Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.814
Filtrar
1.
FASEB J ; 38(16): e23863, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39143726

RESUMEN

Smooth muscle cells (SMCs), Interstitial cells of Cajal (ICC) and Platelet-derived growth factor receptor α positive (PDGFRα+) cells form an integrated, electrical syncytium within the gastrointestinal (GI) muscular tissues known as the SIP syncytium. Immunohistochemical analysis of gastric corpus muscles showed that c-KIT+/ANO1+ ICC-IM and PDGFRα+ cells were closely apposed to one another in the same anatomical niches. We used intracellular microelectrode recording from corpus muscle bundles to characterize the roles of intramuscular ICC and PDGFRα+ cells in conditioning membrane potentials of gastric muscles. In muscle bundles, that have a relatively higher input impedance than larger muscle strips or sheets, we recorded an ongoing discharge of stochastic fluctuations in membrane potential, previously called unitary potentials or spontaneous transient depolarizations (STDs) and spontaneous transient hyperpolarizations (STHs). We reasoned that STDs should be blocked by antagonists of ANO1, the signature conductance of ICC. Activation of ANO1 has been shown to generate spontaneous transient inward currents (STICs), which are the basis for STDs. Ani9 reduced membrane noise and caused hyperpolarization, but this agent did not block the fluctuations in membrane potential quantitatively. Apamin, an antagonist of small conductance Ca2+-activated K+ channels (SK3), the signature conductance in PDGFRα+ cells, further reduced membrane noise and caused depolarization. Reversing the order of channel antagonists reversed the sequence of depolarization and hyperpolarization. These experiments show that the ongoing discharge of STDs and STHs by ICC and PDGFRα+ cells, respectively, exerts conditioning effects on membrane potentials in the SIP syncytium that would effectively regulate the excitability of SMCs.


Asunto(s)
Células Gigantes , Células Intersticiales de Cajal , Potenciales de la Membrana , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Animales , Células Intersticiales de Cajal/fisiología , Células Intersticiales de Cajal/metabolismo , Ratones , Potenciales de la Membrana/fisiología , Células Gigantes/metabolismo , Células Gigantes/fisiología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Anoctamina-1/metabolismo , Estómago/fisiología , Estómago/citología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Masculino , Ratones Endogámicos C57BL
2.
Neurogastroenterol Motil ; 36(9): e14873, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39031031

RESUMEN

BACKGROUND: Recently, radio-frequency ablation has been used to modulate slow-wave activity in the porcine stomach. Gastric ablation is, however, still in its infancy compared to its history in the cardiac field, and electrophysiological studies have been restricted to temperature-controlled, non-irrigated ablation. Power-controlled, irrigated ablation may improve lesion formation at lower catheter-tip temperatures that produce the desired localized conduction block. METHODS AND RESULTS: Power-controlled, irrigated radio-frequency ablation was performed on the gastric serosal surface of female weaner pigs (n = 5) in vivo. Three combinations of power (10-15 W) and irrigation settings (2-5 mL min-1) were investigated. A total of 12 linear lesions were created (n = 4 for each combination). Slow waves were recorded before and after ablation using high-resolution electrical mapping. KEY RESULTS: Irrigation maintained catheter-tip temperature below 50°C. Ablation induced a complete conduction block in 8/12 cases (4/4 for 10 W at 2 mL min-1, 1/4 for 10 W at 5 mL min-1, 3/4 for 15 W at 5 mL min-1). Blocks were characterized by a decrease in signal amplitude at the lesion site, along with changes in slow-wave propagation patterns, where slow waves terminated at and/or rotated around the edge of the lesion. CONCLUSIONS AND INFERENCES: Power-controlled, irrigated ablation can successfully modulate gastric slow-wave activity at a reduced catheter-tip temperature compared to temperature-controlled, non-irrigated ablation. Reducing the irrigation rate is more effective than increasing power for blocking slow-wave activity. These benefits suggest that irrigated ablation is a suitable option for further translation into a clinical intervention for gastric electrophysiology disorders.


Asunto(s)
Ablación por Catéter , Estómago , Irrigación Terapéutica , Animales , Porcinos , Femenino , Estómago/cirugía , Estómago/fisiología , Irrigación Terapéutica/métodos , Ablación por Catéter/métodos , Ablación por Radiofrecuencia/métodos
3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928511

RESUMEN

The influence of accelerated electrons on neuronal structures is scarcely explored compared to gamma and X-rays. This study aims to investigate the effects of accelerated electron radiation on some pivotal neurotransmitter circuits (cholinergic and serotonergic) of rats' myenteric plexus. Male Wistar rats were irradiated with an electron beam (9 MeV, 5 Gy) generated by a multimodality linear accelerator. The contractile activity of isolated smooth muscle samples from the gastric corpus was measured. Furthermore, an electrical stimulation (200 µs, 20 Hz, 50 s, 60 V) was performed on the samples and an assessment of the cholinergic and serotonergic circuits was made. Five days after irradiation, the recorded mechanical responses were biphasic-contraction/relaxation in controls and contraction/contraction in irradiated samples. The nature of the contractile phase of control samples was cholinergic with serotonin involvement. The relaxation phase involved ACh-induced nitric oxide release from gastric neurons. There was a significant increase in serotonergic involvement during the first and second contractile phases of the irradiated samples, along with a diminished role of acetylcholine in the first phase. This study demonstrates an increased involvement of serotonergic neurotransmitter circuits in the gastric myenteric plexus caused by radiation with accelerated electrons.


Asunto(s)
Electrones , Plexo Mientérico , Ratas Wistar , Estómago , Animales , Plexo Mientérico/efectos de la radiación , Plexo Mientérico/metabolismo , Masculino , Ratas , Estómago/inervación , Estómago/efectos de la radiación , Estómago/fisiología , Músculo Liso/fisiología , Músculo Liso/efectos de la radiación , Músculo Liso/metabolismo , Serotonina/metabolismo , Contracción Muscular/efectos de la radiación , Contracción Muscular/fisiología , Acetilcolina/metabolismo , Óxido Nítrico/metabolismo
4.
J Food Sci ; 89(7): 3894-3916, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865250

RESUMEN

Food digestion is important for human health. Advances have been made using in vitro models to study food digestion, but there is considerable potential for numerical approaches in stomach modeling, as they can provide a comprehensive understanding of the complex flow and chemistry in the stomach. The focus of this study is to provide a concise review of the developed numerical stomach models over the past two decades. The gastric physiological parameters that are required for a computational model to represent the human gastric digestion process are discussed, including the stomach geometry, gastric motility, gastric emptying, and gastric secretions. Computational methods used to model gastric digestion are introduced and compared, including different computational fluid dynamics as well as solid mechanics methods. The challenges and limitations of current studies are discussed, as well as the areas for future research that need to be addressed. There has been progress in simulating gastric fluid flow with stomach wall motion, but much work remains to be done. The complex food breakdown mechanisms and a comprehensive chemical digestion process have not been implemented in any developed models. Numerical method that was once computationally expensive will be revolutionized as computing power continues to improve. Ultimately, the advancement of modeling of gastric food digestion will allow for additional hypothesis testing to streamline the development of food products that are beneficial to human health.


Asunto(s)
Digestión , Vaciamiento Gástrico , Modelos Biológicos , Estómago , Digestión/fisiología , Humanos , Estómago/fisiología , Vaciamiento Gástrico/fisiología , Simulación por Computador , Hidrodinámica
5.
Food Res Int ; 190: 114631, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945582

RESUMEN

Plant-based meat analogs have increasingly attracted the attention of the food industry in recent years. However, the digestion behavior of this innovative solid food in human stomach is poorly understood. In this study, plant-based meat analogs with different internal structures were prepared with/without high-moisture extrusion technology and at different temperatures. A semi-dynamic gastric digestion system which involves the mimic processes of the secretion of gastric juice and the gastric emptying was applied. After extrusion treatment at high temperature (150 ℃), the EHT had the highest anisotropic index (H⊥/H∥=1.90) and an ideal meat-like structure. It was found that particle disintegration and swelling simultaneously occurred in the bolus of the EHT but not in the sample without extrusion treatment (the HLT) in the early stage of gastric digestion. This difference might be attributed to the compact and well-arranged anisotropic structure of the EHT resulting from the extrusion, and leads to difficult enzymatic hydrolyzation unless the particles swell and unfold the polymer chains. The difficulty in particle disintegration in the EHT during gastric digestion is the consequence of the relatively slow gastric emptying rate and the decrease of protein degradation. As a result, the EHT which underwent extrusion treatment at high temperature and possessed the best anisotropic fibrous structure exhibited the slowest gastric digestion. This novel solid food shows good potential as a desired nutritional food for people on diet.


Asunto(s)
Digestión , Vaciamiento Gástrico , Digestión/fisiología , Humanos , Anisotropía , Estómago/fisiología , Manipulación de Alimentos/métodos , Temperatura , Modelos Biológicos , Sustitutos de la Carne
6.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G254-G266, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860855

RESUMEN

Rhythmic electrical events, termed slow waves, govern the timing and amplitude of phasic contractions of the gastric musculature. Extracellular multielectrode measurement of gastric slow waves can be a biomarker for phenotypes of motility dysfunction. However, a gastric slow-wave conduction pathway for the rat, a common animal model, is unestablished. In this study, the validity of extracellular recording was demonstrated in vitro with simultaneous intracellular and extracellular recordings and by pharmacological inhibition of slow waves. The conduction pathway was determined by in vivo extracellular recordings while considering the effect of motion. Slow-wave characteristics [means (SD)] varied regionally having higher amplitude in the antrum than the distal corpus [1.03 (0.12) mV vs. 0.75 (0.31) mV; n = 7; P = 0.025 paired t test] and faster propagation near the greater curvature than the lesser curvature [1.00 (0.14) mm·s-1 vs. 0.74 (0.14) mm·s-1; n = 9 GC, 7 LC; P = 0.003 unpaired t test]. Notably, in some subjects, separate wavefronts propagated near the lesser and greater curvatures with a loosely coupled region occurring in the area near the distal corpus midline at the interface of the two wavefronts. This region had either the greater or lesser curvature wavefront propagating through it in a time-varying manner. The conduction pattern suggests that slow waves in the rat stomach form annular wavefronts in the antrum and not the corpus. This study has implications for interpretation of the relationship between slow waves, the interstitial cells of Cajal network structure, smooth muscles, and gastric motility.NEW & NOTEWORTHY Mapping of rat gastric slow waves showed regional variations in their organization. In some subjects, separate wavefronts propagated near the lesser and greater curvatures with a loosely coupled region near the midline, between the wavefronts, having a varying slow-wave origin. Furthermore, simultaneous intracellular and extracellular recordings were concordant and independent of movement artifacts, indicating that extracellular recordings can be interpreted in terms of their intracellular counterparts when intracellular recording is not possible.


Asunto(s)
Motilidad Gastrointestinal , Músculo Liso , Ratas Sprague-Dawley , Estómago , Animales , Estómago/fisiología , Ratas , Motilidad Gastrointestinal/fisiología , Masculino , Músculo Liso/fisiología , Contracción Muscular/fisiología , Antro Pilórico/fisiología , Células Intersticiales de Cajal/fisiología
7.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G47-G56, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713629

RESUMEN

Chronic gastroduodenal symptoms disproportionately affect females of childbearing age; however, the effect of menstrual cycling on gastric electrophysiology is poorly defined. To establish the effect of the menstrual cycle on gastric electrophysiology, healthy subjects underwent noninvasive Body Surface Gastric Mapping (BSGM; 8x8 array) with the validated symptom logging App (Gastric Alimetry, New Zealand). Participants included were premenopausal females in follicular (n = 26) and luteal phases (n = 18) and postmenopausal females (n = 30) and males (n = 51) were controls. Principal gastric frequency (PGF), body mass index (BMI) adjusted amplitude, Gastric Alimetry Rhythm Index (GA-RI), Fed:Fasted Amplitude Ratio (ff-AR), meal response curves, and symptom burden were analyzed. Menstrual cycle-related electrophysiological changes were then transferred to an established anatomically accurate computational gastric fluid dynamics model (meal viscosity 0.1 Pas) to predict the impact on gastric mixing and emptying. PGF was significantly higher in the luteal versus follicular phase [mean 3.21 cpm, SD (0.17) vs. 2.94 cpm, SD (0.17), P < 0.001] and versus males [3.01 cpm, SD (0.2), P < 0.001]. In the computational model, this translated to 8.1% higher gastric mixing strength and 5.3% faster gastric emptying for luteal versus follicular phases. Postmenopausal females also exhibited higher PGF than females in the follicular phase [3.10 cpm, SD (0.24) vs. 2.94 cpm, SD (0.17), P = 0.01], and higher BMI-adjusted amplitude [40.7 µV (33.02-52.58) vs. 29.6 µV (26.15-39.65), P < 0.001], GA-RI [0.60 (0.48-0.73) vs. 0.43 (0.30-0.60), P = 0.005], and ff-AR [2.51 (1.79-3.47) vs. 1.48 (1.21-2.17), P = 0.001] than males. There were no differences in symptoms. These results define variations in gastric electrophysiology with regard to human menstrual cycling and menopause.NEW & NOTEWORTHY This study evaluates gastric electrophysiology in relation to the menstrual cycle using a novel noninvasive high-resolution methodology, revealing substantial variations in gastric activity with menstrual cycling and menopause. Gastric slow-wave frequency is significantly higher in the luteal versus follicular menstrual phase. Computational modeling predicts that this difference translates to higher rates of gastric mixing and liquid emptying in the luteal phase, which is consistent with previous experimental data evaluating menstrual cycling effects on gastric emptying.


Asunto(s)
Vaciamiento Gástrico , Menopausia , Ciclo Menstrual , Estómago , Humanos , Femenino , Adulto , Masculino , Persona de Mediana Edad , Estómago/fisiología , Vaciamiento Gástrico/fisiología , Ciclo Menstrual/fisiología , Menopausia/fisiología , Fenómenos Electrofisiológicos/fisiología , Índice de Masa Corporal
8.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G93-G104, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772901

RESUMEN

Few biomarkers support the diagnosis and treatment of disorders of gut-brain interaction (DGBI), although gastroduodenal junction (GDJ) electromechanical coupling is a target for novel interventions. Rhythmic "slow waves," generated by interstitial cells of Cajal (ICC), and myogenic "spikes" are bioelectrical mechanisms underpinning motility. In this study, simultaneous in vivo high-resolution electrophysiological and impedance planimetry measurements were paired with immunohistochemistry to elucidate GDJ electromechanical coupling. Following ethical approval, the GDJ of anaesthetized pigs (n = 12) was exposed. Anatomically specific, high-resolution electrode arrays (256 electrodes) were applied to the serosa. EndoFLIP catheters (16 electrodes; Medtronic, MN) were positioned luminally to estimate diameter. Postmortem tissue samples were stained with Masson's trichrome and Ano1 to quantify musculature and ICC. Electrical mapping captured slow waves (n = 512) and spikes (n = 1,071). Contractions paralleled electrical patterns. Localized slow waves and spikes preceded rhythmic contractions of the antrum and nonrhythmic contractions of the duodenum. Slow-wave and spike amplitudes were correlated in the antrum (r = 0.74, P < 0.001) and duodenum (r = 0.42, P < 0.001). Slow-wave and contractile amplitudes were correlated in the antrum (r = 0.48, P < 0.001) and duodenum (r = 0.35, P < 0.001). Distinct longitudinal and circular muscle layers of the antrum and duodenum had a total thickness of (2.8 ± 0.9) mm and (0.4 ± 0.1) mm, respectively. At the pylorus, muscle layers merged and thickened to (3.5 ± 1.6) mm. Pyloric myenteric ICC covered less area (1.5 ± 1.1%) compared with the antrum (4.2 ± 3.0%) and duodenum (5.3 ± 2.8%). Further characterization of electromechanical coupling and ICC biopsies may generate DGBI biomarkers.NEW & NOTEWORTHY This study applies electrical mapping, impedance planimetry, and histological techniques to the gastroduodenal junction to elucidate electromechanical coupling in vivo. Contractions of the terminal antrum and pyloric sphincter were associated with gastric slow waves. In the duodenum, bursts of spike activity triggered oscillating contractions. The relative sparsity of myenteric interstitial cells of Cajal in the pylorus, compared with the adjacent antrum and duodenum, is hypothesized to prevent coupling between antral and duodenal slow waves.


Asunto(s)
Duodeno , Motilidad Gastrointestinal , Células Intersticiales de Cajal , Animales , Duodeno/fisiología , Duodeno/inervación , Células Intersticiales de Cajal/fisiología , Porcinos , Motilidad Gastrointestinal/fisiología , Estómago/fisiología , Estómago/inervación , Femenino , Contracción Muscular/fisiología , Impedancia Eléctrica , Músculo Liso/fisiología
9.
Neurogastroenterol Motil ; 36(6): e14815, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735698

RESUMEN

OBJECTIVE: There has been recent clinical interest in the use of vagus nerve stimulation (VNS) for treating gastrointestinal disorders as an alternative to drugs or gastric electrical stimulation. However, effectiveness of burst stimulation has not been demonstrated. We investigated the ability of bursting and continuous VNS to influence gastric and pyloric activity under a range of stimulation parameters and gastric pressures. The goals of this study were to determine which parameters could optimally excite or inhibit gastric activity. MATERIALS AND METHODS: Data were collected from 21 Sprague-Dawley rats. Under urethane anesthesia, a rubber balloon was implanted into the stomach, connected to a pressure transducer and a saline infusion pump. A pressure catheter was inserted at the pyloric sphincter and a bipolar nerve cuff was implanted onto the left cervical vagus nerve. The balloon was filled to 15 cmH2O. Stimulation trials were conducted in a consistent order; the protocol was then repeated at 25 and 35 cmH2O. The nerve was then transected and stimulation repeated to investigate directionality of effects. RESULTS: Bursting stimulation at the bradycardia threshold caused significant increases in gastric contraction amplitude with entrainment to the bursting frequency. Some continuous stimulation trials could also cause increased contractions but without frequency changes. Few significant changes were observed at the pylorus, except for frequency entrainment. These effects could not be uniquely attributed to afferent or efferent activity. SIGNIFICANCE: Our findings further elucidate the effects of different VNS parameters on the stomach and pylorus and provide a basis for future studies of bursting stimulation for gastric neuromodulation.


Asunto(s)
Contracción Muscular , Ratas Sprague-Dawley , Estómago , Estimulación del Nervio Vago , Animales , Estimulación del Nervio Vago/métodos , Ratas , Estómago/inervación , Estómago/fisiología , Contracción Muscular/fisiología , Masculino , Motilidad Gastrointestinal/fisiología , Nervio Vago/fisiología , Píloro/inervación , Píloro/fisiología , Presión
10.
Neurogastroenterol Motil ; 36(8): e14823, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38764250

RESUMEN

BACKGROUND: Gastric sensorimotor disorders are prevalent. While gastric emptying measurements are commonly used, they may not fully capture the underlying pathophysiology. Body surface gastric mapping (BSGM) recently emerged to assess gastric sensorimotor dysfunction. This study assessed varying meal size on BSGM responses to inform test use in a wider variety of contexts. METHODS: Data from multiple healthy cohorts receiving BSGM were pooled, using four different test meals. A standard BSGM protocol was employed: 30-min fasting, 4-h post-prandial, using Gastric Alimetry® (Alimetry, New Zealand). Meals comprised: (i) nutrient drink + oatmeal bar (482 kcal; 'standard meal'); (ii) oatmeal bar alone; egg and toast meal, and pancake (all ~250 kcal). Gastric Alimetry metrics included BMI-adjusted Amplitude, Principal Gastric Frequency, Gastric Alimetry Rhythm Index (GA-RI) and Fed:Fasted Amplitude Ratio (ff-AR). KEY RESULTS: 238 participants (59.2% female) were included. All meals significantly increased amplitude and frequency during the first postprandial hour (p < 0.05). There were no differences in postprandial frequency across meals (p > 0.05). The amplitude and GA-RI of the standard meal (n = 110) were significantly higher than the energy bar alone (n = 45) and egg meal (n = 65) (all p < 0.05). All BSGM metrics were comparable across the three smaller meals (p > 0.05). A higher symptom burden was found in the oatmeal bar group versus the standard meal and pancake meal (p = 0.01, 0.003, respectively). CONCLUSIONS & INFERENCES: The consumption of lower calorie meals elicited different postprandial responses, when compared to the standard Gastric Alimetry meal. These data will guide interpretations of BSGM when applied with lower calorie meals.


Asunto(s)
Vaciamiento Gástrico , Voluntarios Sanos , Comidas , Periodo Posprandial , Estómago , Humanos , Femenino , Masculino , Adulto , Periodo Posprandial/fisiología , Estómago/fisiología , Vaciamiento Gástrico/fisiología , Persona de Mediana Edad , Adulto Joven
11.
Food Funct ; 15(10): 5613-5626, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38722062

RESUMEN

Modification of dairy proteins during processing impacts structural assemblies, influencing textural and nutritional properties of dairy products, and release and availability of amino acids during digestion. By modifying only pH, acid heat-set bovine dairy gels with divergent textural properties were developed to alter protein digestion. In vitro assay confirmed faster digestion of protein from a firm gel (pH 5.65) versus a soft gel (pH 6.55). We hypothesised that firm gel (FIRM-G; pH 5.6) would result in greater indispensable amino acid (IAA) appearance in circulation over 5 h and corresponding differences in gastric myoelectrical activity relative to soft gel (SOFT-G; pH 6.2). In a randomised, single-blind cross-over trial, healthy females (n = 20) consumed 150 g of each gel; plasma amino acid appearance was assessed over 5 hours. Iso-nitrogenous, iso-caloric gels were prepared from identical mixtures of bovine milk and whey protein concentrates; providing 17.7 g (FIRM-G) and 18.9 g (SOFT-G) of protein per serving. Secondary outcomes included gastric myoelectrical activity measured by body surface gastric mapping, glycaemic, triglyceridaemic, and subjective appetite and digestive responses. Overall plasma IAA (area under the curve) did not differ between gels. However, plasma IAA concentrations were higher, and increased more rapidly over time after SOFT-G compared with FIRM-G (1455 ± 53 versus 1350 ± 62 µmol L-1 at 30 min, p = 0.024). Similarly, total, branched-chain and dispensable amino acids were higher at 30 min with SOFT-G than FIRM-G (total: 3939 ± 97 versus 3702 ± 127 µmol L-1, p = 0.014; branched-chain: 677 ± 30 versus 619 ± 34 µmol L-1, p = 0.047; dispensable: 2334 ± 53 versus 2210 ± 76 µmol L-1, p = 0.032). All other measured parameters were similar between gels. Peak postprandial aminoacidaemia was higher and faster following ingestion of SOFT-G. Customised plasma amino acid appearance from dairy is achievable by altering gel coagulum structure using pH during processing and may have minimal influence on related postprandial responses, with implications for targeting food design for optimal health. The Clinical Trial Registry number is ACTRN12622001418763 (https://www.anzctr.org.au) registered November 7, 2022.


Asunto(s)
Aminoácidos , Estudios Cruzados , Geles , Femenino , Humanos , Adulto , Concentración de Iones de Hidrógeno , Aminoácidos/sangre , Aminoácidos/química , Geles/química , Animales , Adulto Joven , Bovinos , Digestión , Calor , Proteínas de la Leche/química , Método Simple Ciego , Estómago/fisiología , Estómago/química , Leche/química
12.
J Gastroenterol Hepatol ; 39(8): 1517-1527, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38705971

RESUMEN

BACKGROUND AND AIM: Measurements of gastric emptying and accommodation for alternative test-meal protocol during gastric emptying scintigraphy (GES), such as high-calorie nutrient drinks, are not fully established. We aimed to compare the effects of standardized egg-white meal (EWM) versus high-calorie nutrient drink (Vital®; Abbott Laboratories) on global GES parameters and intragastric meal distribution at immediate scan (IMD0h). METHODS: Of 84 screened participants, 60 asymptomatic healthy Asian population (38 females; 24.0 ± 1.5 years; 23.8 ± 2.6 kg/m2) were recruited in this 2 × 2 (AB/BA) crossover trial. Participants were randomized to a 4-h GES with 99mTc-radiolabeled EWM (~255.8 kcal), followed by a 200 mL Vital® (300 kcal), or vice versa, separated by a 2-week washout period. Global meal retention (GMR), power-exponential model emptying parameters (half-emptying [T1/2], lag phases [Tlag2%, Tlag5%, Tlag10%]), and IMD0h were determined and compared. RESULTS: GMRs for both test meals were within the international standard references for solid GES. Compared to EWM, Vital® exhibited significantly lower GMRs (faster emptying) from 0.5 to 3 h (all P < 0.001) but comparable at 4 h (P = 0.153). Similar observations were found for the model-based T1/2 and the different Tlag thresholds (all P < 0.001). Furthermore, IMD0h was found to be lower with Vital®, indicating lower gastric accommodation (faster antral filling) immediately post-ingestion (P < 0.001). Both test meals showed significant moderate-to-strong positive associations at the late-phase GE (GMR 2-4 h, T1/2) (all P < 0.05). CONCLUSIONS: Overall, Vital® is an acceptable alternative test meal to the EWM for GES; however, exercise caution when interpreting early-phase GE. The normative values for global GES parameters and IMD0h are also established.


Asunto(s)
Pueblo Asiatico , Estudios Cruzados , Vaciamiento Gástrico , Comidas , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Cintigrafía , Clara de Huevo , Voluntarios Sanos , Estómago/fisiología , Estómago/diagnóstico por imagen , Bebidas
13.
Anesthesiology ; 141(3): 541-553, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38753985

RESUMEN

BACKGROUND: Patient-ventilator dyssynchrony is frequently observed during assisted mechanical ventilation. However, the effects of expiratory muscle contraction on patient-ventilator interaction are underexplored. The authors hypothesized that active expiration would affect patient-ventilator interaction and they tested their hypothesis in a mixed cohort of invasively ventilated patients with spontaneous breathing activity. METHODS: This is a retrospective observational study involving patients on assisted mechanical ventilation who had their esophageal pressure (Peso) and gastric pressure monitored for clinical purposes. Active expiration was defined as gastric pressure rise (ΔPgas) greater than or equal to 1.0 cm H2O during expiratory flow without a corresponding change in diaphragmatic pressure. Waveforms of Peso, gastric pressure, diaphragmatic pressure, flow, and airway pressure (Paw) were analyzed to identify and characterize abnormal patient-ventilator interaction. RESULTS: 76 patients were identified with Peso and gastric pressure recordings, of whom 58 demonstrated active expiration with a median ΔPgas of 3.4 cm H2O (interquartile range = 2.4 to 5.3) observed in this subgroup. Among these 58 patients, 23 presented the following events associated with expiratory muscle activity: (1) distortions in Paw and flow that resembled ineffective efforts, (2) distortions similar to autotriggering, (3) multiple triggering, (4) prolonged ventilatory cycles with biphasic inspiratory flow, with a median percentage (interquartile range) increase in mechanical inflation time and tidal volume of 54% (44 to 70%) and 25% (8 to 35%), respectively and (5) breathing exclusively by expiratory muscle relaxation. Gastric pressure monitoring was required to identify the association of active expiration with these events. Respiratory drive, assessed by the rate of inspiratory Peso decrease, was significantly higher in patients with active expiration (median [interquartile range] dPeso/dt: 12.7 [9.0 to 18.5] vs 9.2 [6.8 to 14.2] cmH2O/sec; P < 0.05). CONCLUSIONS: Active expiration can impair patient-ventilator interaction in critically ill patients. Without documenting gastric pressure, abnormal patient-ventilator interaction associated with expiratory muscle contraction may be mistakenly attributed to a mismatch between the patient's inspiratory effort and mechanical inflation. This misinterpretation could potentially influence decisions regarding clinical management.


Asunto(s)
Espiración , Respiración Artificial , Estómago , Humanos , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Espiración/fisiología , Anciano , Estómago/fisiología , Respiración Artificial/métodos , Monitoreo Fisiológico/métodos , Presión , Esófago/fisiología , Esófago/fisiopatología
14.
Med Biol Eng Comput ; 62(9): 2879-2891, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38705957

RESUMEN

To address an emerging need for large number of diverse datasets for rigor evaluation of signal processing techniques, we developed and evaluated a new method for generating synthetic electrogastrogram time series. We used electrogastrography (EGG) data from an open database to set model parameters and statistical tests to evaluate synthesized data. Additionally, we illustrated method customization for generating artificial EGG time series alterations caused by the simulator sickness. Proposed data augmentation method generates synthetic EGG data with specified duration, sampling frequency, recording state (postprandial or fasting state), overall noise and breathing artifact injection, and pauses in the gastric rhythm (arrhythmia occurrence) with statistically significant difference between postprandial and fasting states in > 70% cases while not accounting for individual differences. Features obtained from the synthetic EGG signal resembling simulator sickness occurrence displayed expected trends. The code for generation of synthetic EGG time series is not only freely available and can be further customized to assess signal processing algorithms but also may be used to increase data diversity for training artificial intelligence (AI) algorithms. The proposed approach is customized for EGG data synthesis but can be easily utilized for other biosignals with similar nature such as electroencephalogram.


Asunto(s)
Algoritmos , Procesamiento de Señales Asistido por Computador , Humanos , Femenino , Masculino , Estómago/fisiología , Adulto , Mareo por Movimiento/fisiopatología , Ayuno , Periodo Posprandial
15.
J Biomech ; 168: 112107, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677029

RESUMEN

As part of the digestive system, the stomach plays a crucial role in the health and well-being of an organism. It produces acids and performs contractions that initiate the digestive process and begin the break-up of ingested food. Therefore, its mechanical properties are of interest. This study includes a detailed investigation of strains in the porcine stomach wall during passive organ filling. In addition, the observed strains were applied to tissue samples subjected to biaxial tensile tests. The results show inhomogeneous strains during filling, which tend to be higher in the circumferential direction (antrum: 13.2%, corpus: 22.0%, fundus: 67.8%), compared to the longitudinal direction (antrum: 4.8%, corpus: 24.7%, fundus: 50.0%) at a maximum filling of 3500 ml. Consequently, the fundus region experienced the greatest strain. In the biaxial tensile experiments, the corpus region appeared to be the stiffest, reaching nominal stress values above 400 kPa in the circumferential direction, whereas the other regions only reached stress levels of below 50 kPa in both directions for the investigated stretch range. Our findings gain new insight into stomach mechanics and provide valuable data for the development and validation of computational stomach models.


Asunto(s)
Estómago , Estrés Mecánico , Animales , Estómago/fisiología , Porcinos , Resistencia a la Tracción/fisiología , Fenómenos Biomecánicos , Modelos Biológicos
16.
Mol Pharm ; 21(5): 2456-2472, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38568423

RESUMEN

Variability of the gastrointestinal tract is rarely reflected in in vitro test protocols but often turns out to be crucial for the oral dosage form performance. In this study, we present a generation method of dissolution profiles accounting for the variability of fasted gastric conditions. The workflow featured 20 biopredictive tests within the physiological variability. The experimental array was constructed with the use of the design of experiments, based on three parameters: gastric pH and timings of the intragastric stress event and gastric emptying. Then, the resulting dissolution profiles served as a training data set for the dissolution process modeling with the machine learning algorithms. This allowed us to generate individual dissolution profiles under a customizable gastric pH and motility patterns. For the first time ever, we used the method to successfully elucidate dissolution properties of two dosage forms: pellet-filled capsules and bare pellets of the marketed dabigatran etexilate product Pradaxa. We showed that the dissolution of capsules was triggered by mechanical stresses and thus was characterized by higher variability and a longer dissolution onset than observed for pellets. Hence, we proved the applicability of the method for the in vitro and in silico characterization of immediate-release dosage forms and, potentially, for the improvement of in vitro-in vivo extrapolation.


Asunto(s)
Cápsulas , Dabigatrán , Ayuno , Vaciamiento Gástrico , Dabigatrán/química , Dabigatrán/administración & dosificación , Dabigatrán/farmacología , Cápsulas/química , Vaciamiento Gástrico/fisiología , Vaciamiento Gástrico/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Solubilidad , Liberación de Fármacos , Administración Oral , Simulación por Computador , Estómago/fisiología , Estómago/efectos de los fármacos
17.
Phys Eng Sci Med ; 47(2): 663-677, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436885

RESUMEN

Functional gastric disorders entail chronic or recurrent symptoms, high prevalence and a significant financial burden. These disorders do not always involve structural abnormalities and since they cannot be diagnosed by routine procedures, electrogastrography (EGG) has been proposed as a diagnostic alternative. However, the method still has not been transferred to clinical practice due to the difficulty of identifying gastric activity because of the low-frequency interference caused by skin-electrode contact potential in obtaining spatiotemporal information by simple procedures. This work attempted to robustly identify the gastric slow wave (SW) main components by applying multivariate variational mode decomposition (MVMD) to the multichannel EGG. Another aim was to obtain the 2D SW vectorgastrogram VGGSW from 4 electrodes perpendicularly arranged in a T-shape and analyse its dynamic trajectory and recurrence quantification (RQA) to assess slow wave vector movement in healthy subjects. The results revealed that MVMD can reliably identify the gastric SW, with detection rates over 91% in fasting postprandial subjects and a frequency instability of less than 5.3%, statistically increasing its amplitude and frequency after ingestion. The VGGSW dynamic trajectory showed a statistically higher predominance of vertical displacement after ingestion. RQA metrics (recurrence ratio, average length, entropy, and trapping time) showed a postprandial statistical increase, suggesting that gastric SW became more intense and coordinated with a less complex VGGSW and higher periodicity. The results support the VGGSW as a simple technique that can provide relevant information on the "global" spatial pattern of gastric slow wave propagation that could help diagnose gastric pathologies.


Asunto(s)
Voluntarios Sanos , Estómago , Humanos , Estómago/fisiología , Adulto , Masculino , Femenino , Movimiento/fisiología , Análisis Multivariante , Adulto Joven , Electrodos , Procesamiento de Señales Asistido por Computador , Periodo Posprandial/fisiología
18.
Neurogastroenterol Motil ; 36(6): e14783, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488253

RESUMEN

BACKGROUND: Gastrointestinal dysmotility is frequently suspected in patients with gastroparesis, functional dyspepsia, and ileus, and in the intensive care unit. Monitoring of gastric motility in clinical practice remains challenging. A novel technology was developed to meet the medical need for a widely available bedside tool to monitor gastric motility continuously. The VIPUN™ Gastric Monitoring System (GMS) comprises a nasogastric feeding tube with intragastric balloon to allow for measuring gastric contractions. AIMS: To compare the performance of the VIPUN GMS versus a reference technique (manometry). METHODS: In this validation study in healthy subjects, the investigational catheter and a solid-state manometry catheter were placed in the stomach concomitantly. Motility was recorded for 2.5 h: 2 h in a fasting state, followed by a 400-kcal liquid meal, and monitoring of the fed state for the remaining half hour. The performance of both systems was compared by automated recognition and manual identification of the contractile activity. Data are presented as mean (standard deviation). KEY RESULTS: The analysis set comprised 13 healthy subjects (6 women, age: 27.5 (8.1) years, BMI: 22.2 (2.46) kg/m2). Automatically-recognized contractility was strongly correlated between the two techniques (endpoint: contraction duration; Spearman ρ = 0.96, p < 0.001). A correlation was also observed between the number of individual contractions identified by expert gastroenterologists on both technologies independently (ρ = 0.71, p = .007) and between the contractions identified by the experts and by the GMS software (ρ = 0.87, p = 0.001). No serious or unanticipated adverse events occurred. CONCLUSIONS & INFERENCES: The observed strong correlations with the gold standard, manometry, validate the performance of the VIPUN GMS as a gastric monitoring system.


Asunto(s)
Motilidad Gastrointestinal , Manometría , Humanos , Manometría/métodos , Manometría/instrumentación , Femenino , Adulto , Masculino , Motilidad Gastrointestinal/fisiología , Adulto Joven , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , Estómago/fisiología , Balón Gástrico
19.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G622-G630, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375576

RESUMEN

Biopsychosocial factors are associated with disorders of gut-brain interaction (DGBI) and exacerbate gastrointestinal symptoms. The mechanisms underlying pathophysiological alterations of stress remain unclear. Corticotropin-releasing hormone (CRH) is a central regulator of the hormonal stress response and has diverse impact on different organ systems. The aim of the present study was to investigate the effects of peripheral CRH infusion on meal-related gastrointestinal symptoms, gastric electrical activity, and gastric sensorimotor function in healthy volunteers (HVs). In a randomized, double-blinded, placebo-controlled, crossover study, we evaluated the effects of CRH on gastric motility and sensitivity. HVs were randomized to receive either peripheral-administered CRH (100 µg bolus + 1 µg/kg/h) or placebo (saline), followed by at least a 7-day washout period and assignment to the opposite treatment. Tests encompassed saliva samples, gastric-emptying (GE) testing, body surface gastric mapping (BSGM, Gastric Alimetry; Alimetry) to assess gastric myoelectrical activity with real-time symptom profiling, and a gastric barostat study to assess gastric sensitivity to distention and accommodation. Twenty HVs [13 women, mean age 29.2 ± 5.3 yr, body mass index (BMI) 23.3 ± 3.8 kg/m2] completed GE tests, of which 18 also underwent BSGM measurements during the GE tests. The GE half-time decreased significantly after CRH exposure (65.2 ± 17.4 vs. 78.8 ± 24.5 min, P = 0.02) with significantly increased gastric amplitude [49.7 (34.7-55.6) vs. 31.7 (25.7-51.0) µV, P < 0.01], saliva cortisol levels, and postprandial symptom severity. Eleven HVs also underwent gastric barostat studies on a separate day. However, the thresholds for discomfort during isobaric distensions, gastric compliance, and accommodation did not differ between CRH and placebo.NEW & NOTEWORTHY In healthy volunteers, peripheral corticotropin-releasing hormone (CRH) infusion accelerates gastric-emptying rate and increases postprandial gastric response, accompanied by a rise in symptoms, but does not alter gastric sensitivity or meal-induced accommodation. These findings underscore a significant link between stress and dyspeptic symptoms, with CRH playing a pivotal role in mediating these effects.


Asunto(s)
Hormona Liberadora de Corticotropina , Estudios Cruzados , Vaciamiento Gástrico , Voluntarios Sanos , Estómago , Humanos , Femenino , Masculino , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/administración & dosificación , Hormona Liberadora de Corticotropina/farmacología , Adulto , Método Doble Ciego , Estómago/efectos de los fármacos , Estómago/fisiología , Vaciamiento Gástrico/efectos de los fármacos , Adulto Joven , Saliva/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...