Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 646
Filtrar
1.
Front Immunol ; 15: 1360220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650925

RESUMEN

Background: Malaria remains a major global health priority, and monoclonal antibodies (mAbs) are emerging as potential new tools to support efforts to control the disease. Recent data suggest that Fc-dependent mechanisms of immunity are important mediators of protection against the blood stages of the infection, but few studies have investigated this in the context of mAbs. We aimed to isolate mAbs agnostic to cognate antigens that target whole merozoites and simultaneously induce potent neutrophil activity measured by the level of reactive oxygen species (ROS) production using an antibody-dependent respiratory burst (ADRB) assay. Methods: We used samples from semi-immune adults living in coastal Kenya to isolate mAbs that induce merozoite-specific ADRB activity. We then tested whether modifying the expressed IgG1 isotype to an IgG-IgA Fc region chimera would enhance the level of ADRB activity. Results: We isolated a panel of nine mAbs with specificity to whole merozoites. mAb J31 induced ADRB activity in a dose-dependent fashion. Compared to IgG1, our modified antibody IgG-IgA bi-isotype induced higher ADRB activity across all concentrations tested. Further, we observed a negative hook effect at high IgG1 mAb concentrations (i.e., >200 µg/mL), but this was reversed by Fc modification. We identified MSP3.5 as the potential cognate target of mAb J31. Conclusions: We demonstrate an approach to engineer mAbs with enhanced ADRB potency against blood-stage parasites.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antiprotozoarios , Malaria Falciparum , Merozoítos , Neutrófilos , Plasmodium falciparum , Plasmodium falciparum/inmunología , Humanos , Anticuerpos Antiprotozoarios/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Anticuerpos Monoclonales/inmunología , Merozoítos/inmunología , Estallido Respiratorio/inmunología , Inmunoglobulina G/inmunología , Adulto , Especies Reactivas de Oxígeno/metabolismo , Kenia , Isotipos de Inmunoglobulinas/inmunología , Activación Neutrófila/inmunología , Femenino , Antígenos de Protozoos/inmunología
2.
J Trauma Acute Care Surg ; 92(2): 330-338, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34789698

RESUMEN

BACKGROUND: Trauma increases susceptibility to secondary bacterial infections. The events suppressing antimicrobial immunity are unclear. Polymorphonuclear neutrophils (PMNs) migrate toward bacteria using chemotaxis, trap them in extracellular neutrophil extracellular traps, and kill them using respiratory burst (RB). We hypothesized that plasma and wound fluids from trauma patients alter PMN function. METHODS: Volunteer PMNs were incubated in plasma or wound fluids from trauma patients (days 0 and 1, days 2 and 3), and their functions were compared with PMNs incubated in volunteer plasma. Chemotaxis was assessed in transwells. Luminometry assessed total and intracellular RB responses to receptor-dependent and independent stimulants. Neutrophil extracellular trap formation was assessed using elastase assays. The role of tissue necrosis in creating functionally suppressive systemic PMN environments was assessed using a novel pig model where PMNs were incubated in uninjured pig plasma or plasma from pigs undergoing intraperitoneal instillation of liver slurry. RESULTS: Both plasma and wound fluids from trauma patients markedly suppress total PMN RB. Intracellular RB is unchanged, implicating suppression of extracellular RB. Wound fluids are more suppressive than plasma. Biofluids suppressed RB maximally early after injury and their effects decayed with time. Chemotaxis and neutrophil extracellular trap formation were suppressed by biofluids similarly. Lastly, plasma from pigs undergoing abdominal liver slurry instillation suppressed PMN RB, paralleling suppression by human trauma biofluids. CONCLUSION: Trauma plasma and wound fluids suppress RB and other key PMNs antimicrobial functions. Circulating suppressive signals can be derived from injured or necrotic tissue at wound sites, suggesting a key mechanism by which tissue injuries can put the host at risk for infection.


Asunto(s)
Neutrófilos/inmunología , Estallido Respiratorio/inmunología , Heridas y Lesiones/inmunología , Animales , Quimiotaxis , Exudados y Transudados/inmunología , Humanos , Volumen Plasmático/inmunología , Porcinos
3.
Front Immunol ; 12: 689866, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737734

RESUMEN

Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.


Asunto(s)
Inmunidad Innata/inmunología , Neutrófilos/inmunología , Neumonía/inmunología , Biomarcadores/sangre , COVID-19/inmunología , Degranulación de la Célula/inmunología , Quimiocinas/inmunología , Ensayos Clínicos como Asunto , Trampas Extracelulares/inmunología , Humanos , Integrinas/inmunología , Pulmón/inmunología , Pulmón/patología , Neutrófilos/efectos de los fármacos , Neumonía/diagnóstico , Neumonía/tratamiento farmacológico , Receptores de Reconocimiento de Patrones/inmunología , Estallido Respiratorio/inmunología , SARS-CoV-2 , Tromboembolia/inmunología
4.
Clin Immunol ; 229: 108796, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34271191

RESUMEN

INTRODUCTION: Inherited phagocyte defects are one of the subgroups of primary immunodeficiency diseases (PIDs) with various clinical manifestations. As oral manifestations are common at the early ages, oral practitioners can have a special role in the early diagnosis. MATERIALS AND METHODS: A comprehensive search was conducted in this systematic review study and data of included studies were categorized into four subgroups of phagocyte defects, including congenital neutropenia, defects of motility, defects of respiratory burst, and other non-lymphoid defects. RESULTS: Among all phagocyte defects, 12 disorders had reported data for oral manifestations in published articles. A total of 987 cases were included in this study. Periodontitis is one of the most common oral manifestations. CONCLUSION: There is a need to organize better collaboration between medical doctors and dentists to diagnose and treat patients with phagocyte defects. Regular dental visits and professional oral health care are recommended from the time of the first primary teeth eruption in newborns.


Asunto(s)
Enfermedades de la Boca/inmunología , Fagocitos/inmunología , Enfermedades de Inmunodeficiencia Primaria/inmunología , Femenino , Deficiencia GATA2/diagnóstico , Deficiencia GATA2/genética , Deficiencia GATA2/inmunología , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/inmunología , Humanos , Masculino , Enfermedades de la Boca/diagnóstico , Enfermedades de la Boca/genética , Neutropenia/congénito , Neutropenia/diagnóstico , Neutropenia/inmunología , Enfermedad de Papillon-Lefevre/diagnóstico , Enfermedad de Papillon-Lefevre/genética , Enfermedad de Papillon-Lefevre/inmunología , Fagocitos/patología , Enfermedades de Inmunodeficiencia Primaria/diagnóstico , Enfermedades de Inmunodeficiencia Primaria/genética , Estallido Respiratorio/genética , Estallido Respiratorio/inmunología
5.
Front Immunol ; 12: 659752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122417

RESUMEN

Aspergillus fumigatus causes life-threatening opportunistic infections in immunocompromised patients. As therapeutic outcomes of invasive aspergillosis (IA) are often unsatisfactory, the development of targeted immunotherapy remains an important goal. Linking the innate and adaptive immune system, dendritic cells are pivotal in anti-Aspergillus defense and have generated interest as a potential immunotherapeutic approach in IA. While monocyte-derived dendritic cells (moDCs) require ex vivo differentiation, antigen-pulsed primary myeloid dendritic cells (mDCs) may present a more immediate platform for immunotherapy. To that end, we compared the response patterns and cellular interactions of human primary mDCs and moDCs pulsed with an A. fumigatus lysate and two A. fumigatus proteins (CcpA and Shm2) in a serum-free, GMP-compliant medium. CcpA and Shm2 triggered significant upregulation of maturation markers in mDCs and, to a lesser extent, moDCs. Furthermore, both A. fumigatus proteins elicited the release of an array of key pro-inflammatory cytokines including TNF-α, IL-1ß, IL-6, IL-8, and CCL3 from both DC populations. Compared to moDCs, CcpA- and Shm2-pulsed mDCs exhibited greater expression of MHC class II antigens and stimulated stronger proliferation and IFN-γ secretion from autologous CD4+ and CD8+ T-cells. Moreover, supernatants of CcpA- and Shm2-pulsed mDCs significantly enhanced the oxidative burst in allogeneic neutrophils co-cultured with A. fumigatus germ tubes. Taken together, our in vitro data suggest that ex vivo CcpA- and Shm2-pulsed primary mDCs have the potential to be developed into an immunotherapeutic approach to tackle IA.


Asunto(s)
Aspergillus fumigatus/inmunología , Células Dendríticas/inmunología , Proteínas Fúngicas/inmunología , Activación de Linfocitos/inmunología , Estallido Respiratorio/inmunología , Linfocitos T/inmunología , Aspergilosis/inmunología , Aspergilosis/metabolismo , Aspergilosis/microbiología , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/fisiología , Diferenciación Celular/inmunología , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Monocitos/inmunología , Linfocitos T/metabolismo , Linfocitos T/microbiología
6.
Front Immunol ; 12: 594773, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790888

RESUMEN

Antibody-mediated blood disorders ensue after auto- or alloimmunization against blood cell antigens, resulting in cytopenia. Although the mechanisms of cell destruction are the same as in immunotherapies targeting tumor cells, many factors are still unknown. Antibody titers, for example, often do not strictly correlate with clinical outcome. Previously, we found C-reactive protein (CRP) levels to be elevated in thrombocytopenic patients, correlating with thrombocyte counts, and bleeding severity. Functionally, CRP amplified antibody-mediated phagocytosis of thrombocytes by phagocytes. To investigate whether CRP is a general enhancer of IgG-mediated target cell destruction, we extensively studied the effect of CRP on in vitro IgG-Fc receptor (FcγR)-mediated cell destruction: through respiratory burst, phagocytosis, and cellular cytotoxicity by a variety of effector cells. We now demonstrate that CRP also enhances IgG-mediated effector functions toward opsonized erythrocytes, in particular by activated neutrophils. We performed a first-of-a-kind profiling of CRP binding to all human FcγRs and IgA-Fc receptor I (FcαRI) using a surface plasmon resonance array. CRP bound these receptors with relative affinities of FcγRIa = FcγRIIa/b = FcγRIIIa > FcγRIIIb = FcαRI. Furthermore, FcγR blocking (in particular FcγRIa) abrogated CRP's ability to amplify IgG-mediated neutrophil effector functions toward opsonized erythrocytes. Finally, we observed that CRP also amplified killing of breast-cancer tumor cell line SKBR3 by neutrophils through anti-Her2 (trastuzumab). Altogether, we provide for the first time evidence for the involvement of specific CRP-FcγR interactions in the exacerbation of in vitro IgG-mediated cellular destruction; a trait that should be further evaluated as potential therapeutic target e.g., for tumor eradication.


Asunto(s)
Proteína C-Reactiva/metabolismo , Inmunoglobulina G/inmunología , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Adulto , Animales , Células Cultivadas , Citofagocitosis/inmunología , Citotoxicidad Inmunológica , Eritrocitos/inmunología , Femenino , Humanos , Inmunoglobulina G/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Modelos Biológicos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Estallido Respiratorio/inmunología , Adulto Joven
7.
Infect Immun ; 89(6)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33820814

RESUMEN

During enteric salmonellosis, neutrophil-generated reactive oxygen species alter the gut microenvironment, favoring survival of Salmonella Typhimurium. While type 3 secretion system 1 (T3SS-1) and flagellar motility are potent Salmonella Typhimurium agonists of the neutrophil respiratory burst in vitro, neither of these pathways alone is responsible for stimulation of a maximal respiratory burst. To identify Salmonella Typhimurium genes that impact the magnitude of the neutrophil respiratory burst, we performed a two-step screen of defined mutant libraries in coculture with human neutrophils. We first screened Salmonella Typhimurium mutants lacking defined genomic regions and then tested single-gene deletion mutants representing particular regions under selection. A subset of single-gene deletion mutants was selected for further investigation. Mutants in four genes, STM1696 (sapF), STM2201 (yeiE), STM2112 (wcaD), and STM2441 (cysA), induced an attenuated respiratory burst. We linked the altered respiratory burst to reduced T3SS-1 expression and/or altered flagellar motility for two mutants (ΔSTM1696 and ΔSTM2201). The ΔSTM2441 mutant, defective for sulfate transport, formed aggregates in minimal medium and adhered to surfaces in rich medium, suggesting a role for sulfur homeostasis in the regulation of aggregation/adherence. We linked the aggregation/adherence phenotype of the ΔSTM2441 mutant to biofilm-associated protein A and flagellins and hypothesize that aggregation caused the observed reduction in the magnitude of the neutrophil respiratory burst. Our data demonstrate that Salmonella Typhimurium has numerous mechanisms to limit the magnitude of the neutrophil respiratory burst. These data further inform our understanding of how Salmonella may alter human neutrophil antimicrobial defenses.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Neutrófilos/inmunología , Estallido Respiratorio/inmunología , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/fisiología , Sulfatos/metabolismo , Cisteína/metabolismo , Flagelos/fisiología , Genes Bacterianos , Humanos , Mutación , Neutrófilos/metabolismo , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
8.
Front Immunol ; 12: 620365, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717119

RESUMEN

Background and Aims: Acute-on-chronic liver failure (ACLF) is characterized by systemic inflammation accompanied by defective anti-bacterial immunity. The role of neutrophils in immune derangement of ACLF has not been fully elucidated. This study is aimed to characterize the role of circulating neutrophils in HBV-related ACLF patients. Methods: Quantitative, phenotypic, transcriptomic, and functional alterations of circulating neutrophils were compared in ACLF and non-ACLF subjects and analyzed for associations with short-term outcomes. Interventional experiments were performed to test the impact on ACLF-patient neutrophil function in vitro. Results: Circulating absolute neutrophil count was significantly increased in patients with ACLF and was an independent risk factor for 28-day mortality. ACLF-patient neutrophils differentially expressed a panel of surface markers (include TLR-1, TLR-2, TLR-4, CEACAM-1 and FPR1), as well as a distinct transcriptomic signature. ACLF-neutrophils displayed significantly impaired phagocytosis but an increased capacity to form neutrophil extracellular traps (NETs), which was more pronounced in patients with poor outcome. Healthy neutrophils mimicked functional characteristics of ACLF counterpart after co-cultured with plasma from ACLF patients. The oxidative burst and cytokine production capacities remained unchanged. Plasma GM-CSF, IL-6, IL-8, IL-10, and IP-10 levels, as well as lipopolysaccharide (LPS) concentration, were markedly elevated in ACLF patients but not DAMP molecules HMGB-1 and HSP70. Finally, a glycolysis inhibitor, 2-deoxy-glucose, reduced NET formation of ACLF patients' neutrophils. Conclusions: Circulating ACLF-patient neutrophils exhibit alterations in number, phenotype, gene expression and function, which was associated with poor outcome and shaped by the ACLF circulatory environment. Inhibiting glycolysis can reverse neutrophil dysfunction in ACLF patients.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada/etiología , Insuficiencia Hepática Crónica Agudizada/metabolismo , Virus de la Hepatitis B/inmunología , Hepatitis B/complicaciones , Hepatitis B/virología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Insuficiencia Hepática Crónica Agudizada/diagnóstico , Adulto , Anciano , Biomarcadores , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Femenino , Perfilación de la Expresión Génica , Hepatitis B/diagnóstico , Interacciones Huésped-Patógeno , Humanos , Inmunofenotipificación , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Fagocitosis/inmunología , Fenotipo , Estallido Respiratorio/inmunología , Transcriptoma
9.
Sci Rep ; 11(1): 3167, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542403

RESUMEN

A wide variety of environmental contaminants has been shown to disrupt immune functions of fish and may compromise their defense capability against pathogens. Immunotoxic effects, however, are rarely considered in ecotoxicological testing strategies. The aim of this study was to systematically evaluate the suitability of an in vitro immuno-assay using selected fish immune parameters to screen for chemicals with known immunotoxic potential and to differentiate them from non-immunotoxicants. Non-stimulated and lipopolysaccharide-stimulated head kidney leukocytes of rainbow trout (Oncorhynchus mykiss) were exposed for 3 h or 19 h to chemicals with different modes of action. As immune parameters, phagocytosis activity, oxidative burst activity and cytokine transcription (IL-1ß, TNFα, IL-10) were examined, accompanied by in silico modelling. The immunotoxicants dexamethasone, benzo(a)pyrene, ethinylestradiol and bisphenol A significantly altered the immune parameters at non-cytotoxic concentrations whereas diclofenac had only weak effects. However, the two baseline chemicals with no known immunotoxic potential, butanol and ethylene glycol, caused significant effects, too. From our results it appears that the in vitro fish leukocyte assay as performed in the present study has only a limited capacity for discriminating between immunotoxicants and non-immunotoxicants.


Asunto(s)
Proteínas de Peces/genética , Inmunotoxinas/toxicidad , Leucocitos/efectos de los fármacos , Oncorhynchus mykiss/inmunología , Fagocitosis/efectos de los fármacos , Estallido Respiratorio/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Compuestos de Bencidrilo/toxicidad , Benzo(a)pireno/toxicidad , Butanoles/toxicidad , Dexametasona/toxicidad , Diclofenaco/toxicidad , Etinilestradiol/toxicidad , Glicol de Etileno/toxicidad , Femenino , Proteínas de Peces/inmunología , Regulación de la Expresión Génica , Riñón Cefálico/citología , Riñón Cefálico/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Leucocitos/citología , Leucocitos/inmunología , Fagocitosis/inmunología , Fenoles/toxicidad , Cultivo Primario de Células , Estallido Respiratorio/inmunología , Transcripción Genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
10.
Dev Comp Immunol ; 119: 104024, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33503449

RESUMEN

Hibernation consists of alternating periods of reduced metabolism (torpor) with brief periods of metabolism similar to summer euthermia (arousal). The function of the innate immune system is reduced during hibernation, of which the underlying mechanisms are incompletely understood. Here, we studied neutrophil functionality during hibernation in Syrian hamsters. The inflammatory response to LPS-induced endotoxemia is inhibited in hibernation, partly mediated by reduced IL-6 production in early arousal. Furthermore, neutrophil pathogen binding, phagocytosis and oxidative burst is profoundly reduced in early arousal. Functionality of both summer and early arousal neutrophils was repressed in plasma from early arousal and mixed plasma from early arousal and summer euthermic, but restored by summer euthermic plasma, signifying that a plasma factor in early arousal inhibits TLR-recognition. Identification of the inhibiting factor may offer a target to modulate neutrophil function with relevance to (auto-)inflammatory diseases.


Asunto(s)
Hibernación/inmunología , Inmunidad Innata/inmunología , Mesocricetus/inmunología , Neutrófilos/inmunología , Estaciones del Año , Proteínas de Fase Aguda/inmunología , Animales , Nivel de Alerta/genética , Nivel de Alerta/fisiología , Proteínas Portadoras/sangre , Proteínas Portadoras/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Expresión Génica/inmunología , Hibernación/genética , Hibernación/fisiología , Inmunidad Innata/genética , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Interleucina-6/inmunología , Interleucina-6/metabolismo , Receptores de Lipopolisacáridos/sangre , Receptores de Lipopolisacáridos/inmunología , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Glicoproteínas de Membrana/sangre , Glicoproteínas de Membrana/inmunología , Mesocricetus/genética , Mesocricetus/metabolismo , FN-kappa B/inmunología , FN-kappa B/metabolismo , Neutrófilos/metabolismo , Neutrófilos/fisiología , Fagocitosis/inmunología , Estallido Respiratorio/inmunología , Estallido Respiratorio/fisiología , Factores de Tiempo
11.
Front Immunol ; 12: 766970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095842

RESUMEN

In the lumen of blood vessels, there are large numbers of erythrocytes, which are approximately 95% of the total blood cells. Although the function of erythrocytes is to transport oxygen in the organism, recent studies have shown that mammalian and teleost erythrocytes are involved in the immune response against bacterial infections. However, the immune mechanisms used by avian erythrocytes are not yet clear. Here, we demonstrated that erythrocytes from goose have the ability to phagocytose as well as conduct antimicrobial activity. Firstly, we revealed the phagocytosis or adhesion activity of goose erythrocytes for latex beads 0.1-1.0 µm in diameter by fluorescence microscopy, and scanning and transmission electron microscopy. The low cytometry results also proved that goose erythrocytes had a wide range of phagocytic or adhesion activity for different bacteria. Followed, the low cytometry analysis data further explored that the goose erythrocytes contain the ability to produce reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in response to bacterial stimulation, and also up-regulated the expression of NOX family includes NOX1 and NOX5. Finally, we also found that goose erythrocytes showed a powerful antibacterial activity against all the three bacteria, meanwhile the stimulation of three kinds of bacteria up-regulated the expression of inflammatory factors, and increased the production of antioxidant enzymes to protect the cells from oxidative damage. Herein, our results demonstrate that goose Erythrocytes possess a certain phagocytic capacity and antioxidant system, and that the antimicrobial activity of erythrocytes can occurred through the production of unique respiratory burst against foreign pathogenic bacteria, which provides new clues to the interaction between bacteria and avian erythrocytes.


Asunto(s)
Antibacterianos/inmunología , Eritrocitos/inmunología , Gansos/inmunología , Fagocitosis/inmunología , Estallido Respiratorio/inmunología , Animales , Antioxidantes/metabolismo , Bacterias/inmunología , Adhesión Bacteriana/inmunología , Inmunidad/inmunología , Inflamación/inmunología , Estrés Oxidativo/inmunología , Fagocitos/inmunología , Especies Reactivas de Oxígeno/inmunología
12.
J Allergy Clin Immunol ; 147(6): 2381-2385.e2, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33279574

RESUMEN

BACKGROUND: SMARCD2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily D, member 2) has recently been shown to have a critical role in granulopoiesis in humans, mice, and zebrafish. Our patient presented with delayed cord separation, failure to thrive, and sepsis. Retrospective whole-exome sequencing confirmed a homozygous splice-site mutation in SMARCD2. OBJECTIVE: We sought to provide the second description of human SMARCD2 deficiency and the first functional analysis of human primary SMARCD2-deficient cells. METHODS: Heparinized venous blood and bone marrow were collected from the patient after obtaining informed consent. Patient leukocytes and CD34+ cells were then isolated, phenotyped, and assessed functionally. RESULTS: Circulating neutrophils appeared phenotypically immature, lacking multilobed nuclei, and neutrophil granules lacked lactoferrin but showed normal levels of myeloperoxidase. Neutrophil oxidative burst was preserved in response to phorbol 12-myristate 13-acetate. Patient bone marrow-derived neutrophils and white blood cells showed a severely impaired chemotactic response. Furthermore, white blood cells showed defective in vitro killing of Staphylococcus aureus, consistent with a specific granule deficiency. Finally, patient bone marrow-derived CD34+ cells showed markedly impaired in vitro expansion and differentiation toward the neutrophil lineage. Before her molecular diagnosis, our patient underwent hematopoietic stem cell transplantation and is well 8 years later. CONCLUSIONS: This report highlights an important role for SMARCD2 in human myelopoiesis and the curative effect of hematopoietic stem cell transplantation for the hematopoietic features of SMARCD2 deficiency.


Asunto(s)
Diferenciación Celular/genética , Proteínas Cromosómicas no Histona/genética , Homocigoto , Lactoferrina/deficiencia , Trastornos Leucocíticos/etiología , Mutación , Neutrófilos/metabolismo , Sitios de Empalme de ARN , Biomarcadores , Diferenciación Celular/inmunología , Quimiotaxis de Leucocito/genética , Quimiotaxis de Leucocito/inmunología , Citotoxicidad Inmunológica , Femenino , Predisposición Genética a la Enfermedad , Humanos , Inmunofenotipificación , Recién Nacido , Trastornos Leucocíticos/diagnóstico , NADPH Oxidasas/metabolismo , Neutrófilos/patología , Neutrófilos/ultraestructura , Linaje , Fenotipo , Estallido Respiratorio/genética , Estallido Respiratorio/inmunología
13.
Immunobiology ; 225(4): 151972, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32747021

RESUMEN

Neutrophils are an essential cellular component of the innate immune system, responsible for multiple effector mechanisms and aspects of inflammation. Neutrophil priming results in a rapid elevation in antimicrobial activities and can be measured by reactive oxygen species production, bacterial endocytosis, and de-novo synthesis of components such as interleukins. Mannose binding lectin (MBL), a C-type lectin pathogen recognition receptor is associated with immune functions including complement activation, opsonization and modulating immune responses. Whether MBL opsonization of pathogen can induce neutrophil priming has not been studied so far. Hence, studies were performed using MBL and neutrophils of Capra hircus (domestic goat) to evaluate the effects of MBL + MASPs interactions on neutrophil functions. It was found that MBL + MASPs opsonization of zymosan stimulates neutrophil functions including increased oxidative burst, enhanced endocytosis and modulates the expression level of NCF4, XBP1, CCL2, and CR1 genes. The results suggest that MBL-MASP complex can regulate neutrophil functioning.


Asunto(s)
Regulación de la Expresión Génica , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Neutrófilos/fisiología , Estallido Respiratorio/inmunología , Animales , Biomarcadores , Cabras , Inmunidad Innata , Fagocitosis/inmunología , Especies Reactivas de Oxígeno/metabolismo
14.
J Immunotoxicol ; 17(1): 94-104, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32407153

RESUMEN

Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17ß-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.


Asunto(s)
Benzo(a)pireno/efectos adversos , Pruebas Inmunológicas de Citotoxicidad/métodos , Inmunidad Innata/efectos de los fármacos , Especies Reactivas de Oxígeno/análisis , Estallido Respiratorio/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Recuento de Células Sanguíneas , Embrión no Mamífero , Estradiol/efectos adversos , Estudios de Factibilidad , Ensayos Analíticos de Alto Rendimiento/métodos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Metoxicloro/efectos adversos , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Compuestos Organometálicos/efectos adversos , Fenantrenos/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio/inmunología , Pez Cebra
15.
J Leukoc Biol ; 108(2): 705-713, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32421905

RESUMEN

Hyaluronan (HA) is a glycosaminoglycan that in its natural, high molecular mass (HMM) form, promotes tissue repair and homeostasis. With inflammation, HA metabolism and HMM HA fragmentation to low molecular mass (LMM) forms is greatly enhanced. Considerable evidence suggests that LMM HA may act as a damage-associated molecular pattern to initiate innate immune responses. However, the responsiveness of myeloid cells to LMM HA is controversial and largely unknown for neutrophils. Peripheral blood cells from healthy donors were incubated ex vivo with pharmaceutical grade HA of different molecular mass (HMM, LMM, and HA fragments <10 kDa). Key innate immune functions were assessed, namely production of cytokines and reactive oxygen species release (ROS), granule mobilization, and apoptosis. None of the tested sizes of HA altered cytokine production by PBMC and neutrophils. Also, HA had no effect on neutrophil granule mobilization and apoptosis. In contrast, HA primed neutrophils for rapid and robust release of ROS in response to a secondary stimulus (N-formyl-methionyl-leucyl phenylalanine). Priming occurred within 20 min of exposure to HA and was similar for all tested molecular mass. The observed effect was independent of granule mobilization and associated with the activation of intracellular signaling pathways involving Src family kinases, glycogen synthase kinase-3, and the proline-rich Akt substrate of 40 kDa. Our findings provide new evidence that HA, irrespective of molecular mass, is a specific priming agent of the neutrophil oxidative burst, which is a critical, early component of an innate immune response.


Asunto(s)
Ácido Hialurónico/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Estallido Respiratorio/inmunología , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Citocinas/metabolismo , Humanos , Ácido Hialurónico/farmacología , Mediadores de Inflamación/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , NADPH Oxidasas/metabolismo , Neutrófilos/efectos de los fármacos , Oxidación-Reducción , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
16.
Vet Immunol Immunopathol ; 221: 109975, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32087476

RESUMEN

BACKGROUND: Polymorphonuclear neutrophils (PMN) are the largest leukocyte population in the blood of most mammals including horses, and play an important defensive role in many infectious diseases. However, the mechanisms that increase PMN as one of the main cellular subsets in the defense against pathogens could also be involved in the pathophysiology of dysregulated inflammatory conditions. Mesenchymal stem/stromal cells (MSCs) are a heterogeneous population with a modulatory potential on the inflammatory response and are known to interact with nearly all cells of the immune system, including PMN. In this study, the in vitro modulation of equine bone marrow-derived MSCs on equine PMN phagocytosis, ROS production, and NETs generation was assessed. RESULTS: In co-culture with MSCs, unstimulated PMN produce less ROS (2.88 % ±â€¯1.43) than PMN in single culture (5.89 % ±â€¯2.63) (p = 0.016). Moreover, PMN co-cultured with MSCs remain conditioned to produce fewer ROS after PMA stimulation in comparison to PMN in single culture (p < 0.05). Additionally, it was found that incubation with MSC supernatant strongly inhibited ROS production (83 % ±â€¯6.35 less than control) without affecting phagocytosis or capacity for NETosis (p < 0.01). CONCLUSIONS: These results suggest a modulatory effect of equine BM-derived MSCs on PMN respiratory burst, without impairing other important microbicidal functions. This supports the potential use of equine MSCs in excessive or persistent inflammatory conditions in which neutrophils are the main effector cells.


Asunto(s)
Células de la Médula Ósea/citología , Células Madre Mesenquimatosas/citología , Neutrófilos/inmunología , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Técnicas de Cocultivo , Femenino , Caballos , Masculino , Neutrófilos/metabolismo , Fagocitosis , Estallido Respiratorio/inmunología , Acetato de Tetradecanoilforbol/farmacología
17.
Int J Parasitol ; 50(2): 145-152, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32006550

RESUMEN

Millions of people are infected with the liver fluke, Opisthorchis viverrini (OV), but only ~25% of those infected develop liver disease and even fewer develop cholangiocarcinoma. The reasons for these differential outcomes following infection are unknown but it has been proposed that differential immune responses to the parasite may play a role. We therefore measured granulocyte (neutrophil) function in OV-infected individuals, with and without advanced periductal fibrosis, to determine if these cells have a "pro-inflammatory" phenotype that may contribute to liver disease post-infection. A case-controlled study (n = 54 in each cohort) from endemic OV-infected areas of northeastern Thailand measured neutrophil functions in whole blood from non-infected (healthy controls) and OV-infected individuals with and without APF. We measured reactive oxygen species production, phagocytosis, receptor expression and apoptosis. Secreted products from OV cultures (obtained after in vitro culture of parasites) stimulated reactive oxygen species production in non-infected healthy controls, but levels were two-fold greater after OV infection (P < 0.0001); neutrophil reactive oxygen species production in individuals with APF was double that observed in those without APF (P < 0.0001). OV-infected neutrophils had elevated CD11b expression and greater phagocytic capacity, which was even three-fold higher in those with advanced periductal fibrosis (P < 0.0001). This "activated" phenotype of circulating neutrophils was further confirmed by the observation that isolated neutrophils had delayed apoptosis ex vivo. We believe this is the first study to show that circulating blood neutrophil function is enhanced following OV infection and is more activated in those with advanced periductal fibrosis. We propose that this activated phenotype could contribute to the pathology of liver disease. These data support the hypothesis of an activated innate inflammatory phenotype following OV infection and provide the first evidence for involvement of neutrophils in disease pathology.


Asunto(s)
Fibrosis/parasitología , Neutrófilos/patología , Opistorquiasis , Opisthorchis/patogenicidad , Animales , Apoptosis , Neoplasias de los Conductos Biliares/parasitología , Conductos Biliares Intrahepáticos/patología , Estudios de Casos y Controles , Colangiocarcinoma/parasitología , Humanos , Inflamación , Hepatopatías/parasitología , Opistorquiasis/complicaciones , Opistorquiasis/inmunología , Opistorquiasis/parasitología , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio/inmunología , Tailandia
18.
Methods Mol Biol ; 2087: 93-106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31728985

RESUMEN

Two critical functional responses of neutrophils are chemotaxis, a response driven by concentration gradients of chemokines released by infected or inflamed tissues, and production of reactive oxygen species (ROS), molecules essential to their capacity to kill pathogens. Assays to accurately test each response have been important to assess efficacies of pharmaceuticals predicted to block recruitment of neutrophils or attenuate their ROS production. Identified antagonists to neutrophil functions may help to reduce tissue damage following inflammation. Described are detailed assays to test these functions, along with steps to generate neutrophils from ex vivo-cultured murine bone marrow that produce robust responses in either assay. The first function protocol details a quantitative assay for chemotaxis that involves culture plates with dual chamber wells that separate cells from a chemokine with small pore-sized membranes. Quantitative measurements of cell numbers in the chemokine-containing chamber are performed with either fluorescence or luminescence detection reagents, which provide signals directly proportional to the numbers of migrated cells. Multiwell plates are used for rapidly testing a variety of conditions and/or chemoattractants. Described in the second function protocol is an assay to measure ROS produced by stimulated neutrophils, again using a multiwell platform for rapid, quantitative measurements of several conditions simultaneously.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Estallido Respiratorio/inmunología , Animales , Biomarcadores , Células Cultivadas , Quimiocinas/metabolismo , Quimiotaxis/inmunología , Quimiotaxis de Leucocito/genética , Queratinocitos/metabolismo , Ratones , Activación Neutrófila/inmunología , Especies Reactivas de Oxígeno/metabolismo
19.
Methods Mol Biol ; 2087: 301-324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31729000

RESUMEN

Activation of professional phagocytes, potent microbial killers of our innate immune system, is associated with an increased cellular consumption of molecular oxygen (O2). The O2 molecules consumed are reduced by electrons delivered by a membrane localized NADPH-oxidase that initially generate one- and two electron reduced superoxide anions (O2-) and hydrogen peroxide (H2O2), respectively. These oxidants can then be processed into other highly reactive oxygen species (ROS) that can kill microbes, but that may also cause tissue destruction and drive other immune cells into apoptosis. The development of basic techniques to measure and quantify ROS generation by phagocytes is of great importance, and a large number of methods have been used for this purpose. A selection of methods (including chemiluminescence amplified by luminol or isoluminol, absorbance change following reduction of cytochrome c, and fluorescence increase upon oxidation of PHPA) are described in detail in this chapter with special emphasis on how to distinguish between ROS that are released extracellularly, and those that are retained within intracellular organelles. These techniques can be valuable tools in research spanning from basic phagocyte biology to diagnosis of diseases linked to the NADPH-oxidase and more clinically oriented research on innate immune mechanisms and inflammation.


Asunto(s)
Fagocitos/inmunología , Fagocitos/metabolismo , Fagocitosis/inmunología , Estallido Respiratorio/inmunología , Biomarcadores , Gránulos Citoplasmáticos/metabolismo , Espacio Extracelular/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Mediciones Luminiscentes/métodos , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Fagocitosis/genética , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio/genética
20.
Molecules ; 25(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861488

RESUMEN

(1) Introduction: Reactive oxygen species (ROS) and nitric oxide (NO) are key signaling molecules that play important roles in the progression of inflammatory disorders. The objective of this study was to explore the use of myrtucommuacetalone-1 (MCA-1), as a novel compound of natural origin and a potential anti-inflammatory agent. (2) Methodology: The anti-inflammatory potential of MCA-1, which was isolated from Myrthus communis Linn, was determined by assaying superoxide, hydrogen peroxide, and nitric oxide production in macrophages. Furthermore, the effects of the compound were analyzed via phosphorylation and translocation of the transcription factor NF kappa B, which is a key regulator of iNOS activation. The effect of MCA-1 on the inducible nitric oxide synthase (iNOS) enzyme was also examined using in silico docking studies. The anticancer potential for MCA-1 was evaluated with an MTT cytotoxic assay. (3) Results: In stimulated macrophages, MCA-1 inhibited superoxide production by 48%, hydrogen peroxide by 53%, and nitric oxide (NO) with an IC50 of <1 µg/mL. MCA-1 also showed a very strong binding pattern within the active site of the inducible nitric oxide synthase enzyme. Furthermore, 25 µg/mL of MCA-1 inhibited inducible nitric oxide synthase expression and abolished transcription factor (NFκB) phosphorylation and translocation to the nucleus. Cytotoxicity analyses of MCA-1 on 3T3 mouse fibroblasts, CC1 liver cell line, J774.2, macrophages and MDBK bovine kidney epithelial cell, yielded IC50 values of 6.53 ± 1.2, 4.6 ± 0.7, 5 ± 0.8, and 4.6 ± 0.7, µg/mL, respectively. (4) Conclusion: Our results suggest that MCA-1, a major phloroglucinol-type compound, shows strong anti-inflammatory activity and has a potential to be a leading therapeutic agent in the future.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Macrófagos/efectos de los fármacos , Myrtus/química , Animales , Antiinflamatorios/aislamiento & purificación , Línea Celular , Humanos , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Modelos Moleculares , Estructura Molecular , FN-kappa B/química , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio/efectos de los fármacos , Estallido Respiratorio/inmunología , Relación Estructura-Actividad , Proteínas Quinasas p38 Activadas por Mitógenos/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...