concentrations but inhibited the hydrophobicity and adhesion of spores at higher concentrations. Spore germination rate and stress resistance of Bb decreased significantly under the treatment of both Cd concentrations. Taken together, heavy metals can be regarded as an abiotic environmental factor that directly affects the lethal efficiency of Bb to insect pests.


Asunto(s)
Beauveria , Cadmio , Larva , Mariposas Nocturnas , Beauveria/fisiología , Animales , Cadmio/toxicidad , Mariposas Nocturnas/fisiología , Control Biológico de Vectores , Ecosistema , Agricultura Forestal , Esporas Fúngicas/efectos de los fármacos , Micotoxinas , Agricultura/métodos , Complejo de Polillas Esponjosas Voladoras
7.
J Agric Food Chem ; 72(19): 11185-11194, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38687832

RESUMEN

Aspergillus flavus contamination in agriculture and food industries poses threats to human health, leading to a requirement of a safe and effective method to control fungal contamination. Chitosan-based nitrogen-containing derivatives have attracted much attention due to their safety and enhanced antimicrobial applications. Herein, a new benzimidazole-grafted chitosan (BAC) was synthesized by linking the chitosan (CS) with a simple benzimidazole compound, 2-benzimidazolepropionic acid (BA). The characterization of BAC was confirmed by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance spectroscopy (1H and 13C NMR). Then, the efficiency of BAC against A. flavus ACCC 32656 was investigated in terms of spore germination, mycelial growth, and aflatoxin production. BAC showed a much better antifungal effect than CS and BA. The minimum inhibitory concentration (MIC) value was 1.25 mg/mL for BAC, while the highest solubility of CS (16.0 mg/mL) or BA (4.0 mg/mL) could not completely inhibit the growth of A. flavus. Furthermore, results showed that BAC inhibited spore germination and elongation by affecting ergosterol biosynthesis and the cell membrane integrity, leading to the permeabilization of the plasma membrane and leakage of intracellular content. The production of aflatoxin was also inhibited when treated with BAC. These findings indicate that benzimidazole-derived natural CS has the potential to be used as an ideal antifungal agent for food preservation.


Asunto(s)
Aspergillus flavus , Bencimidazoles , Quitosano , Fungicidas Industriales , Pruebas de Sensibilidad Microbiana , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/crecimiento & desarrollo , Bencimidazoles/farmacología , Bencimidazoles/química , Bencimidazoles/síntesis química , Quitosano/farmacología , Quitosano/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/síntesis química , Aflatoxinas , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
8.
Curr Microbiol ; 81(6): 156, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656548

RESUMEN

Aspergillus fumigatus and Fusarium solani infections have become severe health threat; both pathogens are considered a priority due to the increasing emergence of antifungal-resistant strains and high mortality rates. Therefore, the discovery of new therapeutic strategies has become crucial. In this study, we evaluated the antifungal and antivirulence effects of vanillin and tannic acid against Aspergillus fumigatus and Fusarium solani. The minimum inhibitory concentrations of the compounds were determined by the microdilution method in RPMI broth in 96-well microplates according to CLSI. Conidial germination, protease production, biofilm formation, and in vivo therapeutic efficacy assays were performed. The results demonstrated that vanillin and tannic acid had antifungal activity against Aspergillus fumigatus, while tannic acid only exhibited antifungal activity against Fusarium solani. We found that vanillin and tannic acid inhibited conidial germination and secreted protease production and biofilm formation of the fungal pathogens using sub-inhibitory concentrations. Besides, vanillin and tannic acid altered the fungal membrane permeability, and both compounds showed therapeutic effect against aspergillosis and fusariosis in an infection model in Galleria mellonella larvae. Our results highlight the antivirulence effect of vanillin and tannic acid against priority pathogenic fungi as a possible therapeutic alternative for human fungal infections.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Benzaldehídos , Biopelículas , Fusarium , Pruebas de Sensibilidad Microbiana , Polifenoles , Taninos , Benzaldehídos/farmacología , Fusarium/efectos de los fármacos , Taninos/farmacología , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Aspergillus fumigatus/efectos de los fármacos , Animales , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Virulencia/efectos de los fármacos , Larva/microbiología , Larva/efectos de los fármacos , Fusariosis/tratamiento farmacológico , Fusariosis/microbiología , Esporas Fúngicas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/efectos de los fármacos
9.
Microbiol Res ; 284: 127732, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677265

RESUMEN

The HOG MAPK pathway mediates diverse cellular and physiological processes, including osmoregulation and fungicide sensitivity, in phytopathogenic fungi. However, the molecular mechanisms underlying HOG MAPK pathway-associated stress homeostasis and pathophysiological developmental events are poorly understood. Here, we demonstrated that the oxalate decarboxylase CsOxdC3 in Colletotrichum siamense interacts with the protein kinase kinase CsPbs2, a component of the HOG MAPK pathway. The expression of the CsOxdC3 gene was significantly suppressed in response to phenylpyrrole and tebuconazole fungicide treatments, while that of CsPbs2 was upregulated by phenylpyrrole and not affected by tebuconazole. We showed that targeted gene deletion of CsOxdC3 suppressed mycelial growth, reduced conidial length, and triggered a marginal reduction in the sporulation characteristics of the ΔCsOxdC3 strains. Interestingly, the ΔCsOxdC3 strain was significantly sensitive to fungicides, including phenylpyrrole and tebuconazole, while the CsPbs2-defective strain was sensitive to tebuconazole but resistant to phenylpyrrole. Additionally, infection assessment revealed a significant reduction in the virulence of the ΔCsOxdC3 strains when inoculated on the leaves of rubber tree (Hevea brasiliensis). From these observations, we inferred that CsOxdC3 crucially modulates HOG MAPK pathway-dependent processes, including morphogenesis, stress homeostasis, fungicide resistance, and virulence, in C. siamense by facilitating direct physical interactions with CsPbs2. This study provides insights into the molecular regulators of the HOG MAPK pathway and underscores the potential of deploying OxdCs as potent targets for developing fungicides.


Asunto(s)
Carboxiliasas , Colletotrichum , Farmacorresistencia Fúngica , Proteínas Fúngicas , Fungicidas Industriales , Enfermedades de las Plantas , Colletotrichum/genética , Colletotrichum/efectos de los fármacos , Colletotrichum/patogenicidad , Colletotrichum/enzimología , Colletotrichum/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Virulencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas
10.
Phytopathology ; 114(5): 1068-1074, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105240

RESUMEN

Succinate dehydrogenase inhibitor (SDHI) fungicides are the most commonly and effectively used class of fungicides for controlling gray mold. Among them, only boscalid has been registered in China for controlling grape gray mold, whereas isofetamid and pydiflumetofen are two new SDHI fungicides that have demonstrated high efficacy against various fungal diseases. However, the sensitivity of Botrytis cinerea isolates from vineyards in China to these three fungicides is currently unknown. In this study, the sensitivity of 55 B. cinerea isolates from vineyards to boscalid, isofetamid, and pydiflumetofen was determined, with the effective concentrations for inhibiting 50% of spore germination (EC50) values ranging from 1.10 to 393, 0.0300 to 42.0, and 0.0990 to 25.5 µg ml-1, respectively. The resistance frequencies for boscalid, isofetamid, and pydiflumetofen were 60.0, 7.2, and 12.8%, respectively. Three mutations (H272R, H272Y, and P225F) were detected in the SdhB subunit, with H272R being the most prevalent (75.7%), followed by H272Y (16.2%) and P225F (8.1%). All three mutations are associated with resistance to boscalid, and of them, H272R mutants exhibited high resistance. Only P225F and H272Y mutants exhibited resistance to isofetamid and pydiflumetofen, respectively. A weakly positive cross-resistance relationship was observed between boscalid and pydiflumetofen (r = 0.38, P < 0.05). Additionally, the H272R mutants showed no significant fitness costs, whereas the remaining mutants exhibited reduced mycelial growth (P225F) and sporulation (H272Y and P225F). These results suggest that isofetamid and pydiflumetofen are effective fungicides against B. cinerea in vineyards, but appropriate rotation strategies must be implemented to reduce the selection of existing SDHI-resistant isolates.


Asunto(s)
Compuestos de Bifenilo , Botrytis , Farmacorresistencia Fúngica , Fungicidas Industriales , Niacinamida , Enfermedades de las Plantas , Vitis , Botrytis/efectos de los fármacos , Botrytis/genética , Fungicidas Industriales/farmacología , China , Vitis/microbiología , Enfermedades de las Plantas/microbiología , Compuestos de Bifenilo/farmacología , Farmacorresistencia Fúngica/genética , Niacinamida/análogos & derivados , Niacinamida/farmacología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/antagonistas & inhibidores , Esporas Fúngicas/efectos de los fármacos , Benzamidas/farmacología , Piridinas/farmacología , Granjas , Mutación , Norbornanos , Pirazoles
11.
Microbiologyopen ; 11(1): e1257, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35212482

RESUMEN

Dermal fungal infections seem to have increased over recent years. There is further a shift from anthropophilic dermatophytes to a growing prevalence of zoophilic species and the emergence of resistant strains. New antifungals are needed to combat these fungi and their resting spores. This study aimed to investigate the sporicidal effects of sertaconazole nitrate using microplate laser nephelometry against the microconidia of Trichophyton, chlamydospores of Epidermophyton, blastospores of Candida, and conidia of the mold Scopulariopsis brevicaulis. The results obtained were compared with those from ciclopirox olamine and terbinafine. The sporicidal activity was further determined using infected three-dimensional full skin models to determine the antifungal effects in the presence of human cells. Sertaconazole nitrate inhibited the growth of dermatophytes, molds, and yeasts. Ciclopirox olamine also had good antifungal activity, although higher concentrations were needed compared to sertaconazole nitrate. Terbinafine was highly effective against most dermatophytes, but higher concentrations were required to kill the resistant strain Trichophyton indotineae. Sertaconazole nitrate, ciclopirox olamine, and terbinafine had no negative effects on full skin models. Sertaconazole nitrate reduced the growth of fungal and yeast spores over 72 h. Ciclopirox olamine and terbinafine also inhibited the growth of dermatophytes and molds but had significantly lower effects on the yeast. Sertaconazole nitrate might have advantages over the commonly used antifungals ciclopirox olamine and terbinafine in combating resting spores, which persist in the tissues, and thus in the therapy of recurring dermatomycoses.


Asunto(s)
Antifúngicos/farmacología , Dermatomicosis/tratamiento farmacológico , Esporas Fúngicas/efectos de los fármacos , Antifúngicos/uso terapéutico , Candida albicans/efectos de los fármacos , Candida parapsilosis/efectos de los fármacos , Supervivencia Celular , Ciclopirox/farmacología , Ciclopirox/uso terapéutico , Dermatomicosis/microbiología , Epidermophyton/efectos de los fármacos , Fibroblastos , Humanos , Imagenología Tridimensional , Imidazoles/farmacología , Imidazoles/uso terapéutico , Concentración 50 Inhibidora , Queratinocitos , Rayos Láser , Pruebas de Sensibilidad Microbiana , Nefelometría y Turbidimetría/métodos , Scopulariopsis/efectos de los fármacos , Terbinafina/farmacología , Terbinafina/uso terapéutico , Tiofenos/farmacología , Tiofenos/uso terapéutico , Trichophyton/efectos de los fármacos
12.
BMC Plant Biol ; 22(1): 17, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986803

RESUMEN

BACKGROUND: The elemental defense hypothesis states a new defensive strategy that hyperaccumulators defense against herbivores or pathogens attacks by accumulating heavy metals. Brassica juncea has an excellent ability of cadmium (Cd) accumulation. However, the elemental defense effect and its regulation mechanism in B. juncea remain unclear. RESULTS: In this study, we profiled the elemental defense effect and the molecular regulatory mechanism in Cd-accumulated B. juncea after Alternaria brassicicola infection. B. juncea treated with 180 mg Kg- 1 DW CdCl2 2.5H2O exhibited obvious elemental defense effect after 72 h of infection with A. brassicicola. The expression of some defense-related genes including BjNPR1, BjPR12, BjPR2, and stress-related miRNAs (miR156, miR397, miR398a, miR398b/c, miR408, miR395a, miR395b, miR396a, and miR396b) were remarkably elevated during elemental defense in B. juncea. CONCLUSIONS: The results indicate that Cd-accumulated B. juncea may defend against pathogens by coordinating salicylic acid (SA) and jasmonic acid (JA) mediated systemic acquired resistance (SAR) and elemental defense in a synergistic joint effect. Furthermore, the expression of miRNAs related to heavy metal stress response and disease resistance may regulate the balance between pathogen defense and heavy metal stress-responsive in B. juncea. The findings provide experimental evidence for the elemental defense hypothesis in plants from the perspectives of phytohormones, defense-related genes, and miRNAs.


Asunto(s)
Alternaria/fisiología , Cadmio/farmacología , Planta de la Mostaza/inmunología , Enfermedades de las Plantas/inmunología , Alternaria/efectos de los fármacos , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/genética , Planta de la Mostaza/microbiología , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta , ARN de Planta/metabolismo , Ácido Salicílico/metabolismo , Esporas Fúngicas/efectos de los fármacos
13.
ACS Appl Mater Interfaces ; 13(37): 43975-43983, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34514773

RESUMEN

As emerging chemical-free and eco-friendly technologies, nonthermal (gas discharge) plasma and (liquid phase) plasma-activated water (PAW) offer exceptional microbial disinfection solutions for biological, medical, environmental, and agricultural applications. Herein, we present electrohydraulic streamer discharge plasma (ESDP), which combines streamer discharge plasma (SDP) and PAW generated at a gas-liquid interface, to sterilize Chinese kale (Brassica oleracea var. alboglabra) seeds contaminated with Alternaria brassicicola (A. brassicicola). The results showed that the ESDP treatment of A. brassicicola-inoculated seeds provides a ∼75% reduction of A. brassicicola (incident percentage) compared with nontreated seeds. Likewise, the healthy seedling percentage of the plasma-treated seeds was significantly improved to ∼70%, while that of the nontreated seeds remained at ∼15%. A microscopic examination was performed, and it confirmed that ESDP can damage the A. brassicicola spores attached to Chinese kale seeds and lead to severe morphological abnormalities after treatment. Also, an electric field simulation was performed, and it indicated that the strongly localized electric field at the liquid-gas interface on the seed surface boundary had initiated local breakdown of the gas at the air-liquid interface, resulting in exceptional physical-chemical reactions for antimicrobial efficacy beyond typical plasma treatments. Moreover, the optical emission spectra and physicochemical properties (pH, conductivity, and oxidation-reduction potential) showed that inactivation is mainly associated with the reactive oxygen-nitrogen species in the liquid and gas phases. We believe that this work is of great interest when using electrical discharge plasma on liquid interfaces in food, agricultural, and medical industries.


Asunto(s)
Alternaria/efectos de los fármacos , Desinfectantes/toxicidad , Desinfección/métodos , Gases em Plasma/toxicidad , Brassica/microbiología , Supervivencia Celular/efectos de los fármacos , Semillas/microbiología , Esporas Fúngicas/efectos de los fármacos
14.
World J Microbiol Biotechnol ; 37(9): 159, 2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34420104

RESUMEN

Botrytis cinerea, the causal agent of gray mold is one of the major devastating fungal pathogens that occurs in strawberry cultivation and leads to massive losses. Due to the rapid emergence of resistant strains in recent years, an ecofriendly disease management strategy needs to be developed to control this aggressive pathogen. Bacillus velezensis CE 100 exhibited strong antagonistic activity with 53.05% against B. cinerea by dual culture method. In the present study, 50% of culture filtrate supplemented into PDA medium absolutely inhibited mycelial growth of B. cinerea whereas the highest concentration (960 mg/L) of different crude extracts including ethyl acetate, chloroform, and n-butanol crude extracts of B. velezensis CE 100, strongly inhibited mycelial growth of B. cinerea with the highest inhibition of 79.26%, 70.21% and 69.59% respectively, resulting in severe damage to hyphal structures with bulging and swellings. Hence, the antifungal compound responsible was progressively separated from ethyl acetate crude extract using medium pressure liquid chromatography. The purified compound was identified as methyl hippurate by nuclear magnetic resonance and mass spectrometry. The inhibitory effect of methyl hippurate on both spore germination and mycelial growth of B. cinerea was revealed by its dose-dependent pattern. The spore germination rate was completely restricted at a concentration of 3 mg/mL of methyl hippurate whereas no mycelial growth was observed in agar medium supplemented with 4 mg/mL and 6 mg/mL of methyl hippurate by poisoned food method. Microscopic imaging revealed that the morphologies of spores were severely altered by long-time exposure to methyl hippurate at concentrations of 1 mg/mL, 2 mg/mL and 3 mg/mL and hyphae of B. cinerea were severely deformed by exposure to methyl hippurate at concentrations of 2 mg/mL, 4 mg/mL and 6 mg/mL. No significant inhibition on tomato seed germination was observed in treatments with methyl hippurate (2 mg/mL) for both 6 h and 12 h soaking period as compared to the controls. Based on these results, B. velezensis CE 100 could be considered a potential agent for development of environmentally friendly disease control strategies as a consequence of the synergetic interactions of diverse crude metabolites and methyl hippurate.


Asunto(s)
Bacillus/química , Botrytis/efectos de los fármacos , Fungicidas Industriales/farmacología , Hipuratos/farmacología , Bacillus/metabolismo , Botrytis/crecimiento & desarrollo , Fungicidas Industriales/química , Fungicidas Industriales/aislamiento & purificación , Fungicidas Industriales/metabolismo , Hipuratos/química , Hipuratos/aislamiento & purificación , Hipuratos/metabolismo , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
15.
mSphere ; 6(4): e0053921, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34406854

RESUMEN

Treatment of invasive mold infections is limited by the lack of adequate drug options that are effective against these fatal infections. High-throughput screening of molds using traditional antifungal assays of growth is problematic and has greatly limited our ability to identify new mold-active agents. Here, we present a high-throughput screening platform for use with Aspergillus fumigatus, the most common causative agent of invasive mold infections, for the discovery of novel mold-active antifungals. This assay detects cell lysis through the release of the cytosolic enzyme adenylate kinase and, thus, is not dependent on changes in biomass or metabolism to detect antifungal activity. The ability to specifically detect cell lysis is a unique aspect of this assay that allows identification of molecules that disrupt fungal cell integrity, such as cell wall-active molecules. We also found that germinating A. fumigatus conidia release low levels of adenylate kinase and that a reduction in this background allowed us to identify molecules that inhibit conidial germination, expanding the potential for discovery of novel antifungal compounds. Here, we describe the validation of this assay and proof-of-concept pilot screens that identified a novel antifungal compound, PIK-75, that disrupts cell wall integrity. This screening assay provides a novel platform for high-throughput screens with A. fumigatus for the identification of anti-mold drugs. IMPORTANCE Fungal infections caused by molds have the highest mortality rates of human fungal infections. These devastating infections are hard to treat and available antifungal drugs are often not effective. Therefore, the identification of new antifungal drugs with mold activity is critical. Drug screening with molds is challenging and there are limited assays available to identify new antifungal compounds directly with these organisms. Here, we present an assay suitable for use for high-throughput screening with a common mold pathogen. This assay has exciting future potential for the identification of new drugs to treat these fatal infections.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Adenilato Quinasa/antagonistas & inhibidores , Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/crecimiento & desarrollo , Pared Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Prueba de Estudio Conceptual , Bibliotecas de Moléculas Pequeñas/farmacología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/enzimología
16.
Food Microbiol ; 100: 103850, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34416954

RESUMEN

This study aimed at assessing the impact of the physiological state of fungal spores on inactivation by sodium hypochlorite, 0.1% and 0.2% active chlorine, and 3% hydrogen peroxide. In this context, two physiological states were compared for 4 fungal species (5 strains). The first physiological state corresponded to fungal spores produced at 0.99 aw and harvested using an aqueous solution (laboratory conditions), while the second one corresponded to fungal spores produced under a moderate water stress (0.95 aw) and dry-harvested (mechanical harvesting without use of any water, mimicking food plant conditions). Aspergillus flavus "food plant" conidia were more resistant to all tested fungicide molecules than the "laboratory" ones. The same phenomenon was observed for Penicillium commune UBOCC-A-116003 conidia treated with hydrogen peroxide. However, this isolate did not exhibit any inactivation difference between "laboratory" and "food plant" conidia treated with sodium hypochlorite. Similarly, the physiological state of Cladosporium cladosporioides conidia did not impact the efficacy of the tested biocides. P. commune UBOCC-A-112059 "food plant" and "laboratory" conidia were more resistant to hydrogen peroxide and sodium hypochlorite, respectively. As for Mucor circinelloides, "laboratory" spores were more resistant to all disinfectant than the "food plant" ones. Noteworthy, regardless of the physiological state, all M. circinelloides and C. cladosporioides conidia were inactivated for 5 min treatment at 0.2% active chlorine and for 2.5 min treatment at 0.1% active chlorine, while the conidia of all the other species remained viable for these treatments. The obtained data indicate that the efficacy of disinfectant molecules depends not only on the encountered fungal species and its intraspecific diversity but also on the spore physiological state.


Asunto(s)
Cloro/farmacología , Desinfectantes/farmacología , Desinfección/métodos , Hongos/crecimiento & desarrollo , Peróxido de Hidrógeno/farmacología , Esporas Fúngicas/efectos de los fármacos , Hongos/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
17.
J Hazard Mater ; 420: 126610, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34271445

RESUMEN

Effective control of fungal contamination in water is vital to provide healthy and safe drinking water for human beings. Although ozone was highly effective in inactivating fungi in water, it was limited by a lack of continuous disinfection ability in water supply system. In present study, the inactivation of fungal spores by combining ozone and chlorine was investigated. The synergistic effects of Aspergillus niger and Trichoderma harzianum spores reached 0.47- and 0.55-log within 10 min, respectively. The inactivation efficiency and the synergistic effect would be affected by disinfectant concentration, pH, and temperature. The combined inactivation caused more violent oxidative stimulation and more severe damage to the fungal spores than the individual inactivation based on the flow cytometry analysis and the scanning electron microscopy observation. The synergistic effect during the combined inactivation process was attributed to the generation of hydroxyl radicals by the reaction between ozone and chlorine and the promotion of chlorine penetration by the destruction of cell wall by ozone. The combined inactivation efficiency in natural water samples was reduced by 26.4-43.8% compared with that in PBS. The results of this study provided an efficient and feasible disinfection method for the control of fungi in drinking water.


Asunto(s)
Cloro/farmacología , Desinfectantes/farmacología , Ozono , Esporas Fúngicas , Purificación del Agua , Desinfección , Hypocreales/efectos de los fármacos , Ozono/farmacología , Esporas Fúngicas/efectos de los fármacos
18.
Molecules ; 26(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199618

RESUMEN

This study determined the antimicrobial and antioxidant activity of lemongrass (LO), thyme (TO), and oregano (OO) essential oils and ethanolic extracts of pomegranate peel (PPE) and grape pomace (GPE) as candidate ingredients for edible coatings. Antifungal effects against Botrytis cinerea and Penicillium spp. were tested using paper disc and well diffusion methods. Radical scavenging activity (RSA) was evaluated using 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid assays. Gas chromatography-mass spectrometry analysis identified limonene (16.59%), α-citral (27.45%), ß-citral (27.43%), thymol (33.31%), paracymene (43.26%), 1,8-cineole (17.53%), and trans-caryphellene (60.84%) as major compounds of the essential oils. From both paper disc and well diffusion methods, LO recorded the widest zone of inhibition against tested microbes (B. cinerea and Penicillium spp.). The minimum inhibitory concentrations of LO against B. cinerea and Penicillium spp., were 15 µL/mL and 30 µL/mL, respectively. The highest (69.95%) and lowest (1.64%) RSA at 1 mg/mL were recorded for PPE and OO. Application of sodium alginate and chitosan-based coatings formulated with LO (15 or 30 µL/mL) completely inhibited spore germination and reduced the decay severity of 'Wonderful' pomegranate. Lemongrass oil proved to be a potential antifungal agent for edible coatings developed to extend shelf life of 'Wonderful' pomegranate.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Cymbopogon/química , Aceites Volátiles/farmacología , Origanum/química , Thymus (Planta)/química , Antiinfecciosos/química , Antioxidantes/química , Botrytis/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Penicillium/efectos de los fármacos , Aceites de Plantas/química , Aceites de Plantas/farmacología , Esporas Fúngicas/efectos de los fármacos , Terpenos
19.
mBio ; 12(4): e0167221, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34311572

RESUMEN

There is a critical need for new antifungal drugs; however, the lack of available fungus-specific targets is a major hurdle in the development of antifungal therapeutics. Spore germination is a differentiation process absent in humans that could harbor uncharacterized fungus-specific targets. To capitalize on this possibility, we developed novel phenotypic assays to identify and characterize inhibitors of spore germination of the human fungal pathogen Cryptococcus. Using these assays, we carried out a high-throughput screen of ∼75,000 drug-like small molecules and identified and characterized 191 novel inhibitors of spore germination, many of which also inhibited yeast replication and demonstrated low cytotoxicity against mammalian cells. Using an automated, microscopy-based, quantitative germination assay (QGA), we discovered that germinating spore populations can exhibit unique phenotypes in response to chemical inhibitors. Through the characterization of these spore population dynamics in the presence of the newly identified inhibitors, we classified 6 distinct phenotypes based on differences in germination synchronicity, germination rates, and overall population behavior. Similar chemical phenotypes were induced by inhibitors that targeted the same cellular function or had shared substructures. Leveraging these features, we used QGAs to identify outliers among compounds that fell into similar structural groups and thus refined relevant structural moieties, facilitating target identification. This approach led to the identification of complex II of the electron transport chain as the putative target of a promising structural cluster of germination inhibitory compounds. These inhibitors showed high potency against Cryptococcus spore germination while maintaining low cytotoxicity against mammalian cells, making them prime candidates for development into novel antifungal therapeutics. IMPORTANCE Fungal pathogens cause 1.5 million deaths annually, and there is a critical need for new antifungal drugs. However, humans and fungi are very similar on a molecular level, and so many drugs that kill fungi also damage human cells, leading to extreme side effects, including death. The lack of fungus-specific targets is a major hurdle in the development of antifungal therapeutics. Spore germination is a process absent in humans that could harbor fungus-specific targets. To capitalize on this possibility, we developed new assays to identify and characterize inhibitors of spore germination of the human fungal pathogen Cryptococcus. Using these assays, we identified and characterized 191 novel inhibitors of spore germination. These inhibitors showed high potency against Cryptococcus spore germination while maintaining low cytotoxicity against mammalian cells, making them prime candidates for development into novel antifungal therapeutics.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Criptococosis/tratamiento farmacológico , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/patogenicidad , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Fenotipo , Esporas Fúngicas/clasificación , Esporas Fúngicas/patogenicidad
20.
Molecules ; 26(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34299538

RESUMEN

Trichophyton rubrum causes ringworm worldwide. Citral (CIT), extracted from Pectis plants, is a monoterpene and naturally composed of geometric isomers neral (cis-citral) and geranial (trans-citral). CIT has promising antifungal activities and ergosterol biosynthesis inhibition effects against several pathogenic fungi. However, no study has focused on neral and geranial against T. rubrum, which hinders the clinical application of CIT. This study aimed to compare antifungal activities of neral and geranial and preliminarily elucidate their ergosterol biosynthesis inhibition mechanism against T. rubrum. Herein, the disc diffusion assays, cellular leakage measurement, flow cytometry, SEM/TEM observation, sterol quantification, and sterol pattern change analyses were employed. The results showed geranial exhibited larger inhibition zones (p < 0.01 or 0.05), higher cellular leakage rates (p < 0.01), increased conidia with damaged membranes (p < 0.01) within 24 h, more distinct shriveled mycelium in SEM, prominent cellular material leakage, membrane damage, and morphological changes in TEM. Furthermore, geranial possessed more promising ergosterol biosynthesis inhibition effects than neral, and both induced the synthesis of 7-Dehydrodesmosterol and Cholesta-5,7,22,24-tetraen-3ß-ol, which represented marker sterols when ERG6 was affected. These results suggest geranial is more potent than neral against T. rubrum, and both inhibit ergosterol biosynthesis by affecting ERG6.


Asunto(s)
Monoterpenos Acíclicos/farmacología , Antifúngicos/farmacología , Arthrodermataceae/efectos de los fármacos , Dermatomicosis/tratamiento farmacológico , Ergosterol/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Monoterpenos/farmacología , Micelio/efectos de los fármacos , Extractos Vegetales/farmacología , Esporas Fúngicas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA