Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.934
Filtrar
1.
PLoS One ; 19(5): e0293053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768123

RESUMEN

Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient's age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders' development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Automático , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Femenino , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Masculino , Imagen por Resonancia Magnética/métodos , Anciano , Persona de Mediana Edad , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Conectoma/métodos , Descanso/fisiología , Estudios de Casos y Controles
2.
JAMA Netw Open ; 7(5): e2410684, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722627

RESUMEN

Importance: In vivo imaging studies of reactive astrocytes are crucial for understanding the pathophysiology of schizophrenia because astrocytes play a critical role in glutamate imbalance and neuroinflammation. Objective: To investigate in vivo reactive astrocytes in patients with schizophrenia associated with positive symptoms using monoamine oxidase B (MAO-B)-binding fluorine 18 ([18F])-labeled THK5351 positron emission tomography (PET). Design, Setting, and Participants: In this case-control study, data were collected from October 1, 2021, to January 31, 2023, from the internet advertisement for the healthy control group and from the outpatient clinics of Seoul National University Hospital in Seoul, South Korea, for the schizophrenia group. Participants included patients with schizophrenia and age- and sex-matched healthy control individuals. Main Outcomes and Measures: Standardized uptake value ratios (SUVrs) of [18F]THK5351 in the anterior cingulate cortex (ACC) and hippocampus as primary regions of interest (ROIs), with other limbic regions as secondary ROIs, and the correlation between altered SUVrs and Positive and Negative Syndrome Scale (PANSS) positive symptom scores. Results: A total of 68 participants (mean [SD] age, 32.0 [7.0] years; 41 men [60.3%]) included 33 patients with schizophrenia (mean [SD] age, 32.3 [6.3] years; 22 men [66.7%]) and 35 healthy controls (mean [SD] age, 31.8 [7.6] years; 19 men [54.3%]) who underwent [18F]THK5351 PET scanning. Patients with schizophrenia showed significantly higher SUVrs in the bilateral ACC (left, F = 5.767 [false discovery rate (FDR)-corrected P = .04]; right, F = 5.977 [FDR-corrected P = .04]) and left hippocampus (F = 4.834 [FDR-corrected P = .04]) than healthy controls. Trend-level group differences between the groups in the SUVrs were found in the secondary ROIs (eg, right parahippocampal gyrus, F = 3.387 [P = .07]). There were positive correlations between the SUVrs in the bilateral ACC and the PANSS positive symptom scores (left, r = 0.423 [FDR-corrected P = .03]; right, r = 0.406 [FDR-corrected P = .03]) in patients with schizophrenia. Conclusions and Relevance: This case-control study provides novel in vivo imaging evidence of reactive astrocyte involvement in the pathophysiology of schizophrenia. Reactive astrocytes in the ACC may be a future target for the treatment of symptoms of schizophrenia, especially positive symptoms.


Asunto(s)
Astrocitos , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/metabolismo , Masculino , Femenino , Adulto , Astrocitos/metabolismo , Estudios de Casos y Controles , Tomografía de Emisión de Positrones/métodos , Giro del Cíngulo/diagnóstico por imagen , Hipocampo/diagnóstico por imagen
3.
Hum Brain Mapp ; 45(7): e26694, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727014

RESUMEN

Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairments of SZ, the findings have exhibited great heterogeneity. We aimed to identify congruous and replicable connectivity patterns capable of predicting positive and negative symptoms as well as cognitive impairments in SZ. Predictable functional connections (FCs) were identified by employing an individualized prediction model, whose replicability was further evaluated across three independent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network were replicable in prediction of positive symptoms, while sensorimotor network was predictive of negative symptoms. Temporal-parahippocampal network was consistently identified to be associated with reduced cognitive function. These replicable 23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts (82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs showed comparable accuracies to those built using the whole-brain features in predicting symptoms/cognition of SZ across the three cohorts (r = .17-.33, p < .05). Overall, our findings provide new insights into the neural underpinnings of SZ symptoms/cognition and offer potential targets for further research and possible clinical interventions.


Asunto(s)
Disfunción Cognitiva , Conectoma , Imagen por Resonancia Magnética , Red Nerviosa , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Masculino , Adulto , Femenino , Conectoma/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Adulto Joven , Persona de Mediana Edad
4.
Schizophr Res ; 267: 519-527, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704344

RESUMEN

BACKGROUND: Previous investigations have revealed substantial differences in neuroimaging characteristics between healthy controls (HCs) and individuals diagnosed with schizophrenia (SCZ). However, we are not entirely sure how brain activity links to symptoms in schizophrenia, and there is a need for reliable brain imaging markers for treatment prediction. METHODS: In this longitudinal study, we examined 56 individuals diagnosed with 56 SCZ and 51 HCs. The SCZ patients underwent a three-month course of antipsychotic treatment. We employed resting-state functional magnetic resonance imaging (fMRI) along with fractional Amplitude of Low Frequency Fluctuations (fALFF) and support vector regression (SVR) methods for data acquisition and subsequent analysis. RESULTS: In this study, we initially noted lower fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, coupled with higher fALFF values in the left hippocampus and right putamen in SCZ patients compared to the HCs at baseline. However, when comparing fALFF values in brain regions with abnormal baseline fALFF values for SCZ patients who completed the follow-up, no significant differences in fALFF values were observed after 3 months of treatment compared to baseline data. The fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, and the left postcentral gyrus were useful in predicting treatment effects. CONCLUSION: Our findings suggest that reduced fALFF values in the sensory-motor networks and increased fALFF values in the limbic system may constitute distinctive neurobiological features in SCZ patients. These findings may serve as potential neuroimaging markers for the prognosis of SCZ patients.


Asunto(s)
Antipsicóticos , Sistema Límbico , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Masculino , Femenino , Adulto , Antipsicóticos/farmacología , Sistema Límbico/diagnóstico por imagen , Sistema Límbico/fisiopatología , Estudios Longitudinales , Adulto Joven , Resultado del Tratamiento , Evaluación de Resultado en la Atención de Salud , Persona de Mediana Edad , Máquina de Vectores de Soporte
5.
Hum Brain Mapp ; 45(7): e26692, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712767

RESUMEN

In neuroimaging studies, combining data collected from multiple study sites or scanners is becoming common to increase the reproducibility of scientific discoveries. At the same time, unwanted variations arise by using different scanners (inter-scanner biases), which need to be corrected before downstream analyses to facilitate replicable research and prevent spurious findings. While statistical harmonization methods such as ComBat have become popular in mitigating inter-scanner biases in neuroimaging, recent methodological advances have shown that harmonizing heterogeneous covariances results in higher data quality. In vertex-level cortical thickness data, heterogeneity in spatial autocorrelation is a critical factor that affects covariance heterogeneity. Our work proposes a new statistical harmonization method called spatial autocorrelation normalization (SAN) that preserves homogeneous covariance vertex-level cortical thickness data across different scanners. We use an explicit Gaussian process to characterize scanner-invariant and scanner-specific variations to reconstruct spatially homogeneous data across scanners. SAN is computationally feasible, and it easily allows the integration of existing harmonization methods. We demonstrate the utility of the proposed method using cortical thickness data from the Social Processes Initiative in the Neurobiology of the Schizophrenia(s) (SPINS) study. SAN is publicly available as an R package.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Imagen por Resonancia Magnética/normas , Imagen por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Neuroimagen/métodos , Neuroimagen/normas , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Masculino , Femenino , Adulto , Distribución Normal , Grosor de la Corteza Cerebral
6.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38706137

RESUMEN

Schizophrenia has been considered to exhibit sex-related clinical differences that might be associated with distinctly abnormal brain asymmetries between sexes. One hundred and thirty-two antipsychotic-naïve first-episode patients with schizophrenia and 150 healthy participants were recruited in this study to investigate whether cortical asymmetry would exhibit sex-related abnormalities in schizophrenia. After a 1-yr follow-up, patients were rescanned to obtain the effect of antipsychotic treatment on cortical asymmetry. Male patients were found to show increased lateralization index while female patients were found to exhibit decreased lateralization index in widespread regions when compared with healthy participants of the corresponding sex. Specifically, the cortical asymmetry of male and female patients showed contrary trends in the cingulate, orbitofrontal, parietal, temporal, occipital, and insular cortices. This result suggested male patients showed a leftward shift of asymmetry while female patients showed a rightward shift of asymmetry in these above regions that related to language, vision, emotion, and cognition. Notably, abnormal lateralization indices remained stable after antipsychotic treatment. The contrary trends in asymmetry between female and male patients with schizophrenia together with the persistent abnormalities after antipsychotic treatment suggested the altered brain asymmetries in schizophrenia might be sex-related disturbances, intrinsic, and resistant to the effect of antipsychotic therapy.


Asunto(s)
Antipsicóticos , Corteza Cerebral , Lateralidad Funcional , Imagen por Resonancia Magnética , Esquizofrenia , Caracteres Sexuales , Humanos , Femenino , Masculino , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/patología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Adulto , Corteza Cerebral/diagnóstico por imagen , Adulto Joven , Antipsicóticos/uso terapéutico , Lateralidad Funcional/fisiología , Adolescente , Mapeo Encefálico
7.
BMC Psychiatry ; 24(1): 281, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622613

RESUMEN

BACKGROUND: Violence in schizophrenia (SCZ) is a phenomenon associated with neurobiological factors. However, the neural mechanisms of violence in patients with SCZ are not yet sufficiently understood. Thus, this study aimed to explore the structural changes associated with the high risk of violence and its association with impulsiveness in patients with SCZ to reveal the possible neurobiological basis. METHOD: The voxel-based morphometry approach and whole-brain analyses were used to measure the alteration of gray matter volume (GMV) for 45 schizophrenia patients with violence (VSC), 45 schizophrenia patients without violence (NSC), and 53 healthy controls (HC). Correlation analyses were used to examine the association of impulsiveness and brain regions associated with violence. RESULTS: The results demonstrated reduced GMV in the right insula within the VSC group compared with the NSC group, and decreased GMV in the right temporal pole and left orbital part of superior frontal gyrus only in the VSC group compared to the HC group. Spearman correlation analyses further revealed a positive correlation between impulsiveness and GMV of the left superior temporal gyrus, bilateral insula and left medial orbital part of the superior frontal gyrus in the VSC group. CONCLUSION: Our findings have provided further evidence for structural alterations in patients with SCZ who had engaged in severe violence, as well as the relationship between the specific brain alterations and impulsiveness. This work provides neural biomarkers and improves our insight into the neural underpinnings of violence in patients with SCZ.


Asunto(s)
Esquizofrenia , Humanos , Masculino , Esquizofrenia/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Corteza Prefrontal , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
8.
BMC Psychiatry ; 24(1): 309, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658884

RESUMEN

BACKGROUND: Lateral ventricular enlargement represents a canonical morphometric finding in chronic patients with schizophrenia; however, longitudinal studies elucidating complex dynamic trajectories of ventricular volume change during critical early disease stages are sparse. METHODS: We measured lateral ventricular volumes in 113 first-episode schizophrenia patients (FES) at baseline visit (11.7 months after illness onset, SD = 12.3) and 128 age- and sex-matched healthy controls (HC) using 3T MRI. MRI was then repeated in both FES and HC one year later. RESULTS: Compared to controls, ventricular enlargement was identified in 18.6% of patients with FES (14.1% annual ventricular volume (VV) increase; 95%CI: 5.4; 33.1). The ventricular expansion correlated with the severity of PANSS-negative symptoms at one-year follow-up (p = 0.0078). Nevertheless, 16.8% of FES showed an opposite pattern of statistically significant ventricular shrinkage during ≈ one-year follow-up (-9.5% annual VV decrease; 95%CI: -23.7; -2.4). There were no differences in sex, illness duration, age of onset, duration of untreated psychosis, body mass index, the incidence of Schneiderian symptoms, or cumulative antipsychotic dose among the patient groups exhibiting ventricular enlargement, shrinkage, or no change in VV. CONCLUSION: Both enlargement and ventricular shrinkage are equally present in the early stages of schizophrenia. The newly discovered early reduction of VV in a subgroup of patients emphasizes the need for further research to understand its mechanisms.


Asunto(s)
Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Masculino , Femenino , Estudios Longitudinales , Adulto , Adulto Joven , Ventrículos Cerebrales/diagnóstico por imagen , Ventrículos Cerebrales/patología , Ventrículos Laterales/diagnóstico por imagen , Ventrículos Laterales/patología , Progresión de la Enfermedad , Estudios de Casos y Controles , Adolescente
9.
BMC Psychiatry ; 24(1): 313, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658896

RESUMEN

BACKGROUND: Distinguishing untreated major depressive disorder without medication (MDD) from schizophrenia with depressed mood (SZDM) poses a clinical challenge. This study aims to investigate differences in fractional amplitude of low-frequency fluctuations (fALFF) and cognition in untreated MDD and SZDM patients. METHODS: The study included 42 untreated MDD cases, 30 SZDM patients, and 46 healthy controls (HC). Cognitive assessment utilized the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Resting-state functional magnetic resonance imaging (rs-fMRI) scans were conducted, and data were processed using fALFF in slow-4 and slow-5 bands. RESULTS: Significant fALFF changes were observed in four brain regions across MDD, SZDM, and HC groups for both slow-4 and slow-5 fALFF. Compared to SZDM, the MDD group showed increased slow-5 fALFF in the right gyrus rectus (RGR). Relative to HC, SZDM exhibited decreased slow-5 fALFF in the left gyrus rectus (LGR) and increased slow-5 fALFF in the right putamen. Changes in slow-5 fALFF in both RGR and LGR were negatively correlated with RBANS scores. No significant correlations were found between remaining fALFF (slow-4 and slow-5 bands) and RBANS scores in MDD or SZDM groups. CONCLUSIONS: Alterations in slow-5 fALFF in RGR may serve as potential biomarkers for distinguishing MDD from SZDM, providing preliminary insights into the neural mechanisms of cognitive function in schizophrenia.


Asunto(s)
Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Masculino , Femenino , Adulto , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/complicaciones , Cognición/fisiología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Pruebas Neuropsicológicas/estadística & datos numéricos , Persona de Mediana Edad , Adulto Joven , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen
10.
Medicina (Kaunas) ; 60(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674210

RESUMEN

Background and Objectives: Neuroimaging reveals a link between psychiatric conditions and brain structural-functional changes, prompting a paradigm shift in viewing schizophrenia as a neurodevelopmental disorder. This study aims to identify and compare structural brain changes found during the first schizophrenia episode with those found after more than 5 years of illness. Materials and Methods: This prospective study involved 149 participants enrolled between 1 January 2019 and 31 December 2021. The participants were categorized into three groups: the first comprises 51 individuals with an initial psychotic episode, the second consists of 49 patients diagnosed with schizophrenia for over 5 years, and a control group comprising 50 individuals without a diagnosis of schizophrenia or any other psychotic disorder. All participants underwent brain CT examinations. Results: The study examined all three groups: first-episode schizophrenia (FES), schizophrenia (SCZ), and the control group. The FES group had a mean age of 26.35 years and a mean duration of illness of 1.2 years. The SCZ group, with a mean age of 40.08 years, had been diagnosed with schizophrenia for an average of 15.12 years. The control group, with a mean age of 34.60 years, had no schizophrenia diagnosis. Structural measurements revealed widening of frontal horns and lateral ventricles in the SCZ group compared to FES and the FES group compared to the control group. Differences in the dimensions of the third ventricle were noted between SCZ and FES, while no distinction was observed between FES and the control group. The fourth ventricle had similar measurements in FES and SCZ groups, both exceeding those of the control group. Our results showed higher densities in the frontal lobe in schizophrenia patients compared to FES and the control group, with the control group consistently displaying the lowest densities. Conclusions: In summary, our comparative imaging analysis of schizophrenia patients, first-episode schizophrenia, and control patients revealed distinct ventricular patterns, with SCZ showing greater widening than FES and FES wider than the control group. Frontal lobe density, assessed via cerebral CT scans, indicated a higher density in the SCZ group in both anterior and posterior cortex portions compared to FES and the control group, while the left posterior cortex in FES had the highest density. These findings highlight unique neuroanatomical features across groups, shedding light on structural differences associated with different stages of schizophrenia.


Asunto(s)
Encéfalo , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Esquizofrenia/complicaciones , Adulto , Femenino , Masculino , Estudios Prospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Tomografía Computarizada por Rayos X/métodos , Neuroimagen/métodos , Persona de Mediana Edad
11.
Transl Psychiatry ; 14(1): 196, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664377

RESUMEN

The response variability to repetitive transcranial magnetic stimulation (rTMS) challenges the effective use of this treatment option in patients with schizophrenia. This variability may be deciphered by leveraging predictive information in structural MRI, clinical, sociodemographic, and genetic data using artificial intelligence. We developed and cross-validated rTMS response prediction models in patients with schizophrenia drawn from the multisite RESIS trial. The models incorporated pre-treatment sMRI, clinical, sociodemographic, and polygenic risk score (PRS) data. Patients were randomly assigned to receive active (N = 45) or sham (N = 47) rTMS treatment. The prediction target was individual response, defined as ≥20% reduction in pre-treatment negative symptom sum scores of the Positive and Negative Syndrome Scale. Our multimodal sequential prediction workflow achieved a balanced accuracy (BAC) of 94% (non-responders: 92%, responders: 95%) in the active-treated group and 50% in the sham-treated group. The clinical, clinical + PRS, and sMRI-based classifiers yielded BACs of 65%, 76%, and 80%, respectively. Apparent sadness, inability to feel, educational attainment PRS, and unemployment were most predictive of non-response in the clinical + PRS model, while grey matter density reductions in the default mode, limbic networks, and the cerebellum were most predictive in the sMRI model. Our sequential modelling approach provided superior predictive performance while minimising the diagnostic burden in the clinical setting. Predictive patterns suggest that rTMS responders may have higher levels of brain grey matter in the default mode and salience networks which increases their likelihood of profiting from plasticity-inducing brain stimulation methods, such as rTMS. The future clinical implementation of our models requires findings to be replicated at the international scale using stratified clinical trial designs.


Asunto(s)
Aprendizaje Automático , Imagen por Resonancia Magnética , Esquizofrenia , Estimulación Magnética Transcraneal , Humanos , Esquizofrenia/terapia , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Estimulación Magnética Transcraneal/métodos , Femenino , Masculino , Adulto , Flujo de Trabajo , Resultado del Tratamiento , Persona de Mediana Edad , Adulto Joven
12.
Schizophr Res ; 267: 261-268, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581829

RESUMEN

BACKGROUND: Gamma-band activity has been the focus of considerable research in schizophrenia. Discrepancies exist regarding the integrity of the early auditory gamma-band response (EAGBR), a stimulus-evoked oscillation, and its relationship to symptoms in early disease. Variability in task design may play a role. This study examined sensitivity of the EAGBR to stimulus intensity and its relation to symptoms and functional impairments in the first-episode schizophrenia spectrum (FESz). METHOD: Magnetoencephalography was recorded from 35 FESz and 40 matched healthy controls (HC) during presentation of 3 tone intensities (75 dB, 80 dB, 85 dB). MRIs were collected to localize auditory cortex activity. Wavelet-transformed single trial epochs and trial averages were used to assess EAGBR intertrial phase coherence (ITPC) and evoked power, respectively. Symptoms were assessed using the Positive and Negative Syndrome Scale. RESULTS: Groups did not differ in overall EAGBR power or ITPC. While HC exhibited EAGBR enhancement to increasing intensity, FESz exhibited reduced power to the 80 dB tone and, relative to HC, increased power to the 75 dB tone. Larger power and ITPC were correlated with more severe negative, thought disorganization, and resistance symptoms. Stronger ITPC was associated with impaired social functioning. DISCUSSION: EAGBR showed no overall deficit at disease onset. Rather, FESz exhibited a differential response across tone intensity relative to HC, emphasizing the importance of stimulus characteristics in EAGBR studies. Associations between larger EAGBR and more severe symptoms suggest aberrant synchronization driving overinclusive perceptual binding that may relate to deficits in executive inhibition of initial sensory activity.


Asunto(s)
Corteza Auditiva , Potenciales Evocados Auditivos , Ritmo Gamma , Magnetoencefalografía , Esquizofrenia , Humanos , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Masculino , Femenino , Ritmo Gamma/fisiología , Adulto Joven , Adulto , Potenciales Evocados Auditivos/fisiología , Corteza Auditiva/fisiopatología , Corteza Auditiva/diagnóstico por imagen , Imagen por Resonancia Magnética , Estimulación Acústica , Adolescente
13.
Schizophr Res ; 267: 497-506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582653

RESUMEN

BACKGROUND: Abnormal cerebellar functional connectivity (FC) has been implicated in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BD). However, the patterns of cerebellar dysconnectivity in these two disorders and their association with cognitive functioning and clinical symptoms have not been fully clarified. In this study, we examined cerebellar FC alterations in SCZ and BD-I and their association with cognition and psychotic symptoms. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) data of 39 SCZ, 43 BD-I, and 61 healthy controls from the Consortium for Neuropsychiatric Phenomics dataset were examined. The cerebellum was parcellated into ten functional networks, and seed-based FC was calculated for each cerebellar system. Principal component analyses were used to reduce the dimensionality of the diagnosis-related FC and cognitive variables. Multiple regression analyses were used to assess the relationship between FC and cognitive and clinical data. RESULTS: We observed decreased cerebellar FC with the frontal, temporal, occipital, and thalamic areas in individuals with SCZ, and a more widespread decrease in cerebellar FC in individuals with BD-I, involving the frontal, cingulate, parietal, temporal, occipital, and thalamic regions. SCZ had increased within-cerebellum and cerebellar frontal FC compared to BD-I. In BD-I, memory and verbal learning performances, which were higher compared to SCZ, showed a greater interaction with cerebellar FC patterns. Additionally, patterns of increased cortico-cerebellar FC were marginally associated with positive symptoms in patients. CONCLUSIONS: Our findings suggest that shared and distinct patterns of cortico-cerebellar dysconnectivity in SCZ and BD-I could underlie cognitive impairments and psychotic symptoms in these disorders.


Asunto(s)
Trastorno Bipolar , Cerebelo , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/diagnóstico por imagen , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/complicaciones , Masculino , Femenino , Adulto , Cerebelo/diagnóstico por imagen , Cerebelo/fisiopatología , Adulto Joven , Conectoma , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/diagnóstico por imagen , Persona de Mediana Edad
14.
Schizophr Res ; 267: 330-340, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613864

RESUMEN

Deficits in social cognition (SC) interfere with recovery in schizophrenia (SZ) and may be related to resting state brain connectivity. This study aimed at assessing the alterations in the relationship between resting state functional connectivity and the social-cognitive abilities of patients with SZ compared to healthy subjects. We divided the brain into 246 regions of interest (ROI) following the Human Healthy Volunteers Brainnetome Atlas. For each participant, we calculated the resting-state functional connectivity (rsFC) in terms of degree centrality (DC), which evaluates the total strength of the most powerful coactivations of every ROI with all other ROIs during rest. The rs-DC of the ROIs was correlated with five measures of SC assessing emotion processing and mentalizing in 45 healthy volunteers (HVs) chosen as a normative sample. Then, controlling for symptoms severity, we verified whether these significant associations were altered, i.e., absent or of opposite sign, in 55 patients with SZ. We found five significant differences between SZ patients and HVs: in the patients' group, the correlations between emotion recognition tasks and rsFC of the right entorhinal cortex (R-EC), left superior parietal lobule (L-SPL), right caudal hippocampus (R-c-Hipp), and the right caudal (R-c) and left rostral (L-r) middle temporal gyri (MTG) were lost. An altered resting state functional connectivity of the L-SPL, R-EC, R-c-Hipp, and bilateral MTG in patients with SZ may be associated with impaired emotion recognition. If confirmed, these results may enhance the development of non-invasive brain stimulation interventions targeting those cerebral regions to reduce SC deficit in SZ.


Asunto(s)
Imagen por Resonancia Magnética , Esquizofrenia , Cognición Social , Humanos , Masculino , Adulto , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Femenino , Italia , Conectoma , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Adulto Joven , Persona de Mediana Edad , Emociones/fisiología , Descanso/fisiología , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Psicología del Esquizofrénico , Mentalización/fisiología , Teoría de la Mente/fisiología
15.
Int J Neural Syst ; 34(7): 2450031, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38623649

RESUMEN

Schizophrenia is accompanied by aberrant interactions of intrinsic brain networks. However, the modulatory effect of electroencephalography (EEG) rhythms on the functional connectivity (FC) in schizophrenia remains unclear. This study aims to provide new insight into network communication in schizophrenia by integrating FC and EEG rhythm information. After collecting simultaneous resting-state EEG-functional magnetic resonance imaging data, the effect of rhythm modulations on FC was explored using what we term "dynamic rhythm information." We also investigated the synergistic relationships among three networks under rhythm modulation conditions, where this relationship presents the coupling between two brain networks with other networks as the center by the rhythm modulation. This study found FC between the thalamus and cortical network regions was rhythm-specific. Further, the effects of the thalamus on the default mode network (DMN) and salience network (SN) were less similar under alpha rhythm modulation in schizophrenia patients than in controls ([Formula: see text]). However, the similarity between the effects of the central executive network (CEN) on the DMN and SN under gamma modulation was greater ([Formula: see text]), and the degree of coupling was negatively correlated with the duration of disease ([Formula: see text], [Formula: see text]). Moreover, schizophrenia patients exhibited less coupling with the thalamus as the center and greater coupling with the CEN as the center. These results indicate that modulations in dynamic rhythms might contribute to the disordered functional interactions seen in schizophrenia.


Asunto(s)
Corteza Cerebral , Electroencefalografía , Imagen por Resonancia Magnética , Red Nerviosa , Esquizofrenia , Tálamo , Humanos , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Tálamo/fisiopatología , Tálamo/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Adulto , Masculino , Femenino , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Ondas Encefálicas/fisiología , Adulto Joven , Vías Nerviosas/fisiopatología , Red en Modo Predeterminado/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Conectoma
16.
Hum Brain Mapp ; 45(5): e26649, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520364

RESUMEN

The temporal variability of the thalamus in functional networks may provide valuable insights into the pathophysiology of schizophrenia. To address the complexity of the role of the thalamic nuclei in psychosis, we introduced micro-co-activation patterns (µCAPs) and employed this method on the human genetic model of schizophrenia 22q11.2 deletion syndrome (22q11.2DS). Participants underwent resting-state functional MRI and a data-driven iterative process resulting in the identification of six whole-brain µCAPs with specific activity patterns within the thalamus. Unlike conventional methods, µCAPs extract dynamic spatial patterns that reveal partially overlapping and non-mutually exclusive functional subparts. Thus, the µCAPs method detects finer foci of activity within the initial seed region, retaining valuable and clinically relevant temporal and spatial information. We found that a µCAP showing co-activation of the mediodorsal thalamus with brain-wide cortical regions was expressed significantly less frequently in patients with 22q11.2DS, and its occurrence negatively correlated with the severity of positive psychotic symptoms. Additionally, activity within the auditory-visual cortex and their respective geniculate nuclei was expressed in two different µCAPs. One of these auditory-visual µCAPs co-activated with salience areas, while the other co-activated with the default mode network (DMN). A significant shift of occurrence from the salience+visuo-auditory-thalamus to the DMN + visuo-auditory-thalamus µCAP was observed in patients with 22q11.2DS. Thus, our findings support existing research on the gatekeeping role of the thalamus for sensory information in the pathophysiology of psychosis and revisit the evidence of geniculate nuclei hyperconnectivity with the audio-visual cortex in 22q11.2DS in the context of dynamic functional connectivity, seen here as the specific hyper-occurrence of these circuits with the task-negative brain networks.


Asunto(s)
Síndrome de DiGeorge , Trastornos Psicóticos , Esquizofrenia , Humanos , Imagen por Resonancia Magnética , Trastornos Psicóticos/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Tálamo/diagnóstico por imagen
17.
Psychiatry Res Neuroimaging ; 340: 111805, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38447230

RESUMEN

Altered brain network profiles in schizophrenia (SCZ) during memory consolidation are typically observed during task-active periods such as encoding or retrieval. However active processes are also sub served by covert periods of memory consolidation. These periods are active in that they allow memories to be recapitulated even in the absence of overt sensorimotor processing. It is plausible that regions central to memory formation like the dlPFC and the hippocampus, exert network signatures during covert periods. Are these signatures altered in patients? The question is clinically relevant because real world learning and memory is facilitated by covert processing, and may be impaired in schizophrenia. Here, we compared network signatures of the dlPFC and the hippocampus during covert periods of a learning and memory task. Because behavioral proficiency increased non-linearly, functional connectivity of the dlPFC and hippocampus [psychophysiological interaction (PPI)] was estimated for each of the Early (linear increases in performance) and Late (asymptotic performance) covert periods. During Early periods, we observed hypo-modulation by the hippocampus but hyper-modulation by dlPFC. Conversely, during Late periods, we observed hypo-modulation by both the dlPFC and the hippocampus. We stitch these results into a conceptual model of network deficits during covert periods of memory consolidation.


Asunto(s)
Consolidación de la Memoria , Esquizofrenia , Humanos , Corteza Prefontal Dorsolateral , Corteza Prefrontal , Esquizofrenia/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética , Hipocampo
18.
Psychiatry Res Neuroimaging ; 340: 111806, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508025

RESUMEN

Autism spectrum disorder (ASD) and schizophrenia (SZ) are neuropsychiatric disorders that overlap in symptoms associated with social-cognitive impairment. Alterations of the cingulate cortex, subcortical, medial-temporal, and orbitofrontal structures are frequently reported in both disorders. In this study, we examined white-matter connectivity between these structures in adults with ASD and SZ patients compared with their respective neurotypical controls and indirectly with each other, using probabilistic and local DTI tractography. This exploratory study utilized publicly available neuroimaging databases, of adults with ASD (ABIDE II; n = 28) and SZ (COBRE; n = 38), age-gender matched neurotypicals (NT) and associated phenotypic data. Tractography was performed using Freesurfer and MRtrix software, and diffusion metrics of white-matter tracts between cingulate-, orbitofrontal- cortices, subcortical structures, parahippocampal, entorhinal cortex were assessed. In ASD, atypical diffusivity parameters were found in the isthmus cingulate and parahippocampal connectivity to subcortical and rostral-anterior cingulate, which were also associated with IQ and social skills (SRS). In contrast, atypical diffusivity parameters were observed between the medial-orbitofrontal cortex and subcortical structures in SZ, and were associated with executive function (i.e., IQ, processing speed) and emotional regulation. Overall, the results suggest that defects in the isthmus cingulate, medial-orbitofrontal, and striato-limbic white matter connectivity may help unravel the neural underpinnings of executive and social-emotional dysfunction at the core of neuropsychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Sustancia Blanca , Adulto , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Giro del Cíngulo , Neuroimagen
19.
Psychiatry Res ; 335: 115877, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555826

RESUMEN

Understanding the underlying mechanisms that link psychopathology and physical comorbidities in schizophrenia is crucial since decreased physical fitness and overweight pose major risk factors for cardio-vascular diseases and decrease the patients' life expectancies. We hypothesize that altered reward anticipation plays an important role in this. We implemented the Monetary Incentive Delay task in a MR scanner and a fitness test battery to compare schizophrenia patients (SZ, n = 43) with sex- and age-matched healthy controls (HC, n = 36) as to reward processing and their physical fitness. We found differences in reward anticipation between SZs and HCs, whereby increased activity in HCs positively correlated with overall physical condition and negatively correlated with psychopathology. On the other handy, SZs revealed stronger activity in the posterior cingulate cortex and in cerebellar regions during reward anticipation, which could be linked to decreased overall physical fitness. These findings demonstrate that a dysregulated reward system is not only responsible for the symptomatology of schizophrenia, but might also be involved in physical comorbidities which could pave the way for future lifestyle therapy interventions.


Asunto(s)
Mapeo Encefálico , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Motivación , Recompensa , Imagen por Resonancia Magnética , Anticipación Psicológica , Aptitud Física
20.
Eur J Neurosci ; 59(8): 1961-1976, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38440952

RESUMEN

Prominent pathological hypotheses for schizophrenia include auditory processing deficits and dysconnectivity within cerebral networks. However, most neuroimaging studies have focused on impairments in either resting-state or task-related functional connectivity in patients with schizophrenia. The aims of our study were to examine (1) blood oxygen level-dependent (BOLD) signals during auditory steady-state response (ASSR) tasks, (2) functional connectivity during the resting-state and ASSR tasks and (3) state shifts between the resting-state and ASSR tasks in patients with schizophrenia. To reduce the functional consequences of scanner noise, we employed resting-state and sparse sampling auditory fMRI paradigms in 25 schizophrenia patients and 25 healthy controls. Auditory stimuli were binaural click trains at frequencies of 20, 30, 40 and 80 Hz. Based on the detected ASSR-evoked BOLD signals, we examined the functional connectivity between the thalamus and bilateral auditory cortex during both the resting state and ASSR task state, as well as their alterations. The schizophrenia group exhibited significantly diminished BOLD signals in the bilateral auditory cortex and thalamus during the 80 Hz ASSR task (corrected p < 0.05). We observed a significant inverse relationship between the resting state and ASSR task state in altered functional connectivity within the thalamo-auditory network in schizophrenia patients. Specifically, our findings demonstrated stronger functional connectivity in the resting state (p < 0.004) and reduced functional connectivity during the ASSR task (p = 0.048), which was mediated by abnormal state shifts, within the schizophrenia group. These results highlight the presence of abnormal thalamocortical connectivity associated with deficits in the shift between resting and task states in patients with schizophrenia.


Asunto(s)
Corteza Auditiva , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Corteza Auditiva/diagnóstico por imagen , Neuroimagen , Ruido , Potenciales Evocados Auditivos/fisiología , Electroencefalografía , Estimulación Acústica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA