RESUMEN
Oxidation of organic amines (OAs) or aromatic hydrocarbons (AHs) produces carbonyls, which further react with OAs to form carbonyl-amine condensation products, threatening environmental quality and human health. However, there is still a lack of systematic understanding of the carbonyl-amine condensation reaction processes of OAs or between OAs and AHs, and subsequent environmental health impact. This work systematically investigated the carbonyl-amine condensation coupled ozonolysis kinetics, reaction mechanism, secondary organic aerosol (SOA) formation and cytotoxicity from the mixture of dipropylamine (DPA) and styrene (STY) by a combined method of product mass spectrometry identification, particle property analysis and cell exposure evaluation. The results from ozonolysis of DPA and STY mixture revealed that STY inhibited the ozonolysis of DPA to different degrees to accelerate its own decay rate. The barycenter of carbonyl-amine condensation reactions was shifted from inside of DPA to between DPA and STY, which accelerated STY ozonolysis, but slowed down DPA ozonolysis. For the first time, ozonolysis of DPA and STY mixture to complex carbonyl-amine condensation products through the reactions of DPA with its carbonyl products, DPA with STY's carbonyl products and DPA's bond breakage product with STY's carbonyl products was confirmed. These condensation products significantly contributed to the formation and growth of SOA. The SOA containing particulate carbonyl-amine condensation products showed definite cytotoxicity. These findings are helpful to deeply and comprehensively understand the transformation, fate and environmental health effects of mixed organics in atmospheric environment.
Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Aminas , Ozono , Estireno , Ozono/química , Aminas/química , Aminas/toxicidad , Cinética , Estireno/química , Estireno/toxicidad , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/toxicidad , Humanos , Oxidación-Reducción , Modelos QuímicosRESUMEN
Rodent inhalation studies indicate styrene is a mouse lung-specific carcinogen. Mode-of-action (MOA) analyses indicate that the lung tumors cannot be excluded as weakly quantitatively relevant to humans due to shared oxidative metabolites detected in rodents and humans. However, styrene also is not genotoxic following in vivo dosing. The objective of this review was to characterize occupational and general population cancer risks by conservatively assuming mouse lung tumors were relevant to humans but operating by a non-genotoxic MOA. Inhalation cancer values reference concentrations for respective occupational and general population exposures (RfCcar-occup and RfCcar-genpop) were derived from initial benchmark dose (BMD) modeling of mouse inhalation tumor dose-response data. An overall lowest BMDL10 of 4.7 ppm was modeled for lung tumors, which was further duration- and dose-adjusted by physiologically based pharmacokinetic (PBPK) modeling to derive RfCcar-occup/genpop values of 6.2 ppm and 0.8 ppm, respectively. With the exception of open-mold fiber reinforced composite workers not using personal protective equipment (PPE), the RfCcar-occup/genpop values are greater than typical occupational and general population human exposures, thus indicating styrene exposures represent a low potential for human lung cancer risk. Consistent with this conclusion, a review of styrene occupational epidemiology did not support a conclusion of an association between styrene exposure and lung cancer occurrence, and further supports a conclusion that the conservatively derived RfCcar-occup is lung cancer protective.
Asunto(s)
Neoplasias Pulmonares , Exposición Profesional , Estireno , Animales , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Estireno/toxicidad , Ratones , Medición de Riesgo , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Carcinógenos/toxicidad , Relación Dosis-Respuesta a DrogaRESUMEN
Risk assessment of human health hazards has traditionally relied on experiments that use animal models. Although exposure studies in rats and mice are a major basis for determining risk in many cases, observations made in animals do not always reflect health hazards in humans due to differences in biology. In this critical review, we use the mode-of-action (MOA) human relevance framework to assess the likelihood that bronchiolar lung tumors observed in mice chronically exposed to styrene represent a plausible tumor risk in humans. Using available datasets, we analyze the weight-of-evidence 1) that styrene-induced tumors in mice occur through a MOA based on metabolism of styrene by Cyp2F2; and 2) whether the hypothesized key event relationships are likely to occur in humans. This assessment describes how the five modified Hill causality considerations support that a Cyp2F2-dependent MOA causing lung tumors is active in mice, but only results in tumorigenicity in susceptible strains. Comparison of the key event relationships assessed in the mouse was compared to an analogous MOA hypothesis staged in the human lung. While some biological concordance was recognized between key events in mice and humans, the MOA as hypothesized in the mouse appears unlikely in humans due to quantitative differences in the metabolic capacity of the airways and qualitative uncertainties in the toxicological and prognostic concordance of pre-neoplastic and neoplastic lesions arising in either species. This analysis serves as a rigorous demonstration of the framework's utility in increasing transparency and consistency in evidence-based assessment of MOA hypotheses in toxicological models and determining relevance to human health.
Asunto(s)
Neoplasias Pulmonares , Humanos , Ratones , Ratas , Animales , Neoplasias Pulmonares/inducido químicamente , Medición de Riesgo , Estireno/toxicidad , IncertidumbreRESUMEN
Genotoxicity of styrene monomer was evaluated in male Fischer 344 rats using the alkaline comet assay for DNA damage, micronucleus assay for cytogenetic damage and the Pig-a assay for gene mutations. In a dose range finding (DRF) study, styrene was administered by oral gavage in corn oil for 28 consecutive days at 0, 100, 500, and 1000 mg/kg/day. The bioavailability of styrene was confirmed in the DRF by measuring its plasma levels at approximately 7- or 15-min following dosing. The 1000 mg/kg/day group exceeded the maximum tolerated dose based on body weight and organ weight changes and signs of central nervous system depression. Based on these findings, doses of 0, 100, 250, and 500 mg/kg/day (for 28 or 29 days) were selected for the genotoxicity assays. Animals were sacrificed 3-4 h after treatment on Day 28 or 29 for assessing various genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in peripheral blood erythrocytes. The comet assay was conducted in the glandular stomach, duodenum, liver, lung, and kidney. These studies were conducted in accordance with the relevant OECD test guidelines. Oral administration of styrene did not lead to genotoxicity in any of the investigated endpoints. The adequacy of the experimental conditions was assured by including animals treated by oral gavage with the positive control chemicals ethyl nitrosourea and ethyl methane sulfonate. Results from these studies supplement to the growing body of evidence suggesting the lack of in vivo genotoxic potential for styrene.
Asunto(s)
Daño del ADN , Estireno , Ratas , Masculino , Animales , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Estireno/toxicidad , Eritrocitos , Ensayo Cometa/métodos , Pruebas de Micronúcleos/métodos , Pruebas de Mutagenicidad/métodosRESUMEN
BACKGROUND: Redox imbalance and inflammation have been proposed as the principal mechanisms of damage in the auditory system, resulting in functional alterations and hearing loss. Microglia and astrocytes play a crucial role in mediating oxidative/inflammatory injury in the central nervous system; however, the role of glial cells in the auditory damage is still elusive. OBJECTIVES: Here we investigated glial-mediated responses to toxic injury in peripheral and central structures of the auditory pathway, i.e., the cochlea and the auditory cortex (ACx), in rats exposed to styrene, a volatile compound with well-known oto/neurotoxic properties. METHODS: Male adult Wistar rats were treated with styrene (400 mg/kg daily for 3 weeks, 5/days a week). Electrophysiological, morphological, immunofluorescence and molecular analyses were performed in both the cochlea and the ACx to evaluate the mechanisms underlying styrene-induced oto/neurotoxicity in the auditory system. RESULTS: We showed that the oto/neurotoxic insult induced by styrene increases oxidative stress in both cochlea and ACx. This was associated with macrophages and glial cell activation, increased expression of inflammatory markers (i.e., pro-inflammatory cytokines and chemokine receptors) and alterations in connexin (Cxs) and pannexin (Panx) expression, likely responsible for dysregulation of the microglia/astrocyte network. Specifically, we found downregulation of Cx26 and Cx30 in the cochlea, and high level of Cx43 and Panx1 in the ACx. CONCLUSIONS: Collectively, our results provide novel evidence on the role of immune and glial cell activation in the oxidative/inflammatory damage induced by styrene in the auditory system at both peripheral and central levels, also involving alterations of gap junction networks. Our data suggest that targeting glial cells and connexin/pannexin expression might be useful to attenuate oxidative/inflammatory damage in the auditory system.
Asunto(s)
Conexinas , Estireno , Ratas , Masculino , Animales , Conexinas/metabolismo , Estireno/toxicidad , Estireno/metabolismo , Ratas Wistar , Uniones Comunicantes/metabolismo , Neuroglía/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Estrés Oxidativo , Modelos TeóricosRESUMEN
Numerous ototoxic drugs, such as some antibiotics and chemotherapeutics, are both cochleotoxic and vestibulotoxic (causing hearing loss and vestibular disorders). However, the impact of some industrial cochleotoxic compounds on the vestibular receptor, if any, remains unknown. As in vivo studies are long and expensive, there is considerable need for predictive and cost-effective in vitro models to test ototoxicity. Here, we present an organotypic model of cultured ampullae harvested from rat neonates. When cultured in a gelatinous matrix, ampulla explants form an enclosed compartment that progressively fills with a high-potassium (K+) endolymph-like fluid. Morphological analyses confirmed the presence of a number of cell types, sensory epithelium, secretory cells, and canalar cells. Treatments with inhibitors of potassium transporters demonstrated that the potassium homeostasis mechanisms were functional. To assess the potential of this model to reveal the toxic effects of chemicals, explants were exposed for either 2 or 72 h to styrene at a range of concentrations (0.5-1 mM). In the 2-h exposure condition, K+ concentration was significantly reduced, but ATP levels remained stable, and no histological damage was visible. After 72 h exposure, variations in K+ concentration were associated with histological damage and decreased ATP levels. This in vitro 3D neonatal rat ampulla model therefore represents a reliable and rapid means to assess the toxic properties of industrial compounds on this vestibular tissue, and can be used to investigate the specific underlying mechanisms.
Asunto(s)
Ototoxicidad , Estireno , Animales , Ratas , Estireno/toxicidad , Estireno/metabolismo , Endolinfa/metabolismo , Antibacterianos/farmacología , Potasio/metabolismo , Potasio/farmacología , Adenosina Trifosfato/metabolismoRESUMEN
Vitamin B12 (cyano- or hydroxo-cobalamin) acts, via its coenzymes, methyl- and adenosyl-cobalamin, as a partner for enzymatic reactions in humans catalysed by methionine synthase and methylmalonyl-CoA mutase. As well as its association with pernicious anaemia, human B12 deficiency may also be a risk factor for neurological illnesses, heart disease and cancer. In the present work the effect of vitamin B12 (hydroxocobalamin) on the formation of DNA adducts by the epoxide phenyloxirane (styrene oxide), a genotoxic metabolite of phenylethene (styrene), has been studied using an in vitro model system. Styrene was converted to its major metabolite styrene oxide as a mixture of enantiomers using a microsomal fraction from the livers of Sprague-Dawley rats with concomitant inhibition of epoxide hydrolase. However, microsomal oxidation of styrene in the presence of vitamin B12 gave diastereoisomeric 2-hydroxy-2-phenylcobalamins. The quantitative formation of styrene oxide-DNA adducts was investigated using 2-deoxyguanosine or calf thymus DNA in the presence or absence of vitamin B12. Microsomal incubations containing either deoxyguanosine or DNA in the absence of vitamin B12 gave 2-amino-7-(2-hydroxy-1-phenylethyl)-1,7-dihydro-6H-purin-6-one [N7-(2-hydroxy-1-phenylethyl)-guanine], and 2-amino-7-(2-hydroxy-2-phenylethyl)-1,7-dihydro-6H-purin-6-one [N7-(2-hydroxy-2-phenylethyl)guanine] as the principal adducts. With deoxyguanosine the level of formation of guanine adducts was ca. 150 adducts/106 unmodified nucleoside. With DNA the adduct level was 36 pmol/mg DNA (ca. 1 adduct/0.83 × 105 nucleotides). Styrene oxide adducts from deoxyguanosine or DNA were not detected in microsomal incubations of styrene in the presence of vitamin B12. These results suggest that vitamin B12 could protect DNA against genotoxicity due to styrene oxide and other xenobiotic metabolites. However, this potential defence mechanism requires that the 2-hydroxyalkylcobalamins derived from epoxides are not 'anti-vitamins' and ideally liberate, and therefore, recycle vitamin B12. Otherwise, depletion of vitamin B12 leading to human deficiency could increase the risk of carcinogenesis initiated by genotoxic epoxides.
Asunto(s)
Aductos de ADN , Vitamina B 12 , Animales , Ratas , Humanos , Xenobióticos , Ratas Sprague-Dawley , Compuestos Epoxi/toxicidad , Compuestos Epoxi/metabolismo , Daño del ADN , ADN/metabolismo , Guanina , Desoxiguanosina , Estirenos , Estireno/toxicidadRESUMEN
Styrene is among the U.S. EPA's List 2 chemicals for Tier 1 endocrine screening subject to the agency's two-tiered Endocrine Disruptor Screening Program (EDSP). Both U.S. EPA and OECD guidelines require a Weight of Evidence (WoE) to evaluate a chemical's potential for disrupting the endocrine system. Styrene was evaluated for its potential to disrupt estrogen, androgen, thyroid, and steroidogenic (EATS) pathways using a rigorous WoE methodology that included problem formulation, systematic literature search and selection, data quality evaluation, relevance weighting of endpoint data, and application of specific interpretive criteria. Sufficient data were available to assess the endocrine disruptive potential of styrene based on endpoints that would respond to EATS modes of action in some Tier 1-type and many Tier 2-type reproductive, developmental, and repeat dose toxicity studies. Responses to styrene were inconsistent with patterns of responses expected for chemicals and hormones known to operate via EATS MoAs, and thus, styrene cannot be deemed an endocrine disruptor, a potential endocrine disruptor, or to exhibit endocrine disruptive properties. Because Tier 1 EDSP screening results would trigger Tier 2 studies, like those evaluated here, subjecting styrene to further endocrine screening would produce no additional useful information and would be unjustified from animal welfare perspectives.
Asunto(s)
Disruptores Endocrinos , Animales , Disruptores Endocrinos/toxicidad , Sistema Endocrino/química , Estrógenos/farmacología , Estireno/toxicidad , Pruebas de Toxicidad/métodos , Estados Unidos , United States Environmental Protection AgencyRESUMEN
Male B6C3F1 mice were administered styrene monomer by oral gavage for 29 consecutive days at dose levels of 0, 75, 150, or 300 mg/kg/day. The highest dose level represented the maximum tolerated dose based on findings in a 28-day dose range-finding study, in which the bioavailability of orally administered styrene was also confirmed. The positive control group received ethyl nitrosourea (ENU; 51.7 mg/kg/day) on Study Days 1-3 and ethyl methanesulfonate (EMS; 150 mg/kg/day) on Study Days 27-29 by oral gavage. Approximately 3 h following the final dose, blood was collected to assess erythrocyte Pig-a mutant and micronucleus frequencies. DNA strand breakage was assessed in glandular stomach, duodenum, kidney, liver, and lung tissues using the alkaline comet assay. The %tail DNA for stomach, liver, lung, and kidney in the comet assay among the styrene-treated groups was neither significantly different from the respective vehicle controls nor was there any dose-related increasing trend in any of the tissues; results for duodenum were interpreted to be inconclusive because of technical issues. The Pig-a and micronucleus frequencies among styrene-treated groups also did not show significant increases relative to the vehicle controls and there was also no evidence for a dose-related increasing trend. Thus, orally administered styrene did not induce DNA damage, mutagenesis, or clastogenesis/aneugenesis in these Organization of Economic Co-operation and Development test guideline-compliant genotoxicity studies. Data from these studies can contribute to the overall assessment of genotoxic hazard and risk posed to humans potentially exposed to styrene.
Asunto(s)
Daño del ADN , Estireno , Animales , Masculino , Ratones , Ensayo Cometa/métodos , Eritrocitos , Pruebas de Micronúcleos/métodos , Estireno/toxicidadRESUMEN
Styrene and ethylbenzene (S/EB) are hazardous pollutants that have attracted worldwide concern. In this prospective cohort study, S/EB exposure biomarker (the sum of mandelic acid and phenylglyoxylic acid [MA+PGA]) and fasting plasma glucose (FPG) were repeatedly measured three times. The polygenic risk score (PRS) based on 137 single nucleotide polymorphisms for type 2 diabetes mellitus (T2DM) was calculated to evaluate cumulative genetic effect. In repeated-measures cross-sectional analyses, MA+PGA (ß [95% confidence interval]: 0.106 [0.022, 0.189]) and PRS (0.111 [0.047, 0.176]) were significantly related to FPG. For long-term effect assessment, participants with sustained high MA+PGA or with high PRS had 0.021 (95% CI: -0.398, 0.441) or 0.465 (0.064, 0.866) mmol/L increase in FPG, respectively, over 3 years follow-up, and had 0.256 (0.017, 0.494) or 0.265 (0.004, 0.527) mmol/L increase in FPG, respectively, over 6 years follow-up. We further detected a significant interaction effect between MA+PGA and PRS on FPG change, compared with participants with sustained low MA+PGA and low PRS, those with sustained high MA+PGA and high PRS had 0.778 (0.319, 1.258) mmol/L increase in FPG (P for interaction=0.028) over 6 years follow-up. Our study provides the first evidence that long-term exposure to S/EB potentially increases FPG, which might be aggravated by genetic susceptibility.
Asunto(s)
Diabetes Mellitus Tipo 2 , Estireno , Humanos , Estireno/toxicidad , Glucemia , Diabetes Mellitus Tipo 2/genética , Interacción Gen-Ambiente , Estudios Transversales , Estudios Prospectivos , AyunoRESUMEN
Cured-in-place pipe (CIPP) technology is increasingly being utilized to repair aging and damaged pipes, however, there are concerns associated with the public health hazards of emissions. CIPP installation involves the manufacture of a new plastic composite pipe at the worksite and includes multiple variable components including resin material, curing methods, and operational conditions. We hypothesize styrene-based composite manufacturing emissions (CMEs) will induce greater pulmonary inflammatory responses and oxidative stress, as well as neurological toxicity compared with nonstyrene CMEs. Further, these CME-toxicological responses will be sex- and time-dependent. To test the hypothesis, representative CMEs were generated using a laboratory curing chamber and characterized using thermal desorption-gas chromatography-mass spectrometry and photoionization detector. Styrene was released during staying, isothermal curing, and cooling phases of the process and peaked during the cooling phase. Male and female C57BL6/J mice were utilized to examine alterations in pulmonary responses and neurotoxicity 1 day and 7 days following exposure to air (controls), nonstyrene-CMEs, or styrene-CMEs. Serum styrene metabolites were increased in mice exposed to styrene-CMEs. Metabolic and lipid profiling revealed alterations related to CIPP emissions that were resin-, time-, and sex-dependent. Exposure to styrene-CMEs resulted in an influx of lymphocytes in both sexes. Expression of inflammatory and oxidative stress markers, including Tnfα, Vcam1, Ccl2, Cxcl2, Il6, Cxcl1, Tgfß1, Tgmt2, and Hmox1, displayed alterations following exposure to emissions. These changes in pulmonary and neurological markers of toxicity were dependent on resin type, sex, and time. Overall, this study demonstrates resin-specific differences in representative CMEs and alterations in toxicity endpoints, which can potentially inform safer utilization of composite manufacturing processes.
Asunto(s)
Estrés Oxidativo , Estireno , Masculino , Femenino , Ratones , Animales , Estireno/toxicidadRESUMEN
Chemicals containing Volatile Organic Compounds (VOCs) are commonly used in the machine carpet production. 1,3-butadiene and styrene are main components of the carpenter's glue used in carpet factories. Exposition to these chemicals can lead to a number of adverse health effects. This is the first study of the human health risk assessment due to inhalational exposure to 1,3-butadiene (BD) and styrene (ST) performed among workers in the carpet factories in Kashan city, Iran. The importance of the study was related with the fact of high popularity of carpet production in the South Asia countries. Inhalation exposure to BD and ST were measured based on the National Institute for Occupational Safety and Health (NIOSH) 1024 and 1501 methods, respectively. The cancerogenic risk (CR) and non-cancerogenic risk described as Hazard Quotient (HQ) values were calculated based on the United States Environmental Protection Agency (USEPA) method. The sensitivity and uncertainty analysis were performed by the Monte Carlo simulation (MCS) technique. The average concentration measured of BD and ST during work shifts of employees were 0.039 mg m-3 (0.017 ppm) and 12.108 mg m-3 (2.84 ppm), respectively. The mean ± SD value of estimated cancerogenic risk in inhalation exposure to BD and ST were equal to 5.13 × 10-3 ± 3.85 × 10-4 and 1.44 × 10-3 ± 2.36 × 10-4, respectively exceeding the acceptable risk level of 10-6 defined by USEPA. The average non-carcinogenic risk (HQ) values of BD and ST were equal to 8.50 × 100 and 5.13 × 100, respectively exceeding the acceptable risk level of 1. As the results of our studies exceeded both cancerogenic and non-carcinogenic risk values it indicates that adverse health effects due to inhalational exposure to BD and ST for workers in the machine carpet industry are very likely. To avoid negative health effects protective measures for employees in the factories should be introduced immediately and furher detailed research are recommended.
Asunto(s)
Exposición Profesional , Estireno , Estados Unidos , Humanos , Estireno/toxicidad , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Pisos y Cubiertas de Piso , Método de Montecarlo , Butadienos/toxicidad , Butadienos/análisis , Medición de RiesgoRESUMEN
This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 µg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.
Asunto(s)
Acrilonitrilo , Contaminación del Aire Interior , Acrilonitrilo/toxicidad , Contaminación del Aire Interior/análisis , Butadienos/toxicidad , Células Epiteliales , Humanos , Tamaño de la Partícula , Material Particulado , Impresión Tridimensional , Estireno/análisis , Estireno/toxicidadRESUMEN
BACKGROUND: Lung is one of the primary target organs of benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS). Small airways dysfunction (SAD) might be a sensitive indicator of early chronic respiratory disease. Here, we explored the relationships between exposure to BTEXS and small airways function, and identified the priority control pollutants in BTEXS mixtures. METHODS: 635 petrochemical workers were recruited. Standard spirometry testing was conducted by physicians. The cumulative exposure dose (CED) of BTEXS for each worker was estimated. The peak expiratory flow (PEF), forced expiratory flow between 25 and 75% of forced vital capacity (FEF25â¼75%), and the expiratory flow rate found at 25%, 50%, and 75% of the remaining exhaled vital capacity (MEF25%, MEF50%, and MEF75%) were measured. SAD was also evaluated based on measured parameters. The associations between exposure to BTEXS individuals or mixtures and small airways function were evaluated using generalized linear regression models (GLMs) and quantile g-computation models (qgcomp). Meanwhile, the weights of each homolog in the association were estimated. RESULTS: The median CED of BTEXS are 9.624, 19.306, 24.479, 28.210, and 46.781 mg/m3·years, respectively. A unit increase in ln-transformed styrene CED was associated with a decrease in FEF25â¼75% and MEF50% based on GLMs. One quartile increased in BTEXS mixtures (ln-transformed) was significantly associated with a 0.325-standard deviation (SD) [95% confidence interval (CI): -0.464, -0.185] decline in FEF25â¼75%, a 0.529-SD (95%CI: -0.691, -0.366) decline in MEF25%, a 0.176-SD (95%CI: -0.335, -0.017) decline in MEF75%, and increase in the risk of abnormal of SAD [risk ratios (95%CI): 1.520 (95%CI: 1.143, 2.020)]. Benzene and styrene were the major chemicals in BTEXS for predicting the overall risk of SAD. CONCLUSION: Our novel findings demonstrate the significant association between exposure to BTEXS mixture and small airways function decline and the potential roles of key homologs (benzene and styrene) in SAD.
Asunto(s)
Benceno , Xilenos , Benceno/toxicidad , Derivados del Benceno/toxicidad , Estudios Transversales , Humanos , Estireno/toxicidad , Tolueno/toxicidad , Xilenos/toxicidadRESUMEN
Concurrent exposure to styrene (ST) and noise is common especially in industrial environments. The present study aims to determine the related oxidant-induced changes as the result of combined exposure to ST and noise. For this purpose, 24 male Wistar rats were used in four experimental groups (n = 6/groups): (1) control group, (2) the group exposed to an octave band of noise centered at 8 kHz (100 dB SPL) (6 h/day), (3) the group inhalationally exposed to ST (750 ppm) (6 h/day), (4) the group exposed to noise and ST simultaneously. The DNA damage was measured by assessing the concentration of 8-hydroxyl-2-deoxyguanosine (8-OHdG) using ELISA kit. Levels of lipid peroxidation (MDA), GSH and antioxidative activity of SOD and CAT were also determined in whole lung tissues. The results relatively indicated that sub-acute exposure to both noise and ST can lead to pathological damage in rat lung tissues. Furthermore, enhanced levels of 8-OHdG and MDA production were observed in lung tissues. In contrast, GSH, CAT and SOD were markedly reduced in co-exposed group. The results of the study verified additive interaction between noise and ST on accumulation of DNA oxidation products, progressive morphological damages as well as undermining the antioxidative defense system in the rat lung tissues.
Asunto(s)
Ruido , Estireno , Animales , Peroxidación de Lípido , Pulmón , Masculino , Ruido/efectos adversos , Ratas , Ratas Wistar , Estireno/toxicidadRESUMEN
OBJECTIVE: - To evaluate exposure-response relationships between 1,3-butadiene and styrene and selected diseases among synthetic rubber polymer workers. METHODS: - 21,087 workers (16,579 men; 4508 women) were followed from 1943 through 2009 to determine mortality outcomes. Cox regression models estimated rate ratios (RRs) and 95% confidence intervals (CIs) by quartile of cumulative exposure to butadiene or styrene and exposure-response trends for cancers of the bladder, lung, kidney, esophagus and pancreas, and for all nonmalignant respiratory disease (NMRD), chronic obstructive pulmonary disease (COPD) and pneumonia. RESULTS: - Bladder cancer RRs were 2.13 (95% CI = 1.03 to 4.41) and 1.64 (95% CI = 0.76 to 3.54) in the highest quartiles of cumulative exposure to butadiene and styrene, respectively, and exposure-response trends were positive for both monomers (butadiene, trend p = 0.001; styrene, trend p = 0.004). Further analyses indicated that the exposure-response effect of each monomer on bladder cancer was demonstrated clearly only in the subgroup with high cumulative exposure (at or above the median) to the other monomer. Lung cancer was not associated with either monomer among men. Among women, lung cancer RRs were above 1.0 in each quartile of cumulative exposure to each monomer, but exposure-response was not seen for either monomer. Male workers had COPD RRs slightly above 1.0 in each quartile of cumulative exposure to each monomer, but there was no evidence of exposure-response among the exposed. Monomer exposure was not consistently associated with COPD in women or with the other cancer outcomes. CONCLUSIONS: - This study found a positive exposure-response relationship between monomer exposures and bladder cancer. The independent effects of butadiene and styrene on this cancer could not be delineated. In some analyses, monomer exposure was associated with lung cancer in women and with COPD in men, but inconsistent exposure-response trends and divergent results by sex do not support a causal interpretation of the isolated positive associations.
Asunto(s)
Butadienos/toxicidad , Carcinógenos/toxicidad , Elastómeros , Enfermedades Profesionales/etiología , Exposición Profesional/efectos adversos , Estireno/toxicidad , Anciano , Canadá , Industria Química/estadística & datos numéricos , Estudios de Cohortes , Femenino , Humanos , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Enfermedades Profesionales/mortalidad , Modelos de Riesgos Proporcionales , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Factores Sexuales , Estados Unidos , Neoplasias de la Vejiga Urinaria/etiología , Neoplasias de la Vejiga Urinaria/mortalidadRESUMEN
The evidence for styrene's being a human lung carcinogen has been inconclusive. Occupational cohorts within the reinforced-plastics industry are an ideal population in which to study this association because of their relatively high levels of exposure to styrene and lack of concomitant exposures to other known carcinogens. However, healthy worker survivor bias (HWSB), where healthier workers stay employed longer and thus have higher exposure potential, is a likely source of confounding bias for exposure-response associations, in part due to styrene's acute effects. Through December 31, 2016, we studied a cohort of 5,163 boatbuilders exposed to styrene in Washington State who were employed between 1959 and 1978; prior regression analyses had demonstrated little evidence for an exposure-response relationship between styrene exposure and lung cancer mortality. Based on estimates of necessary components of HWSB, we found evidence for a potentially large HWSB. Using g-estimation of a structural nested model to account for HWSB, we estimated that 1 year of styrene exposure at more than 30 parts per million accelerated time to lung cancer death by 2.29 years (95% confidence interval: 1.53, 2.94). Our results suggest possibly strong HWSB in our small cohort and indicate that large, influential studies of styrene-exposed workers may suffer from similar biases, warranting a reassessment of the evidence of long-term health effects of styrene exposure.
Asunto(s)
Neoplasias Pulmonares/inducido químicamente , Industria Manufacturera , Exposición Profesional/efectos adversos , Plásticos/toxicidad , Navíos , Estireno/toxicidad , Anciano , Sesgo , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Masculino , Industria Manufacturera/estadística & datos numéricos , Persona de Mediana Edad , Modelos Estadísticos , Análisis de Regresión , Sobrevivientes/estadística & datos numéricos , Washingtón/epidemiologíaRESUMEN
Epidemiological and experimental studies indicate that a number of aromatic solvents widely used in the industry can affect hearing and balance following chronic exposure. Animal studies demonstrated that long-term exposure to aromatic solvents directly damages the auditory receptor within the inner ear: the cochlea. However, no information is available on their effect on the vestibular receptor, which shares many structural features with the cochlea and is also localized in inner ear. The aim of this study was to use an in vitro approach to assess and compare the vestibular toxicity of different aromatic solvents (toluene, ethylbenzene, styrene and ortho-, meta-, para-xylene), all of which have well known cochleotoxic properties. We used a three-dimensional culture model of rat utricles ("cysts") with preserved functional sensory and secretory epithelia, and containing a potassium-rich (K+) endolymph-like fluid for this study. Variations in K+ concentrations in this model were considered as biomarkers of toxicity of the substances tested. After 72 h exposure, o-xylene, ethylbenzene and styrene decreased the K+ concentration by 78 %, 37 % and 28 %, respectively. O- xylene and styrene both caused histopathological alterations in secretory and sensory epithelial areas after 72 h exposure, whereas no anomalies were observed in ethylbenzene-exposed samples. These in vitro results suggest that some widely used aromatic solvents might have vestibulotoxic properties (o-xylene, styrene and ethylbenzene), whereas others may not (p-xylene, m-xylene, toluene). Our results also indicate that variations in endolymphatic K+ concentration may be a more sensitive marker of vestibular toxicity than histopathological events. Finally, this study suggests that cochleotoxic solvents might not be necessarily vestibulotoxic, and vice versa.
Asunto(s)
Hidrocarburos Aromáticos/toxicidad , Sáculo y Utrículo/efectos de los fármacos , Sáculo y Utrículo/metabolismo , Solventes/toxicidad , Animales , Animales Recién Nacidos , Células Cultivadas , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Cóclea/patología , Relación Dosis-Respuesta a Droga , Femenino , Embarazo , Ratas , Ratas Long-Evans , Sáculo y Utrículo/patología , Estireno/toxicidad , Tolueno/toxicidad , Vestíbulo del Laberinto/efectos de los fármacos , Vestíbulo del Laberinto/metabolismo , Vestíbulo del Laberinto/patología , Xilenos/toxicidadRESUMEN
Enhancement of reactive oxygen species (ROS) on semiconductor coupled by carbon material promotes photocatalytic performance toward aromatic hydrocarbons, while the contribution to their degradation mechanism and health risk is not well understood. Herein, photocatalytic degradation of styrene on TiO2 and TiO2/reduced graphene oxide (TiO2/rGO) surface is compared under dry air condition to investigate the role of ·O2- in styrene degradation. TiO2/rGO shows 4.8 times higher degradation efficiency than that of TiO2, resulting in 16% reduced production of intermediates with identical composition. The improved formation of ·O2- on TiO2/rGO is confirmed responsible for these variations. Theoretical calculation further reveals the enhancement of ·O2- thermodynamically favoring conversion of styrene to acetophenone, turning the most dominant intermediate from benzoic acid on TiO2 to acetophenone on TiO2/rGO. The accumulated formation of acetophenone on TiO2/rGO poses increased acute threat to human beings. Our findings proclaim that ROS promoted photocatalytic performance of semiconductor after carbon material composition ultimately changes the priority order of degradation pathways to form by-product with higher threat toward human beings. And more attentions are advised focusing on the relevance with degradation efficiency, intermediate and toxicity of aromatic hydrocarbons on carbon material based photocatalyst.
Asunto(s)
Grafito , Catálisis , Humanos , Óxidos , Estireno/toxicidad , Superóxidos , TitanioRESUMEN
BACKGROUND: Although styrene is an established ototoxic agent at occupational exposure levels, the mechanisms of styrene toxicity in the auditory system are still unclear. OBJECTIVES: The aim of this study was to identify the consequences of styrene chronic exposure in cochlear structures, looking for the mechanisms of ototoxicity of this organic compound and focusing on cell targets and oxidative stress/inflammatory processes. METHODS: Male adult Wistar rats were exposed to styrene (400 mg/kg by gavage for 5 days/week, 3 consecutive weeks). Hearing loss was evaluated by measuring auditory brainstem responses (ABR), morphological analysis were performed to evaluate hair cell and spiral ganglion neuron survival, as well as synaptic damage. Analysis of apoptotic (p53) and inflammatory (NF-κB, TNF-α, IL-1ß and IL-10) mediators were performed by immunofluorescence analysis and western blot. RESULTS: Styrene ototoxic effects induced a hearing loss of about 35-40 dB. Immunofluorescence and western blotting analyses demonstrated that styrene administration induced redox imbalance and activated inflammatory processes, targeting sensory hair cell and neural dysfunction by a cross-talk between oxidative and inflammatory mediators. DISCUSSION: Major findings connect styrene ototoxicity to an interplay between redox imbalance and inflammation, leading to the intriguing assumption of a mixed sensory and neural styrene-induced ototoxicity. Thus, in a clinical perspective, data reported here have important implications for styrene risk assessment in humans.