Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 348, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809353

RESUMEN

Mycotoxin production by aflatoxin B1 (AFB1) -producing Aspergillus flavus Zt41 and sterigmatocystin (ST) -hyperproducer Aspergillus creber 2663 mold strains on corn and rice starch, both of high purity and nearly identical amylose-amylopectin composition, as the only source of carbon, was studied. Scanning electron microscopy revealed average starch particle sizes of 4.54 ± 0.635 µm and 10.9 ± 2.78 µm, corresponding to surface area to volume ratios of 127 1/µm for rice starch and 0.49 1/µm for corn starch. Thus, a 2.5-fold difference in particle size correlated to a larger, 259-fold difference in surface area. To allow starch, a water-absorbing powder, to be used as a sole food source for Aspergillus strains, a special glass bead system was applied. AFB1 production of A. flavus Zt41 was determined to be 437.6 ± 128.4 ng/g and 90.0 ± 44.8 ng/g on rice and corn starch, respectively, while corresponding ST production levels by A. creber 2663 were 72.8 ± 10.0 µg/g and 26.8 ± 11.6 µg/g, indicating 3-fivefold higher mycotoxin levels on rice starch than on corn starch as sole carbon and energy sources. KEY POINTS: • A glass bead system ensuring the flow of air when studying powders was developed. • AFB1 and ST production of A. flavus and A. creber on rice and corn starches were studied. • 3-fivefold higher mycotoxin levels on rice starch than on corn starch were detected.


Asunto(s)
Oryza , Almidón , Zea mays , Oryza/química , Zea mays/química , Almidón/metabolismo , Aspergillus/metabolismo , Aspergillus flavus/metabolismo , Aflatoxina B1/biosíntesis , Aflatoxina B1/metabolismo , Esterigmatocistina/biosíntesis , Esterigmatocistina/metabolismo , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Micotoxinas/metabolismo , Micotoxinas/biosíntesis , Vidrio
2.
FEMS Microbiol Lett ; 368(18)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34549285

RESUMEN

The protein O-mannosyltransferase catalyzes O-mannosylation in the endoplasmic reticulum by transferring mannose to the seryl or threonyl residues of substrate proteins. We previously reported a deletion mutant of O-mannosyltransferase C (ΔpmtC) in Aspergillus nidulans with impaired vegetative growth and sterigmatocystin (ST) production. In this study, we investigated whether osmotic conditions contribute to the developmental processes and ST biosynthesis of the ΔpmtC deletion mutant. We found that hyphal growth and ST production partially improved in the presence of NaCl, KCl or sorbitol as osmotic stabilizers. Conidiation of the ΔpmtC deletion mutant was not restored under osmotic stress conditions when the hogA gene was deleted. The hogA gene encodes a protein required for the cellular response to osmotic pressure. However, the yield of ST and the vegetative growth of the ΔhogA ΔpmtC double deletant was restored by high osmolarity in a HogA-independent manner.


Asunto(s)
Aspergillus nidulans , Proteínas Fúngicas , Esterigmatocistina , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Medios de Cultivo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación , Presión Osmótica , Esterigmatocistina/biosíntesis
3.
J Microbiol ; 59(8): 746-752, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34219207

RESUMEN

The VosA-VelB heterocomplex governs expression of several genes associated with fungal development and secondary metabolism. In this study, we have investigated the functions of one of the VosA-VelB-activated developmental genes vadJ in development and production of the mycotoxin sterigmatocystin in the model fungus Aspergillus nidulans. The vadJ gene is predicted to encode a 957-amino acid length protein containing a highly conserved sensor histidine kinase domain. The deletion of vosA or velB resulted in decreased mRNA levels of vadJ throughout the life cycle, suggesting that VosA and VelB are necessary for proper expression of vadJ. Nullifying vadJ led to highly restricted colony growth, lowered formation of asexual spores, and about two-fold reduction in conidial viability. Conversely, the deletion of vadJ resulted in elevated production of sexual fruiting bodies and sterigmatocystin. These suggest that VadJ is necessary for proper coordination of asexual and sexual development, and sterigmatocystin production. In accordance with this idea, the deletion of vadJ led to elevated mRNA levels of the two key sexual developmental activators esdC and nsdD. In summary, the putative sensor histidine kinase VadJ represses sexual development and sterigmatocystin production, but activates asexual development in A. nidulans.


Asunto(s)
Aspergillus nidulans/enzimología , Aspergillus nidulans/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Histidina Quinasa/metabolismo , Esterigmatocistina/biosíntesis , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Histidina Quinasa/genética
4.
J Microbiol Biotechnol ; 31(5): 676-685, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33746193

RESUMEN

RNA-binding proteins are involved in RNA metabolism and posttranscriptional regulation of various fundamental biological processes. The PUF family of RNA-binding proteins is highly conserved in eukaryotes, and its members regulate gene expression, mitochondrial biogenesis, and RNA processing. However, their biological functions in Aspergillus species remain mostly unknown in filamentous fungi. Here we have characterized the puf genes in the model organism Aspergillus nidulans. We generated deletion mutant strains for the five putative puf genes present in the A. nidulans genome and investigated their developmental phenotypes. Deletion of pufA or pufE affected fungal growth and asexual development. pufA mutants exhibited decreased production of asexual spores and reduced mRNA expression of genes regulating asexual development. The pufE deletion reduced colony growth, increased formation of asexual spores, and delayed production of sexual fruiting bodies. In addition, the absence of pufE reduced both sterigmatocystin production and the mRNA levels of genes in the sterigmatocystin cluster. Finally, pufE deletion mutants showed reduced trehalose production and lower resistance to thermal stress. Overall, these results demonstrate that PufA and PufE play roles in the development and sterigmatocystin metabolism in A. nidulans.


Asunto(s)
Aspergillus nidulans/crecimiento & desarrollo , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Unión al ARN/metabolismo , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Mutación , Dominios Proteicos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esterigmatocistina/biosíntesis , Termotolerancia/genética , Trehalosa/metabolismo
5.
Sci Rep ; 10(1): 15075, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934285

RESUMEN

McrA is a key transcription factor that functions as a global repressor of fungal secondary metabolism in Aspergillus species. Here, we report that mcrA is one of the VosA-VelB target genes and McrA governs the cellular and metabolic development in Aspergillus nidulans. The deletion of mcrA resulted in a reduced number of conidia and decreased mRNA levels of brlA, the key asexual developmental activator. In addition, the absence of mcrA led to a loss of long-term viability of asexual spores (conidia), which is likely associated with the lack of conidial trehalose and increased ß-(1,3)-glucan levels in conidia. In supporting its repressive role, the mcrA deletion mutant conidia contain more amounts of sterigmatocystin and an unknown metabolite than the wild type conidia. While overexpression of mcrA caused the fluffy-autolytic phenotype coupled with accelerated cell death, deletion of mcrA did not fully suppress the developmental defects caused by the lack of the regulator of G-protein signaling protein FlbA. On the contrary to the cellular development, sterigmatocystin production was restored in the ΔflbA ΔmcrA double mutant, and overexpression of mcrA completely blocked the production of sterigmatocystin. Overall, McrA plays a multiple role in governing growth, development, spore viability, and secondary metabolism in A. nidulans.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Esporas Fúngicas/metabolismo , Esterigmatocistina/biosíntesis , Factores de Transcripción/metabolismo , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Esporas Fúngicas/genética , Factores de Transcripción/genética
6.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887494

RESUMEN

In the biosynthesis of aflatoxin, verA, ver-1, ordB, and hypA genes of the aflatoxin gene cluster are involved in the pathway from versicolorin A (VA) to demethylsterigmatocystin (DMST). We herein isolated each disruptant of these four genes to determine their functions in more detail. Disruptants of ver-1, ordB, and hypA genes commonly accumulated VA in their mycelia. In contrast, the verA gene disruptant accumulated a novel yellow fluorescent substance (which we named HAMA) in the mycelia as well as culture medium. Feeding HAMA to the other disruptants commonly caused the production of aflatoxins B1 (AFB1) and G1 (AFG1). These results indicate that HAMA pigment is a novel aflatoxin precursor which is involved at a certain step after those of ver-1, ordB, and hypA genes between VA and DMST. HAMA was found to be an unstable substance to easily convert to DMST and sterigmatin. A liquid chromatography-mass spectrometry (LC-MS) analysis showed that the molecular mass of HAMA was 374, and HAMA gave two close major peaks in the LC chromatogram in some LC conditions. We suggest that these peaks correspond to the two conformers of HAMA; one of them would be selectively bound on the substrate binding site of VerA enzyme and then converted to DMST. VerA enzyme may work as a key enzyme in the creation of the xanthone structure of DMST from HAMA.


Asunto(s)
Aflatoxina B1/biosíntesis , Aspergillus/metabolismo , Proteínas Fúngicas/metabolismo , Esterigmatocistina/análogos & derivados , Xantonas/química , Aspergillus/genética , Proteínas Fúngicas/genética , Familia de Multigenes , Esterigmatocistina/biosíntesis
7.
Biocontrol Sci ; 25(2): 113-118, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32507789

RESUMEN

Aspergillus section Versicolores species, except Aspergillus sydowii, produce a carcinogenic mycotoxin sterigmatocystin (STC). Since these fungi are found in varied environmental milieu including indoor dust and food products, our aim was to develop a sensitive and convenient assay to detect STC producing fungal strains. We made use of a high discrimination DNA polymerase (HiDi DNA polymerase), for single nucleotide polymorphism (SNP)-based PCR amplification. Using specific primer pairs based on the SNPs between A. sydowii and other strains of Aspergillus section Versicolores, we succeeded in amplifying the genomic DNA all target strains except A. sydowii. These results confirm that the SNP-based PCR amplification technique, using a high discrimination DNA polymerase, was a reliable and robust screening method for target fungal strains.


Asunto(s)
Aspergillus/genética , ADN Polimerasa Dirigida por ADN/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Aspergillus/aislamiento & purificación , Aspergillus/metabolismo , Secuencia de Bases , Calmodulina/genética , Calmodulina/metabolismo , Carcinógenos/análisis , Carcinógenos/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Fúngicas/metabolismo , Reacción en Cadena de la Polimerasa/normas , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Alineación de Secuencia , Esterigmatocistina/análisis , Esterigmatocistina/biosíntesis
8.
mSphere ; 5(2)2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269157

RESUMEN

The filamentous fungus Aspergillus nidulans has been a primary workhorse used to understand fungal genetics. Much of this work has focused on elucidating the genetics of biosynthetic gene clusters (BGCs) and the secondary metabolites (SMs) they produce. SMs are both niche defining in fungi and of great economic importance to humans. Despite the focus on A. nidulans, very little is known about the natural diversity in secondary metabolism within this species. We determined the BGC content and looked for evolutionary patterns in BGCs from whole-genome sequences of two clinical isolates and the A4 reference genome of A. nidulans Differences in BGC content were used to explain SM profiles determined using liquid chromatography-high-resolution mass spectrometry. We found that in addition to genetic variation of BGCs contained by all isolates, nine BGCs varied by presence/absence. We discovered the viridicatumtoxin BGC in A. nidulans and suggest that this BGC has undergone a horizontal gene transfer from the Aspergillus section Nigri lineage into Penicillium sometime after the sections Nigri and Nidulantes diverged. We identified the production of viridicatumtoxin and several other compounds previously not known to be produced by A. nidulans One isolate showed a lack of sterigmatocystin production even though it contained an apparently intact sterigmatocystin BGC, raising questions about other genes and processes known to regulate this BGC. Altogether, our work uncovers a large degree of intraspecies diversity in BGC and SM production in this genetic model species and offers new avenues to understand the evolution and regulation of secondary metabolism.IMPORTANCE Much of what we know about the genetics underlying secondary metabolite (SM) production and the function of SMs in the model fungus Aspergillus nidulans comes from a single reference genome. A growing body of research indicates the importance of biosynthetic gene cluster (BGC) and SM diversity within a species. However, there is no information about the natural diversity of secondary metabolism in A. nidulans We discovered six novel clusters that contribute to the considerable variation in both BGC content and SM production within A. nidulans We characterize a diverse set of mutations and emphasize how findings of single nucleotide polymorphisms (SNPs), deletions, and differences in evolutionary history encompass much of the variation observed in nonmodel systems. Our results emphasize that A. nidulans may also be a strong model to use within-species diversity to elucidate regulatory cross talk, fungal ecology, and drug discovery systems.


Asunto(s)
Aspergilosis/microbiología , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Familia de Multigenes , Metabolismo Secundario , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Transferencia de Gen Horizontal , Variación Genética , Genoma Fúngico , Mutación , Esterigmatocistina/biosíntesis
9.
J Microbiol ; 58(7): 574-587, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32323196

RESUMEN

Multiple transcriptional regulators play important roles in the coordination of developmental processes, including asexual and sexual development, and secondary metabolism in the filamentous fungus Aspergillus nidulans. In the present study, we characterized a novel putative C2H2-type transcription factor (TF), RocA, in relation to development and secondary metabolism. Deletion of rocA increased conidiation and caused defective sexual development. In contrast, the overexpression of rocA exerted opposite effects on both phenotypes. Additionally, nullifying rocA resulted in enhanced brlA expression and reduced nsdC expression, whereas its overexpression exerted the opposite effects. These results suggest that RocA functions as a negative regulator of asexual development by repressing the expression of brlA encoding a key asexual development activator, but as a positive regulator of sexual development by enhancing the expression of nsdC encoding a pivotal sexual development activator. Deletion of rocA increased the production of sterigmatocystin (ST), as well as the expression of its biosynthetic genes, aflR and stcU. Additionally, the expression of the biosynthetic genes for penicillin (PN), ipnA and acvA, and for terrequinone (TQ), tdiB and tdiE, was increased by rocA deletion. Thus, it appears that RocA functions as a negative transcriptional modulator of the secondary metabolic genes involved in ST, PN, and TQ biosynthesis. Taken together, we propose that RocA is a novel transcriptional regulator that may act either positively or negatively at multiple target genes necessary for asexual and sexual development and secondary metabolism.


Asunto(s)
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Metabolismo Secundario/genética , Transactivadores/genética , Proteínas Fúngicas/genética , Indoles/metabolismo , Penicilinas/biosíntesis , Metabolismo Secundario/fisiología , Esterigmatocistina/biosíntesis , Transcripción Genética/genética
10.
Genes (Basel) ; 11(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963266

RESUMEN

The velvet regulator VosA plays a pivotal role in asexual sporulation in the model filamentous fungus Aspergillus nidulans. In the present study, we characterize the roles of VosA in sexual spores (ascospores) in A. nidulans. During ascospore maturation, the deletion of vosA causes a rapid decrease in spore viability. The absence of vosA also results in a lack of trehalose biogenesis and decreased tolerance of ascospores to thermal and oxidative stresses. RNA-seq-based genome-wide expression analysis demonstrated that the loss of vosA leads to elevated expression of sterigmatocystin (ST) biosynthetic genes and a slight increase in ST production in ascospores. Moreover, the deletion of vosA causes upregulation of additional gene clusters associated with the biosynthesis of other secondary metabolites, including asperthecin, microperfuranone, and monodictyphenone. On the other hand, the lack of vosA results in the downregulation of various genes involved in primary metabolism. In addition, vosA deletion alters mRNA levels of genes associated with the cell wall integrity and trehalose biosynthesis. Overall, these results demonstrate that the velvet regulator VosA plays a key role in the maturation and the cellular and metabolic integrity of sexual spores in A. nidulans.


Asunto(s)
Aspergillus nidulans/fisiología , Proteínas Fúngicas/metabolismo , Metabolismo Secundario/fisiología , Esporas Fúngicas/metabolismo , Reproducción Asexuada/fisiología , Esporas Fúngicas/genética , Esterigmatocistina/biosíntesis
11.
PLoS Genet ; 15(10): e1008419, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31609971

RESUMEN

Microorganisms sense environmental fluctuations in nutrients and light, coordinating their growth and development accordingly. Despite their critical roles in fungi, only a few G-protein coupled receptors (GPCRs) have been characterized. The Aspergillus nidulans genome encodes 86 putative GPCRs. Here, we characterise a carbon starvation-induced GPCR-mediated glucose sensing mechanism in A. nidulans. This includes two class V (gprH and gprI) and one class VII (gprM) GPCRs, which in response to glucose promote cAMP signalling, germination and hyphal growth, while negatively regulating sexual development in a light-dependent manner. We demonstrate that GprH regulates sexual development via influencing VeA activity, a key light-dependent regulator of fungal morphogenesis and secondary metabolism. We show that GprH and GprM are light-independent negative regulators of sterigmatocystin biosynthesis. Additionally, we reveal the epistatic interactions between the three GPCRs in regulating sexual development and sterigmatocystin production. In conclusion, GprH, GprM and GprI constitute a novel carbon starvation-induced glucose sensing mechanism that functions upstream of cAMP-PKA signalling to regulate fungal development and mycotoxin production.


Asunto(s)
Adaptación Fisiológica/efectos de la radiación , Aspergillus nidulans/fisiología , Proteínas Fúngicas/metabolismo , Luz , Receptores Acoplados a Proteínas G/metabolismo , Carbono/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Glucosa/metabolismo , Morfogénesis , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de la radiación , Esterigmatocistina/biosíntesis
12.
World J Microbiol Biotechnol ; 35(7): 109, 2019 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-31280382

RESUMEN

Echinocandin B (ECB) is an important lipohexapeptide used for chemical manufacture of the antifungal agent anidulafungin. Sterigmatocystin (ST) is a polyketide mycotoxin produced by certain species of Aspergillus such as Aspergillus delacroxii SIPIW15, which could produce both ECB and ST. However, the presence of the potent carcinogen ST will greatly affect the quality and safety of ECB production. Therefore, it is essential to eliminate the ST biosynthesis and increase ECB titers in Asp. delacroxii SIPIW15. In this study, the polyketide synthase gene (stcA) required for biosynthesis of ST and its flanking region in Asp. delacroxii SIPIW15 were cloned, sequenced and analyzed firstly. Based on Agrobacterium-mediated transformation, the ΔstcA mutant AMT-1 was obtained and its yield of ECB was increased by 40% without ST detected at the same time as compared to the original strain. The results of the fed-batch experiments showed that the ECB yield of the ΔstcA strain AMT-1 was increased to 2163 ± 31 mg/l and no ST was detected in the 50 l bioreactor. This work suggested that the ΔstcA strain AMT-1 has the potential for application in ECB production improvement, and more importantly, to eliminate ST-related environmental pollution in ECB fermentation industry.


Asunto(s)
Aspergillus/genética , Aspergillus/metabolismo , Equinocandinas/biosíntesis , Equinocandinas/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Sintasas Poliquetidas/genética , Esterigmatocistina/biosíntesis , Agrobacterium/genética , Anidulafungina , Antifúngicos , Secuencia de Bases , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , ADN de Hongos/aislamiento & purificación , Fermentación , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Metabolismo Secundario/genética , Transformación Genética
13.
J Basic Microbiol ; 58(7): 590-596, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29733450

RESUMEN

Aspergillus nidulans produces sterigmatocystin, a secondary metabolite mycotoxin, for the protection of its reproductive structures. Previous studies on grazing behavior of fungivore arthropods, regulation of sexual development, and secondary metabolite biosynthesis have revealed the association of sterigmatocystin biosynthesis with sexual reproduction, but the spatial distribution of sterigmatocystin producing hyphae within the colony has never been investigated. In this work, we aimed to locate the site of sterigmatocystin production within the colony by employing a yCFP reporter system. We demonstrated that the stcO promoter is active only in vegetative hyphae that surround groups of hülle cells and the activity decreases and eventually ceases as the distance between the hypha and the hülle cells increases. This phenomenon indicates that the vegetative mycelium might consist of morphologically uniform, but functionally different hyphae.


Asunto(s)
Aspergillus nidulans/fisiología , Hifa/genética , Hifa/metabolismo , Esterigmatocistina/biosíntesis , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Genes Reporteros , Fenotipo , Regiones Promotoras Genéticas
14.
Toxins (Basel) ; 10(4)2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29677138

RESUMEN

Aspergillus nidulans has one gene for alternative oxidase (EC 1.10.3.11). To investigate the relationship between this mitochondrial terminal oxidase and the formation of the mycotoxin sterigmatocystin, the encoding aodA gene was both deleted and overexpressed. Relative to the wild-type, the cyanide-resistant fraction of respiration in the late stationary stage—when sterigmatocystin production occurs—doubled in the overexpressing mutant carrying three aodA gene copies, but decreased to 10% in the deletant. Essentially identical results were obtained regardless whether the cultures were illuminated or protected from light. In contrast, sterigmatocystin yield in the aodA deletant was about half of that in the control when grown in the dark, while aodA overexpression resulted in up to 70% more sterigmatocystin formed, the yield increasing with alternative oxidase activity. Results were quite different when cultures were illuminated: under those conditions, sterigmatocystin volumetric yields were considerably lower, and statistically unvarying, regardless of the presence, absence, or the copy number of aodA. We conclude that the copy number of aodA, and hence, the balance between alternative- and cytochrome C-mediated respiration, appears to correlate with sterigmatocystin production in A. nidulans, albeit only in the absence of light.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Oxidorreductasas/metabolismo , Esterigmatocistina/biosíntesis , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Oxidorreductasas/genética
15.
Curr Genet ; 64(5): 1043-1056, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29492587

RESUMEN

Aspergillus nidulans produces sterigmatocystin (ST), a precursor of a carcinogenic secondary metabolite aflatoxin (AF), during its developmental process. ST biosynthesis has been shown to be affected by various regulatory factors. In this study, we investigated the involvement of O-mannosyltransferases (PmtA, PmtB, PmtC), in ST production and morphological development. Deletion of pmtA (ΔpmtA), pmtB (ΔpmtB) or pmtC (ΔpmtC) caused no spore production and a significant decline of vegetative growth. A tremendous decline of ST level was observed in all Δpmt mutants at the third day after inoculation. By extending the growth period, ST production of ΔpmtA and ΔpmtB increased to the wild-type level 7 days after inoculation. On the other hand, ST was not detected from 7- or 14-day cultures in ΔpmtC. Expression levels of aflR gene, an essential regulator of the ST biosynthesis pathway, were also down-regulated in the Δpmt strains. By introducing the aflR overexpression cassette, ST production in the ΔpmtA and ΔpmtB significantly increased to levels comparable to the wild type. However, the presence of the aflR overexpression cassette could not improve ST production in the ΔpmtC mutant. These data suggest that the PMT family is a new endogenous factor that is required for ST biosynthesis in A. nidulans. These findings provide better understanding of the regulatory mechanisms of AF/ST biosynthesis, which can ultimately contribute to our ability to control aflatoxin contamination.


Asunto(s)
Aspergillus nidulans/metabolismo , Carcinógenos/metabolismo , Isoenzimas/metabolismo , Manosiltransferasas/metabolismo , Esterigmatocistina/biosíntesis , Aspergillus nidulans/enzimología , Aspergillus nidulans/genética , Aspergillus nidulans/crecimiento & desarrollo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Fúngicos , Prueba de Complementación Genética , Isoenzimas/genética , Manosiltransferasas/genética , Mutación
16.
Mol Microbiol ; 105(1): 1-24, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370587

RESUMEN

The model fungus Aspergillus nidulans synthesizes numerous secondary metabolites, including sterigmatocystin (ST). The production of this toxin is positively controlled by the global regulator veA. In the absence of veA (ΔveA), ST biosynthesis is blocked. Previously, we performed random mutagenesis in a ΔveA strain and identified revertant mutants able to synthesize ST, among them RM1. Complementation of RM1 with a genomic library revealed that the mutation occurred in a gene designated as cpsA. While in the ΔveA genetic background cpsA deletion restores ST production, in a veA wild-type background absence of cpsA reduces and delays ST biosynthesis decreasing the expression of ST genes. Furthermore, cpsA is also necessary for the production of other secondary metabolites, including penicillin, affecting the expression of PN genes. In addition, cpsA is necessary for normal asexual and sexual development. Chemical and microscopy analyses revealed that CpsA is found in cytoplasmic vesicles and it is required for normal cell wall composition and integrity, affecting adhesion capacity and oxidative stress sensitivity. The conservation of cpsA in Ascomycetes suggests that cpsA homologs might have similar roles in other fungal species.


Asunto(s)
Aspergillus nidulans/metabolismo , Carboxipeptidasas/metabolismo , Secuencia de Aminoácidos , Ascomicetos/metabolismo , Aspergillus nidulans/genética , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Morfogénesis , Mutagénesis , Mutación , Micotoxinas/biosíntesis , Micotoxinas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Esterigmatocistina/biosíntesis
17.
Fungal Genet Biol ; 100: 13-21, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28089630

RESUMEN

P bodies and stress granules are RNA-containing structures governing mRNA degradation and translational arrest, respectively. Saccharomyces cerevisiae Pbp1 protein localizes to stress granules and promotes their formation and is involved in proper polyadenylation, suppression of RNA-DNA hybrids, and preventing aberrant rDNA recombination. A genetic screen for Aspergillus nidulans mutants aberrant in secondary metabolism identified the Pbp1 homolog, PbpA. Using Dcp1 (mRNA decapping) as a marker for P-body formation and FabM (Pab1, poly-A binding protein) to track stress granule accumulation, we examine the dynamics of RNA granule formation in A. nidulans cells lacking pub1, edc3, and pbpA. Although PbpA acts as a functional homolog of yeast PBP1, PbpA had little impact on either P-body or stress granule formation in A. nidulans in contrast to Pub1 and Edc3. However, we find that PbpA is critical for sexual development and its loss increases the production of some secondary metabolites including the carcinogen sterigmatocystin.


Asunto(s)
Aspergillus nidulans/genética , Proteínas Portadoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Metabolismo Secundario/genética , Desarrollo Sexual/genética , Gránulos Citoplasmáticos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Estabilidad del ARN/genética , Saccharomyces cerevisiae/genética , Esterigmatocistina/biosíntesis
18.
Methods Mol Biol ; 1542: 215-235, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27924541

RESUMEN

Real-time PCR (qPCR) methods are adequate tools for sensitive and rapid detection and quantification of toxigenic molds contaminating food commodities. Methods of qPCR for quantifying zearalenone (ZEA)-, sterigmatocystin (ST)-, cyclopiazonic acid (CPA)-, and patulin (PAT)-producing molds have been designed on the basis of specific target genes involved in the biosynthesis of these mycotoxins. In this chapter reliable qPCR protocols to detect and quantify such toxigenic molds are described. All of these methods are suitable when working with mold pure cultures and mold contaminated foods. For ZEA-producing molds, two qPCR using the SYBR Green fluorochrome and based on two polyketide synthase (PKS) genes are detailed. qPCR protocols relied on the fluG and the idh genes able to quantify ST- and PAT-producing molds, respectively, which can be performed by both SYBR Green and TaqMan methodologies are described. Regarding CPA-producing molds a TaqManq PCR method including a competitive internal amplification control is detailed. Since DNA extraction is a critical step in the detection and quantification of toxigenic molds by qPCR, a protocol for extracting DNA from mold pure cultures and food is also described.


Asunto(s)
Vías Biosintéticas/genética , Genes Fúngicos , Micotoxinas/biosíntesis , Hongos/genética , Hongos/metabolismo , Indoles/metabolismo , Patulina/biosíntesis , Esterigmatocistina/biosíntesis , Zearalenona/biosíntesis
19.
Toxins (Basel) ; 8(12)2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27916804

RESUMEN

Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST) produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L-1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis.


Asunto(s)
Aspergillus nidulans/metabolismo , Lactosa/metabolismo , Esterigmatocistina/biosíntesis , Aspergillus nidulans/crecimiento & desarrollo , Glucosa/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-27589778

RESUMEN

In an area representative of a moderate climate zone (Lubuskie Province in Poland), mycological tests in over 270 flats demonstrated the occurrence of 82 species of moulds. Aspergillus versicolor Tiraboschi was often encountered on building partitions (frequency 4: frequently). The ability to synthesize the carcinogenic sterigmatocystin (ST) means that it poses a risk to humans and animals. Biotoxicological tests of biomasses of A. versicolor were conducted in the Microbiological and Toxicological Laboratory, using the planarians Dugesia tigrina (Girard). The obtained results of the tests covered a broad range of toxicity levels of isolated strains: from weakly toxic (100-1000 mg·L(-3)) to potently toxic (1-10 mg·L(-3)). The high-performance liquid chromatography (HPLC) physicochemical method confirmed the ability of A. versicolor strains to synthesize sterigmatocystin. All of the samples of the air-dry biomasses of the fungi contained ST in the range between 0.03 and 534.38 mg·kg(-1). In the bio-safety level (BSL) classification A. versicolor belongs to category 1. Additionally, A. versicolor is an allergenic mould.


Asunto(s)
Aspergillus/aislamiento & purificación , Aspergillus/metabolismo , Monitoreo del Ambiente , Vivienda , Esterigmatocistina/biosíntesis , Esterigmatocistina/aislamiento & purificación , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Cromatografía Líquida de Alta Presión , Recuento de Colonia Microbiana , Polvo/análisis , Polonia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...