RESUMEN
Mitochondrial calcium overload plays an important role in the neurological insults in seizure. The Rab7 GTPase-activating protein, Tre-2/Bub2/Cdc16 domain family member 15 (TBC1D15), is involved in the regulation of mitochondrial calcium dynamics by mediating mitochondria-lysosome membrane contact. However, whether TBC1D15-regulated mitochondria-lysosome membrane contact and mitochondrial calcium participate in neuronal injury in seizure is unclear. We aimed to investigate the effect of TBC1D15-regulated mitochondria-lysosome membrane contact on epileptiform discharge-induced neuronal damage and further explore the underlying mechanism. Lentiviral vectors (Lv) infection and stereotaxic adeno-associated virus (AAV) injection were used to regulate TBC1D15 expression before establishing in vitro epileptiform discharge and in vivo status epilepticus (SE) models. TBC1D15's effect on inter-organellar interactions, mitochondrial calcium levels and neuronal injury in seizure was evaluated. The results showed that abnormalities in mitochondria-lysosome membrane contact, mitochondrial calcium overload, mitochondrial dysfunction, increased levels of reactive oxygen species, and prominent neuronal damage were partly relieved by TBC1D15 overexpression, whereas TBC1D15 knockdown markedly deteriorated these phenomena. Further examination revealed that epileptiform discharge-induced mitochondrial calcium overload in primary hippocampal neurons was closely associated with abnormal mitochondria-lysosome membrane contact. This study highlights the crucial role played by TBC1D15-regulated mitochondria-lysosome membrane contact in epileptiform discharge-induced neuronal injury by alleviating mitochondrial calcium overload.
Asunto(s)
Calcio , Proteínas Activadoras de GTPasa , Lisosomas , Mitocondrias , Neuronas , Convulsiones , Animales , Mitocondrias/metabolismo , Calcio/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Lisosomas/metabolismo , Convulsiones/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratas , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Membranas Intracelulares/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/patologíaRESUMEN
Glutathione peroxidase-1 (GPx1) and cAMP/Ca2+ responsive element (CRE)-binding protein (CREB) regulate neuronal viability by maintaining the redox homeostasis. Since GPx1 and CREB reciprocally regulate each other, it is likely that GPx1-CREB interaction may play a neuroprotective role against oxidative stress, which are largely unknown. Thus, we investigated the underlying mechanisms of the reciprocal regulation between GPx1 and CREB in the male rat hippocampus. Under physiological condition, L-buthionine sulfoximine (BSO)-induced oxidative stress increased GPx1 expression, extracellular signal-regulated kinase 1/2 (ERK1/2) activity and CREB serine (S) 133 phosphorylation in CA1 neurons, but not dentate granule cells (DGC), which were diminished by GPx1 siRNA, U0126 or CREB knockdown. GPx1 knockdown inhibited ERK1/2 and CREB activations induced by BSO. CREB knockdown also decreased the efficacy of BSO on ERK1/2 activation. BSO facilitated dynamin-related protein 1 (DRP1)-mediated mitochondrial fission in CA1 neurons, which abrogated by GPx1 knockdown and U0126. CREB knockdown blunted BSO-induced DRP1 upregulation without affecting DRP1 S616 phosphorylation ratio. Following status epilepticus (SE), GPx1 expression was reduced in CA1 neurons and DGC. SE also decreased CREB activity CA1 neurons, but not DGC. SE degenerated CA1 neurons, but not DGC, accompanied by mitochondrial elongation. These post-SE events were ameliorated by N-acetylcysteine (NAC, an antioxidant), but deteriorated by GPx1 knockdown. These findings indicate that a transient GPx1-ERK1/2-CREB activation may be a defense mechanism to protect hippocampal neurons against oxidative stress via maintenance of proper mitochondrial dynamics.
Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Glutatión Peroxidasa GPX1 , Glutatión Peroxidasa , Hipocampo , Sistema de Señalización de MAP Quinasas , Dinámicas Mitocondriales , Neuronas , Estrés Oxidativo , Ratas Sprague-Dawley , Estado Epiléptico , Animales , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Masculino , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/fisiología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiologíaRESUMEN
Cognitive impairment is a prevalent co-morbidity associated with epilepsy. Emerging studies indicate that neuroinflammation could be a possible link between epilepsy and its comorbidities, including cognitive impairment. In this context, the roles of glial activation, proinflammatory mediators, and neuronal death have been well studied and correlated with epilepsy-associated cognitive impairment in animal studies. While recent reports have demonstrated the anti-epileptogenic and anti-convulsant actions of metformin, its effect on epilepsy associated cognitive deficit remains unknown. Therefore, the current study investigated the effect of metformin treatment on neuroinflammation, neurodegeneration, and cognitive deficits after inducing status epilepticus (SE) with lithium-pilocarpine in rats. Metformin treatment improved the hippocampal-dependent spatial and recognition memory in Morris water maze and Novel object recognition tasks, respectively. Further, metformin treatment attenuated microglial and astroglial activation, accompanied by reduced IL-1ß, COX-2 and NF-Ä¸ß gene expression. Additionally, metformin conferred neuroprotection by inhibiting the neuronal death as assessed by Nissl staining and transmission electron microscopy. These findings suggest that metformin holds promise as a therapeutic intervention for cognitive impairment associated with epilepsy, possibly through its modulation of glial activation and neuronal survival. Further research is needed to elucidate the precise mechanisms and to assess the long-term effect of metformin in epilepsy-associated cognitive impairment.
Asunto(s)
Disfunción Cognitiva , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal , Gliosis , Metformina , Animales , Metformina/farmacología , Metformina/uso terapéutico , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Ratas , Masculino , Gliosis/tratamiento farmacológico , Pilocarpina , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patología , Ratas Sprague-Dawley , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismoRESUMEN
At least 3 months after systemic treatment with pilocarpine to induce status epilepticus, Long-Evans and Sprague-Dawley rats were video-EEG monitored for seizures continuously for 1 month. Rats were then perfused, hippocampi were processed for Nissl staining, and hilar neurons were quantified. Seizure frequency in Long-Evans rats was 1/10th of that in Sprague-Dawley rats, and more variable. Hilar neuron loss was also less severe in Long-Evans rats. However, there was no correlation between hilar neuron loss and seizure frequency in either strain. The low and variable seizure frequency suggests limited usefulness of pilocarpine-treated Long-Evans rats for some epilepsy experiments.
Asunto(s)
Electroencefalografía , Neuronas , Pilocarpina , Ratas Long-Evans , Ratas Sprague-Dawley , Convulsiones , Animales , Pilocarpina/toxicidad , Ratas , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/patología , Masculino , Especificidad de la Especie , Hipocampo/efectos de los fármacos , Hipocampo/patología , Modelos Animales de Enfermedad , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Estado Epiléptico/tratamiento farmacológicoRESUMEN
Canonical transient receptor potential channel 3 (TRPC3) is the most abundant TRPC channel in the brain and is highly expressed in all subfields of the hippocampus. Previous studies have suggested that TRPC3 channels may be involved in the hyperexcitability of hippocampal pyramidal neurons and seizures. Genetic ablation of TRPC3 channel expression reduced the intensity of pilocarpine-induced status epilepticus (SE). However, the underlying cellular mechanisms remain unexplored and the contribution of TRPC3 channels to SE-induced neurodegeneration is not determined. In this study, we investigated the contribution of TRPC3 channels to the electrophysiological properties of hippocampal pyramidal neurons and hippocampal synaptic plasticity, and the contribution of TRPC3 channels to seizure-induced neuronal cell death. We found that genetic ablation of TRPC3 expression did not alter basic electrophysiological properties of hippocampal pyramidal neurons and had a complex impact on epileptiform bursting in CA3. However, TRPC3 channels contribute significantly to long-term potentiation in CA1 and SE-induced neurodegeneration. Our results provided further support for therapeutic potential of TRPC3 inhibitors and raised new questions that need to be answered by future studies.
Asunto(s)
Muerte Celular , Hipocampo , Células Piramidales , Convulsiones , Canales Catiónicos TRPC , Animales , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPC/genética , Ratones , Células Piramidales/metabolismo , Células Piramidales/patología , Hipocampo/metabolismo , Hipocampo/patología , Convulsiones/metabolismo , Convulsiones/patología , Estado Epiléptico/metabolismo , Estado Epiléptico/patología , Estado Epiléptico/inducido químicamente , Masculino , Neuronas/metabolismo , Pilocarpina , Potenciación a Largo Plazo , Ratones Noqueados , Ratones Endogámicos C57BL , Plasticidad NeuronalRESUMEN
OBJECTIVE: This study was undertaken to determine whether hippocampal T2 hyperintensity predicts sequelae of febrile status epilepticus, including hippocampal atrophy, sclerosis, and mesial temporal lobe epilepsy. METHODS: Acute magnetic resonance imaging (MRI) was obtained within a mean of 4.4 (SD = 5.5, median = 2.0) days after febrile status on >200 infants with follow-up MRI at approximately 1, 5, and 10 years. Hippocampal size, morphology, and T2 signal intensity were scored visually by neuroradiologists blinded to clinical details. Hippocampal volumetry provided quantitative measurement. Upon the occurrence of two or more unprovoked seizures, subjects were reassessed for epilepsy. Hippocampal volumes were normalized using total brain volumes. RESULTS: Fourteen of 22 subjects with acute hippocampal T2 hyperintensity returned for follow-up MRI, and 10 developed definite hippocampal sclerosis, which persisted through the 10-year follow-up. Hippocampi appearing normal initially remained normal on visual inspection. However, in subjects with normal-appearing hippocampi, volumetrics indicated that male, but not female, hippocampi were smaller than controls, but increasing hippocampal asymmetry was not seen following febrile status. Forty-four subjects developed epilepsy; six developed mesial temporal lobe epilepsy and, of the six, two had definite, two had equivocal, and two had no hippocampal sclerosis. Only one subject developed mesial temporal epilepsy without initial hyperintensity, and that subject had hippocampal malrotation. Ten-year cumulative incidence of all types of epilepsy, including mesial temporal epilepsy, was highest in subjects with initial T2 hyperintensity and lowest in those with normal signal and no other brain abnormalities. SIGNIFICANCE: Hippocampal T2 hyperintensity following febrile status epilepticus predicted hippocampal sclerosis and significant likelihood of mesial temporal lobe epilepsy. Normal hippocampal appearance in the acute postictal MRI was followed by maintained normal appearance, symmetric growth, and lower risk of epilepsy. Volumetric measurement detected mildly decreased hippocampal volume in males with febrile status.
Asunto(s)
Epilepsia del Lóbulo Temporal , Hipocampo , Imagen por Resonancia Magnética , Esclerosis , Convulsiones Febriles , Estado Epiléptico , Humanos , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Masculino , Femenino , Esclerosis/patología , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/patología , Estado Epiléptico/etiología , Convulsiones Febriles/patología , Convulsiones Febriles/diagnóstico por imagen , Lactante , Preescolar , Niño , Estudios de Seguimiento , Atrofia/patología , Esclerosis del HipocampoRESUMEN
According to experimental and clinical studies, status epilepticus (SE) causes neurodegenerative morphological changes not only in the hippocampus and other limbic structures, it also affects the thalamus and the neocortex. In addition, several studies reported atrophy, metabolic changes, and neuronal degeneration in the dorsal striatum. The literature lacks studies investigating potential neuronal damage in the ventral component of the striatopallidal complex (ventral striatum [VS] and ventral pallidum) in SE experimentations. To better understand the development of neuronal damage in the striatopallidal complex associated with SE, the detected neuronal degeneration in the compartments of the VS, namely, the nucleus accumbens (NAc) and the olfactory tubercle (OT), was analyzed. The experiments were performed on Wistar rats at age of 25-day-old pups and 3-month-old adult animals. Lithium-pilocarpine model of SE was used. Lithium chloride (3 mmol/kg, ip) was injected 24 h before administering pilocarpine (40 mg/kg, ip). This presented study demonstrates the variability of post SE neuronal damage in 25-day-old pups in comparison with 3-month-old adult rats. The NAc exhibited small to moderate number of Fluoro-Jade B (FJB)-positive neurons detected 4 and 8 h post SE intervals. The number of degenerated neurons in the shell subdivision of the NAc significantly increased at survival interval of 12 h after the SE. FJB-positive neurons were evidently more prominent occupying the whole anteroposterior and mediolateral extent of the nucleus at longer survival intervals of 24 and 48 h after the SE. This was also the case in the bordering vicinity between the shell and the core compartments but with clusters of degenerating cells. The severity of damage of the shell subdivision of the NAc reached its peak at an interval of 24 h post SE. Isolated FJB-positive neurons were detected in the ventral peripheral part of the core compartment. Degenerated neurons persisted in the shell subdivision of the NAc 1 week after SE. However, the quantity of cell damage had significantly reduced in comparison with the aforementioned shorter intervals. The third layer of the OT exhibited more degenerated neurons than the second layer. The FJB-positive cells in the young animals were higher than in the adult animals. The morphology of those cells was identical in the two age groups except in the OT.
Asunto(s)
Degeneración Nerviosa , Ratas Wistar , Estado Epiléptico , Animales , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Ratas , Masculino , Degeneración Nerviosa/patología , Degeneración Nerviosa/inducido químicamente , Estriado Ventral/patología , Neuronas/patología , Animales Recién Nacidos , Pilocarpina/toxicidad , Modelos Animales de Enfermedad , Cloruro de Litio/toxicidad , Factores de Edad , FluoresceínasRESUMEN
The molecular mechanisms underlying seizure generation remain elusive, yet they are crucial for developing effective treatments for epilepsy. The current study shows that inhibiting c-Abl tyrosine kinase prevents apoptosis, reduces dendritic spine loss, and maintains N-methyl-d-aspartate (NMDA) receptor subunit 2B (NR2B) phosphorylated in in vitro models of excitotoxicity. Pilocarpine-induced status epilepticus (SE) in mice promotes c-Abl phosphorylation, and disrupting c-Abl activity leads to fewer seizures, increases latency toward SE, and improved animal survival. Currently, clinically used c-Abl inhibitors are non-selective and have poor brain penetration. The allosteric c-Abl inhibitor, neurotinib, used here has favorable potency, selectivity, pharmacokinetics, and vastly improved brain penetration. Neurotinib-administered mice have fewer seizures and improved survival following pilocarpine-SE induction. Our findings reveal c-Abl kinase activation as a key factor in ictogenesis and highlight the impact of its inhibition in preventing the insurgence of epileptic-like seizures in rodents and humans.
Asunto(s)
Pilocarpina , Proteínas Proto-Oncogénicas c-abl , Convulsiones , Animales , Masculino , Ratones , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patologíaRESUMEN
Epilepsy, a chronic neurological disorder characterized by recurrent seizures, affects millions of individuals worldwide. Despite extensive research, the underlying mechanisms leading to epileptogenesis, the process by which a normal brain develops epilepsy, remain elusive. We, here, explored the immune system and spleen responses triggered by pilocarpine-induced status epilepticus (SE) focusing on their role in the epileptogenesis that follows SE. Initial examination of spleen histopathology revealed transient disorganization of white pulp, in animals subjected to SE. This disorganization, attributed to immune activation, peaked at 1-day post-SE (1DPSE) but returned to control levels at 3DPSE. Alterations in peripheral blood lymphocyte populations, demonstrated a decrease following SE, accompanied by a reduction in CD3+ T-lymphocytes. Further investigations uncovered an increased abundance of T-lymphocytes in the piriform cortex and choroid plexus at 3DPSE, suggesting a specific mobilization toward the Central Nervous System. Notably, splenectomy mitigated brain reactive astrogliosis, neuroinflammation, and macrophage infiltration post-SE, particularly in the hippocampus and piriform cortex. Additionally, splenectomized animals exhibited reduced lymphatic follicle size in the deep cervical lymph nodes. Most significantly, splenectomy correlated with improved neuronal survival, substantiated by decreased neuronal loss and reduced degenerating neurons in the piriform cortex and hippocampal CA2-3 post-SE. Overall, these findings underscore the pivotal role of the spleen in orchestrating immune responses and neuroinflammation following pilocarpine-induced SE, implicating the peripheral immune system as a potential therapeutic target for mitigating neuronal degeneration in epilepsy.
Asunto(s)
Enfermedades Neuroinflamatorias , Pilocarpina , Bazo , Estado Epiléptico , Animales , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Bazo/inmunología , Bazo/patología , Masculino , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/inmunología , Esplenectomía , Ratas Sprague-Dawley , Hipocampo/patología , Modelos Animales de Enfermedad , Linfocitos T/inmunología , Corteza Piriforme/patología , Neuronas/patologíaRESUMEN
The hippocampal dentate gyrus, responds to diverse pathological stimuli through neurogenesis. This phenomenon, observed following brain injury or neurodegeneration, is postulated to contribute to neuronal repair and functional recovery, thereby presenting an avenue for endogenous neuronal restoration. This study investigated the extent of regenerative response in hippocampal neurogenesis by leveraging the well-established kainic acid-induced status epilepticus model in vivo. In our study, we observed the activation and proliferation of neuronal progenitors or neural stem cell (NSC) and their subsequent migration to the injury sites following the seizure. At the injury sites, new neurons (Tuj1+BrdU+ and NeuN+BrdU+) have been generated indicating regenerative and reparative roles of the progenitor cells. We further detected whether this transient neurogenic burst, which might be a response towards an attempt to repair the brain, is associated with persistent long-term exhaustion of the dentate progenitor cells and impairment of adult neurogenesis marked by downregulation of Ki67, HoPX, and Sox2 with BrdU+ cell in the later part of life. Our studies suggest that the adult brain has the constitutive endogenous regenerative potential for brain repair to restore the damaged neurons, meanwhile, in the long term, it accelerates the depletion of the finite NSC pool in the hippocampal neurogenic niche by changing its proliferative and neurogenic capacity. A thorough understanding of the impact of modulating adult neurogenesis will eventually be required to design novel therapeutics to stimulate or assist brain repair while simultaneously preventing the adverse effects of early robust neurogenesis on the proliferative potential of endogenous neuronal progenitors.
Asunto(s)
Hipocampo , Células-Madre Neurales , Neurogénesis , Animales , Células-Madre Neurales/metabolismo , Hipocampo/patología , Hipocampo/metabolismo , Proliferación Celular , Masculino , Nicho de Células Madre , Giro Dentado/patología , Giro Dentado/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Ácido Kaínico/toxicidad , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Estado Epiléptico/metabolismo , Regeneración Nerviosa , Modelos Animales de Enfermedad , Ratones , Movimiento CelularRESUMEN
Convulsive status epilepticus (CSE) is a common critical neurological condition that can lead to irreversible hippocampal neuron damage and cognitive dysfunction. Multiple studies have demonstrated the critical roles that long non-coding RNA Mir155hg plays in a variety of diseases. However, less is known about the function and mechanism of Mir155hg in CSE. Here we investigate and elucidate the mechanism underlying the contribution of Mir155hg to CSE-induced hippocampal neuron injury. By applying high-throughput sequencing, we examined the expression of differentially expressed genes in normal and CSE rats. Subsequent RT-qPCR enabled us to measure the level of Mir155hg in rat hippocampal tissue. Targeted knockdown of Mir155hg was achieved by the AAV9 virus. Additionally, we utilized HE and Tunel staining to evaluate neuronal injury. Immunofluorescence (IF), Golgi staining, and brain path clamping were also used to detect the synaptic plasticity of hippocampal neurons. Finally, through IF staining and Sholl analysis, we assessed the degree of microglial phagocytic function. It was found that the expression of Mir155hg was elevated in CSE rats. HE and Tunel staining results showed that Mir155hg knockdown suppressed the hippocampal neuron loss and apoptosis followed CSE. IF, Golgi staining and brain path clamp data found that Mir155hg knockdown enhanced neuronal synaptic plasticity. The results from IF staining and Sholl analysis showed that Mir155hg knockdown enhanced microglial phagocytosis. Our findings suggest that Mir155hg promotes CSE-induced hippocampal neuron injury by inhibiting microglial phagocytosis.
Asunto(s)
Hipocampo , MicroARNs , Microglía , Neuronas , Fagocitosis , Ratas Sprague-Dawley , Estado Epiléptico , Animales , Estado Epiléptico/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Hipocampo/metabolismo , Hipocampo/patología , Microglía/metabolismo , Neuronas/metabolismo , Masculino , Fagocitosis/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Ratas , Apoptosis/fisiología , Plasticidad Neuronal/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismoRESUMEN
Septo-hippocampal pathway, crucial for physiological functions and involved in epilepsy. Clinical monitoring during epileptogenesis is complicated. We aim to evaluate tissue changes after lesioning the medial septum (MS) of normal rats and assess how the depletion of specific neuronal populations alters the animals' behavior and susceptibility to establishing a pilocarpine-induced status epilepticus. Male Sprague-Dawley rats were injected into the MS with vehicle or saporins (to deplete GABAergic or cholinergic neurons; n = 16 per group). Thirty-two animals were used for diffusion tensor imaging (DTI); scanned before surgery and 14 and 49 days post-injection. Fractional anisotropy and apparent diffusion coefficient were evaluated in the fimbria, dorsal hippocampus, ventral hippocampus, dorso-medial thalamus, and amygdala. Between scans 2 and 3, animals were submitted to diverse behavioral tasks. Stainings were used to analyze tissue alterations. Twenty-four different animals received pilocarpine to evaluate the latency and severity of the status epilepticus 2 weeks after surgery. Additionally, eight different animals were only used to evaluate the neuronal damage inflicted on the MS 1 week after the molecular surgery. Progressive changes in DTI parameters in both white and gray matter structures of the four evaluated groups were observed. Behaviorally, the GAT1-saporin injection impacted spatial memory formation, while 192-IgG-saporin triggered anxiety-like behaviors. Histologically, the GABAergic toxin also induced aberrant mossy fiber sprouting, tissue damage, and neuronal death. Regarding the pilocarpine-induced status epilepticus, this agent provoked an increased mortality rate. Selective septo-hippocampal modulation impacts the integrity of limbic regions crucial for certain behavioral skills and could represent a precursor for epilepsy development.
Asunto(s)
Conducta Animal , Imagen de Difusión Tensora , Ratas Sprague-Dawley , Estado Epiléptico , Animales , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Masculino , Sistema Límbico/patología , Susceptibilidad a Enfermedades , Pilocarpina/toxicidad , Tabique del Cerebro/patología , Ratas , Hipocampo/patología , Hipocampo/efectos de los fármacosRESUMEN
Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.
Asunto(s)
Modelos Animales de Enfermedad , Ferroptosis , Hipocampo , Estado Epiléptico , Ubiquinona , Animales , Ferroptosis/efectos de los fármacos , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patología , Estado Epiléptico/inducido químicamente , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/metabolismo , Ratas , Masculino , Estrés Oxidativo/efectos de los fármacos , Pilocarpina , Ratas Sprague-Dawley , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Peroxidación de Lípido/efectos de los fármacosRESUMEN
Status epilepticus (SE) is a critical medical emergency marked by persistent or rapidly repeating seizures, posing a threat to life. Using the lithium-pilocarpine-induced SE model, we decide to evaluate the anti-seizure effects of ivermectin as a positive allosteric modulator of GABAA receptor and the underlying mechanisms involved. Lithium chloride was injected intraperitoneally at a dose of 127 mg/kg, followed by the administration of pilocarpine at a dose of 60 mg/kg after a 20-h interval in order to induce SE. Subsequently, the rats received varying amounts of ivermectin (0.3, 1, 3, 5, and 10 mg/kg, i.p.) 30 min before the onset of SE. To study the underlying molecular mechanisms, we had pharmacological interventions of diazepam (1 mg/kg), glibenclamide and nicorandil as ATP-sensitive potassium channel blocker and opener (both 1 mg/kg, i.p.), naltrexone and morphine, as opioid receptor antagonist and agonist (1 mg/kg and 0.5 mg/kg, i.p., respectively). In addition, three nitric oxide inhibitors, namely, L-NAME (10 mg/kg, i.p.), 7-NI (30 mg/kg, i.p.), and aminoguanidine (100 mg/kg, i.p.), were administered to the rats in the experiment. Finally, we use ELISA and western blotting, respectively, to examine the amounts of pro-inflammatory cytokines (TNF-α and IL-1ß), nitrite, and GABAA receptors in the rat hippocampal tissue. The study found that ivermectin, at doses of 3, 5, and 10 mg/kg, exerts anti-seizure effects and decrease Racine's scale SE score. Interestingly glibenclamide and naltrexone reduced the anti-seizure effects of ivermectin, and from other hand diazepam, nicorandil, morphine, L-NAME, 7-NI, and aminoguanidine, enhance the effects when co-administrated with subeffective dose of ivermectin. Additionally, the study found that ivermectin decreased the elevated levels of TNF-α and IL-1ß following SE, while increased the reduced expression of GABAA receptors. Overall, these findings suggest that ivermectin has anti-seizure effects in a SE seizure which may be mediated by the modulation of GABAergic, opioidergic, and nitrergic pathways and KATP channels.
Asunto(s)
Anticonvulsivantes , Ivermectina , Canales KATP , Pilocarpina , Ratas Wistar , Receptores de GABA-A , Estado Epiléptico , Animales , Pilocarpina/toxicidad , Masculino , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patología , Anticonvulsivantes/farmacología , Receptores de GABA-A/metabolismo , Canales KATP/metabolismo , Ratas , Ivermectina/farmacología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Receptores Opioides/metabolismo , Óxido Nítrico/metabolismo , Litio/farmacología , Transducción de Señal/efectos de los fármacosRESUMEN
Organophosphates (OPs) and nerve agents are potent neurotoxic compounds that cause seizures, status epilepticus (SE), brain injury, or death. There are persistent long-term neurologic and neurodegenerative effects that manifest months to years after the initial exposure. Current antidotes are ineffective in preventing these long-term neurobehavioral and neuropathological changes. Additionally, there are few effective neuroprotectants for mitigating the long-term effects of acute OP intoxication. We have pioneered neurosteroids as novel anticonvulsants and neuroprotectants for OP intoxication and seizures. In this study, we evaluated the efficacy of two novel synthetic, water-soluble neurosteroids, valaxanolone (VX) and lysaxanolone (LX), in combating the long-term behavioral and neuropathological impairments caused by acute OP intoxication and SE. Animals were exposed to the OP nerve agent surrogate diisopropylfluorophosphate (DFP) and were treated with VX or LX in addition to midazolam at 40 minutes postexposure. The extent of neurodegeneration, along with various behavioral and memory deficits, were assessed at 3 months postexposure. VX significantly reduced deficits of aggressive behavior, anxiety, memory, and depressive-like traits in control (DFP-exposed, midazolam-treated) animals; VX also significantly prevented the DFP-induced chronic loss of NeuN(+) principal neurons and PV(+) inhibitory neurons in the hippocampus and other regions. Additionally, VX-treated animals exhibited a reduced inflammatory response with decreased GFAP(+) astrogliosis and IBA1(+) microgliosis in the hippocampus, amygdala, and other regions. Similarly, LX showed significant improvement in behavioral and memory deficits, and reduced neurodegeneration and cellular neuroinflammation. Together, these results demonstrate the neuroprotectant effects of the novel synthetic neurosteroids in mitigating the long-term neurologic dysfunction and neurodegeneration associated with OP exposure. SIGNIFICANCE STATEMENT: Survivors of nerve agents and organophosphate (OP) exposures suffer from long-term neurological deficits. Currently, there is no specific drug therapy for mitigating the impact of OP exposure. However, novel synthetic neurosteroids that activate tonic inhibition provide a viable option for treating OP intoxication. The data from this study indicates the neuroprotective effects of synthetic, water-soluble neurosteroids for attenuation of long-term neurological deficits after OP intoxication. These findings establish valaxanolone and lysaxanolone as potent and efficacious neuroprotectants suitable for injectable dosing.
Asunto(s)
Agentes Nerviosos , Fármacos Neuroprotectores , Neuroesteroides , Intoxicación por Organofosfatos , Compuestos Organotiofosforados , Estado Epiléptico , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Neuroesteroides/uso terapéutico , Isoflurofato/farmacología , Midazolam/farmacología , Enfermedades Neuroinflamatorias , Encéfalo , Agentes Nerviosos/farmacología , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patología , Convulsiones/tratamiento farmacológico , Intoxicación por Organofosfatos/tratamiento farmacológico , Organofosfatos/farmacología , Trastornos de la Memoria/patologíaRESUMEN
Acquired temporal lobe epilepsy (TLE) characterized by spontaneous recurrent seizures (SRS) and hippocampal inhibitory neuron dysfunction is often refractory to current therapies. Gap junctional or electrical coupling between inhibitory neurons has been proposed to facilitate network synchrony and intercellular molecular exchange suggesting a role in both seizures and neurodegeneration. While gap junction blockers can limit acute seizures, whether blocking neuronal gap junctions can modify development of chronic epilepsy has not been examined. This study examined whether mefloquine, a selective blocker of Connexin 36 gap junctions which are well characterized in inhibitory neurons, can limit epileptogenesis and related cellular and behavioral pathology in a model of acquired TLE. A single, systemic dose of mefloquine administered early after pilocarpine-induced status epilepticus (SE) in rat reduced both development of SRS and behavioral co-morbidities. Immunostaining for interneuron subtypes identified that mefloquine treatment likely reduced delayed inhibitory neuronal loss after SE. Uniquely, parvalbumin expressing neurons in the hippocampal dentate gyrus appeared relatively resistant to early cell loss after SE. Functionally, whole cell patch clamp recordings revealed that mefloquine treatment preserved inhibitory synaptic drive to projection neurons one week and one month after SE. These results demonstrate that mefloquine, a drug already approved for malaria prophylaxis, is potentially antiepileptogenic and can protect against progressive interneuron loss and behavioral co-morbidities of epilepsy.
Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Fármacos Neuroprotectores , Estado Epiléptico , Ratas , Animales , Fármacos Neuroprotectores/efectos adversos , Mefloquina/efectos adversos , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patología , Convulsiones/inducido químicamente , Hipocampo , Epilepsia/patología , Pilocarpina/toxicidad , Modelos Animales de EnfermedadRESUMEN
BACKGROUND AND PURPOSE: Alternating hemiplegia of childhood (AHC) is a rare neurodevelopmental disease caused by ATP1A3 mutations. Using voxel-based morphometry (VBM) analysis, we compared an AHC patient cohort with controls. Additionally, with single-case VBM analysis, we assessed the associations between clinical severity and brain volume in patients with AHC. MATERIALS AND METHODS: To investigate structural brain changes in gray matter (GM) and white matter (WM) volumes between 9 patients with AHC and 20 age-matched controls, VBM analysis was performed using three-dimensional T1-weighted magnetic resonance imaging. Single-case VBM analysis was also performed on nine patients with AHC to investigate the associations between the respective volumes of GM/WM differences and the motor level, cognitive level, and status epilepticus severity in patients with AHC. RESULTS: Compared with controls, patients with AHC showed significant GM volume reductions in both hippocampi and diffuse cerebellum, and there were WM reductions in both cerebral hemispheres. In patients with AHC, cases with more motor dysfunction, the less GM/WM volume of cerebellum was shown. Three of the six cases with cognitive dysfunction showed a clear GM volume reduction in the insulae. Five of the six cases with status epilepticus showed the GM volume reduction in hippocampi. One case had severe status epilepticus without motor dysfunction and showed no cerebellar atrophy. CONCLUSION: With single-case VBM analysis, we could show the association between region-specific changes in brain volume and the severity of various clinical symptoms even in a small sample of subjects.
Asunto(s)
Imagen por Resonancia Magnética , Estado Epiléptico , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Sustancia Gris/patología , Estado Epiléptico/patología , ATPasa Intercambiadora de Sodio-PotasioRESUMEN
Epileptogenesis is a complex process involving a multitude of changes at the molecular, cellular and network level. Previous studies have identified several key alterations contributing to epileptogenesis and the development of hyper-excitability in different animal models, but only a few have focused on the early stages of this process. For post status epilepticus (SE) temporal lobe epilepsy in particular, understanding network dynamics during the early phases might be crucial for developing accurate preventive treatments to block the development of chronic spontaneous seizures. In this study, we used a viral vector mediated approach to examine activity of neurons in the dentate gyrus of the hippocampus during early epileptogenesis. We find that while granule cells are active 8 h after SE and then gradually decrease their activity, Calretinin-positive mossy cells and Neuropeptide Y-positive GABAergic interneurons in the hilus show a delayed activation pattern starting at 24 and peaking at 48 h after SE. These data suggest that indirect inhibition of granule cells by mossy cells through recruitment of local GABAergic interneurons could be an important mechanisms of excitability control during early epileptogenesis, and contribute to our understanding of the complex role of these cells in normal and pathological conditions.
Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Animales , Neuronas/patología , Hipocampo/patología , Convulsiones/patología , Interneuronas , Epilepsia del Lóbulo Temporal/patología , Estado Epiléptico/patología , Giro Dentado/química , Giro Dentado/patología , Modelos Animales de EnfermedadRESUMEN
Prolonged status epilepticus (SE) can cause brain damage; therefore, treatment must be administered promptly after seizure onset to limit SE duration and prevent neuropathology. Timely treatment of SE is not always feasible; this would be particularly true in a mass exposure to an SE-inducing agent such as a nerve agent. Therefore, the availability of anticonvulsant treatments that have neuroprotective efficacy even if administered with a delay after SE onset is an imperative. Here, we compared the long-term neuropathology resulting from acutely exposing 21-day-old male and female rats to the nerve agent soman, and treating them with midazolam (3 mg/kg) or co-administration of tezampanel (10 mg/kg) and caramiphen (50 mg/kg), at 1 h postexposure (~50 min after SE onset). Midazolam-treated rats had significant neuronal degeneration in limbic structures, mainly at one month postexposure, followed by neuronal loss in the basolateral amygdala and the CA1 hippocampal area. Neuronal loss resulted in significant amygdala and hippocampal atrophy, deteriorating from one to six months postexposure. Rats treated with tezampanel-caramiphen had no evidence of neuropathology, except for neuronal loss in the basolateral amygdala at the six-month timepoint. Anxiety was increased only in the midazolam-treated rats, at one, three, and six months postexposure. Spontaneous recurrent seizures appeared only in midazolam-treated rats, at three and six months postexposure in males and only at six months in females. These findings suggest that delayed treatment of nerve agent-induced SE with midazolam may result in long-lasting or permanent brain damage, while antiglutamatergic anticonvulsant treatment consisting of tezampanel and caramiphen may provide full neuroprotection.
Asunto(s)
Lesiones Encefálicas , Agentes Nerviosos , Soman , Estado Epiléptico , Femenino , Ratas , Masculino , Animales , Soman/toxicidad , Soman/uso terapéutico , Midazolam/farmacología , Midazolam/uso terapéutico , Anticonvulsivantes/efectos adversos , Agentes Nerviosos/efectos adversos , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patología , Lesiones Encefálicas/tratamiento farmacológico , Encéfalo/patologíaRESUMEN
A significant body of evidence shows that neuroinflammation is one of the key processes in the development of brain pathology in trauma, neurodegenerative disorders, and epilepsy. Various brain insults, including severe and prolonged seizure activity during status epilepticus (SE), trigger proinflammatory cytokine release. We investigated the expression of the proinflammatory cytokines interleukin-1ß (Il1b) and interleukin-6 (Il6), and anti-inflammatory fractalkine (Cx3cl1) in the hippocampus, entorhinal cortex, and neocortex of rats 24 h, 7 days, and 5 months after lithium-pilocarpine SE. We studied the relationship between cytokine expression and neuronal death in the hippocampus and evaluated the effect of modulation of endocannabinoid receptors on neuroinflammation and neurodegeneration after SE. The results of the present study showed that inhibition of endocannabinoid CB1 receptors with AM251 early after SE had a transient neuroprotective effect that was absent in the chronic period and did not affect the development of spontaneous seizures after SE. At the same time, AM251 reduced the expression of Il6 in the chronic period after SE. Higher Cx3cl1 levels were found in rats with more prominent hippocampal neurodegeneration.