Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros












Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(5): 432-444, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38265007

RESUMEN

Zymoseptoria tritici, the causal agent of Septoria tritici blotch, is one of Europe's most damaging wheat pathogens, causing significant economic losses. Genetic resistance is a common strategy to control the disease, Stb6 being a resistance gene used for more than 100 years in Europe. This study investigates the molecular mechanisms underlying Stb6-mediated resistance. Utilizing confocal microscopy imaging, we determined that Z. tritici epiphytic hyphae mainly accumulate the corresponding avirulence factor AvrStb6 in close proximity to stomata. Consequently, the progression of AvrStb6-expressing avirulent strains is hampered during penetration. The fungal growth inhibition co-occurs with a transcriptional reprogramming in wheat characterized by an induction of immune responses, genes involved in stomatal regulation, and cell wall-related genes. Overall, we shed light on the gene-for-gene resistance mechanisms in the wheat-Z. tritici pathosystem at the cytological and transcriptomic level, and our results highlight that stomatal penetration is a critical process for pathogenicity and resistance. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ascomicetos , Proteínas Fúngicas , Hifa , Enfermedades de las Plantas , Estomas de Plantas , Triticum , Triticum/microbiología , Triticum/genética , Ascomicetos/patogenicidad , Ascomicetos/fisiología , Ascomicetos/genética , Estomas de Plantas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética , Virulencia , Interacciones Huésped-Patógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Virulencia/metabolismo , Factores de Virulencia/genética
2.
Cell Host Microbe ; 30(4): 489-501.e4, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35247330

RESUMEN

High atmospheric humidity levels profoundly impact host-pathogen interactions in plants by enabling the establishment of an aqueous living space that benefits pathogens. The effectors HopM1 and AvrE1 of the bacterial pathogen Pseudomonas syringae have been shown to induce an aqueous apoplast under such conditions. However, the mechanisms by which this happens remain unknown. Here, we show that HopM1 and AvrE1 work redundantly to establish an aqueous living space by inducing a major reprogramming of the Arabidopsis thaliana transcriptome landscape. These effectors induce a strong abscisic acid (ABA) signature, which promotes stomatal closure, resulting in reduced leaf transpiration and water-soaking lesions. Furthermore, these effectors preferentially increase ABA accumulation in guard cells, which control stomatal aperture. Notably, a guard-cell-specific ABA transporter, ABCG40, is necessary for HopM1 induction of water-soaking lesions. This study provides molecular insights into a chain of events of stomatal manipulation that create an ideal microenvironment to facilitate infection.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Estomas de Plantas/microbiología , Pseudomonas syringae , Agua
3.
Nat Commun ; 12(1): 5479, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531388

RESUMEN

The Xanthomonas outer protein C2 (XopC2) family of bacterial effectors is widely found in plant pathogens and Legionella species. However, the biochemical activity and host targets of these effectors remain enigmatic. Here we show that ectopic expression of XopC2 promotes jasmonate signaling and stomatal opening in transgenic rice plants, which are more susceptible to Xanthomonas oryzae pv. oryzicola infection. Guided by these phenotypes, we discover that XopC2 represents a family of atypical kinases that specifically phosphorylate OSK1, a universal adaptor protein of the Skp1-Cullin-F-box ubiquitin ligase complexes. Intriguingly, OSK1 phosphorylation at Ser53 by XopC2 exclusively increases the binding affinity of OSK1 to the jasmonate receptor OsCOI1b, and specifically enhances the ubiquitination and degradation of JAZ transcription repressors and plant disease susceptibility through inhibiting stomatal immunity. These results define XopC2 as a prototypic member of a family of pathogenic effector kinases and highlight a smart molecular mechanism to activate jasmonate signaling.


Asunto(s)
Proteínas Bacterianas/metabolismo , Oryza/metabolismo , Fosfotransferasas/metabolismo , Proteínas de Plantas/metabolismo , Estomas de Plantas/metabolismo , Xanthomonas/enzimología , Proteínas Bacterianas/genética , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno , Oryza/genética , Fosforilación , Fosfotransferasas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Estomas de Plantas/genética , Estomas de Plantas/microbiología , Plantas Modificadas Genéticamente , Xanthomonas/genética , Xanthomonas/fisiología
4.
Planta ; 253(1): 11, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389186

RESUMEN

KEY MESSAGE: We reviewed recent advances related to RIN4, including its involvement in the immune process through posttranslational modifications, PM H+-ATPase activity regulation, interaction with EXO70 and identification of RIN4-associated NLR proteins. RPM1-interacting protein 4 (RIN4) is a conserved plant immunity regulator that has been extensively studied and can be modified by pathogenic effector proteins. RIN4 plays an important role in both PTI and ETI. In this article, we review the functions of the two conserved NOI domains of RIN4, the C-terminal cysteine residues required for membrane localization and the sites targeted and modified by effector proteins during plant immunity. In addition, we discuss the effect of RIN4 on the stomatal virulence of pathogens via the regulation of PM H+-ATPase activity, which is involved in the immune process through interactions with the exocyst subunit EXO70, and progress in the identification of RIN4-related R proteins in multiple species. This review provides new insights enhancing the current understanding of the immune function of RIN4.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Péptidos y Proteínas de Señalización Intracelular , Inmunidad de la Planta , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Inmunidad de la Planta/genética , Estomas de Plantas/inmunología , Estomas de Plantas/microbiología
5.
Mol Plant Pathol ; 22(1): 92-107, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33191557

RESUMEN

Chitin, a fungal microbial-associated molecular pattern, triggers various defence responses in several plant systems. Although it induces stomatal closure, the molecular mechanisms of its interactions with guard cell signalling pathways are unclear. Based on screening of public microarray data obtained from the ATH1 Affymetrix and Arabidopsis eFP browser, we isolated a cDNA encoding a Ras-related nuclear protein 1 AtRAN1. AtRAN1 expression was enriched in guard cells in a manner consistent with involvement in the control of the stomatal movement. AtRAN1 mutation impaired chitin-induced stomatal closure and accumulation of reactive oxygen species and nitric oxide in guard cells. In addition, Atran1 mutant plants exhibited compromised chitin-enhanced plant resistance to both bacterial and fungal pathogens due to changes in defence-related genes. Furthermore, Atran1 mutant plants were hypersensitive to drought stress compared to Col-0 plants, and had lower levels of stress-responsive genes. These data demonstrate a previously uncharacterized signalling role for AtRAN1, mediating chitin-induced signalling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Quitina/metabolismo , Resistencia a la Enfermedad/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Proteína de Unión al GTP ran/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Sequías , Proteínas de Unión al GTP Monoméricas/genética , Óxido Nítrico/metabolismo , Enfermedades de las Plantas/microbiología , Estomas de Plantas/genética , Estomas de Plantas/inmunología , Estomas de Plantas/microbiología , Estomas de Plantas/fisiología , Proteínas de Unión al ARN/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína de Unión al GTP ran/genética
6.
Int J Mol Sci ; 22(1)2020 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375472

RESUMEN

Systemic Acquired Resistance (SAR) improves immunity of plant systemic tissue after local exposure to a pathogen. Guard cells that form stomatal pores on leaf surfaces recognize bacterial pathogens via pattern recognition receptors, such as Flagellin Sensitive 2 (FLS2). However, how SAR affects stomatal immunity is not known. In this study, we aim to reveal molecular mechanisms underlying the guard cell response to SAR using multi-omics of proteins, metabolites and lipids. Arabidopsis plants previously exposed to pathogenic bacteria Pseudomonas syringae pv. tomato DC3000 (Pst) exhibit an altered stomatal response compared to control plants when they are later exposed to the bacteria. Reduced stomatal apertures of SAR primed plants lead to decreased number of bacteria in leaves. Multi-omics has revealed molecular components of SAR response specific to guard cells functions, including potential roles of reactive oxygen species (ROS) and fatty acid signaling. Our results show an increase in palmitic acid and its derivative in the primed guard cells. Palmitic acid may play a role as an activator of FLS2, which initiates stomatal immune response. Improved understanding of how SAR signals affect stomatal immunity can aid biotechnology and marker-based breeding of crops for enhanced disease resistance.


Asunto(s)
Arabidopsis/inmunología , Resistencia a la Enfermedad/inmunología , Lipidómica , Metabolómica , Enfermedades de las Plantas/inmunología , Estomas de Plantas/metabolismo , Proteoma/metabolismo , Pseudomonas syringae/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Cromatografía Liquida , Ácidos Grasos/metabolismo , Espectrometría de Masas , Ácidos Palmíticos/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Estomas de Plantas/inmunología , Estomas de Plantas/microbiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Especies Reactivas de Oxígeno/metabolismo
7.
BMC Plant Biol ; 20(1): 524, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203377

RESUMEN

BACKGROUND: A structural phenomenon seen in certain lineages of angiosperms that has captivated many scholars including Charles Darwin is the evolution of plant carnivory. Evidently, these structural features collectively termed carnivorous syndrome, evolved to aid nutritional acquisition from attracted, captured and digested prey. We now understand why plant carnivory evolved but how carnivorous plants acquired these attributes remains a mystery. In an attempt to understand the evolution of Nepenthes pitcher and to shed more light on its role in prey digestion, we analyzed the transcriptome data of the highly specialized Nepenthes khasiana leaf comprising the leaf base lamina, tendril and the different parts/zones of the pitcher tube viz. digestive zone, waxy zone and lid. RESULTS: In total, we generated around 262 million high-quality Illumina reads. Reads were pooled, normalized and de novo assembled to generate a reference transcriptome of about 412,224 transcripts. We then estimated transcript abundance along the N. khasiana leaf by mapping individual reads from each part/zone to the reference transcriptome. Correlation-based hierarchical clustering analysis of 27,208 commonly expressed genes indicated functional relationship and similar cellular processes underlying the development of the leaf base and the pitcher, thereby implying that the Nepenthes pitcher is indeed a modified leaf. From a list of 2386 differentially expressed genes (DEGs), we identified transcripts encoding key enzymes involved in prey digestion and protection against pathogen attack, some of which are expressed at high levels in the digestive zone. Interestingly, many of these enzyme-encoding genes are also expressed in the unopened N. khasiana pitcher. Transcripts showing homology to both bacteria and fungi were also detected; and in the digestive zone, fungi are more predominant as compared to bacteria. Taking cues from histology and scanning electron microscopy (SEM) photomicrographs, we found altered expressions of key regulatory genes involved in leaf development. Of particular interest, the expression of class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII) and ARGONAUTE (AGO) genes were upregulated in the tendril. CONCLUSIONS: Our findings suggest that N. khasiana pitchers employ a wide range of enzymes for prey digestion and plant defense, harbor microbes and probably evolved through altered expression of leaf polarity genes.


Asunto(s)
Caryophyllales/genética , Hongos/fisiología , Transcriptoma , Tipificación del Cuerpo/genética , Caryophyllales/enzimología , Caryophyllales/microbiología , Caryophyllales/ultraestructura , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/ultraestructura , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Estomas de Plantas/microbiología , Estomas de Plantas/ultraestructura
8.
Planta ; 252(4): 66, 2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32979085

RESUMEN

MAIN CONCLUSION: Dynamic protein and phosphoprotein profiles uncovered the overall regulation of stomata movement against pathogen invasion and phosphorylation states of proteins involved in ABA, SA, calcium and ROS signaling, which may modulate the stomatal immune response. Stomatal openings represent a major route of pathogen entry into the plant, and plants have evolved mechanisms to regulate stomatal aperture as innate immune response against bacterial invasion. However, the mechanisms underlying stomatal immunity are not fully understood. Taking advantage of high-throughput liquid chromatography mass spectrometry (LC-MS), we performed label-free proteomic and phosphoproteomic analyses of enriched guard cells in response to a bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In total, 495 proteins and 1229 phosphoproteins were identified as differentially regulated. These proteins are involved in a variety of signaling pathways, including abscisic acid and salicylic acid hormone signaling, calcium and reactive oxygen species signaling. We also showed that dynamic changes of phosphoprotein WRKY transcription factors may play a crucial role in regulating stomata movement in plant immunity. The identified proteins/phosphoproteins and the pathways form interactive molecular networks to regulate stomatal immunity. This study has provided new insights into the multifaceted mechanisms of stomatal immunity. The differential proteins and phosphoproteins are potential targets for engineering or breeding of crops for enhanced pathogen defense.


Asunto(s)
Arabidopsis , Estomas de Plantas , Proteómica , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Plantas/genética , Estomas de Plantas/genética , Estomas de Plantas/inmunología , Estomas de Plantas/microbiología , Pseudomonas syringae/fisiología
9.
PLoS Comput Biol ; 16(5): e1007841, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32384085

RESUMEN

Light is one of the factors that can play a role in bacterial infiltration into leafy greens by keeping stomata open and providing photosynthetic products for microorganisms. We model chemotactic transport of bacteria within a leaf tissue in response to photosynthesis occurring within plant mesophyll. The model includes transport of carbon dioxide, oxygen, bicarbonate, sucrose/glucose, bacteria, and autoinducer-2 within the leaf tissue. Biological processes of carbon fixation in chloroplasts, and respiration in mitochondria of the plant cells, as well as motility, chemotaxis, nutrient consumption and communication in the bacterial community are considered. We show that presence of light is enough to boost bacterial chemotaxis through the stomatal opening and toward photosynthetic products within the leaf tissue. Bacterial chemotactic ability is a major player in infiltration, and plant stomatal defense in closing the stomata as a perception of microbe-associated molecular patterns is an effective way to inhibit the infiltration.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Quimiotaxis , Luz , Modelos Biológicos , Estomas de Plantas/microbiología , Dióxido de Carbono/metabolismo , Estomas de Plantas/fisiología
10.
Plant Physiol ; 182(2): 1066-1082, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31776183

RESUMEN

Brassinosteroids (BRs) and jasmonates (JAs) regulate plant growth, development, and defense responses, but how these phytohormones mediate the growth-defense tradeoff is unclear. Here, we identified the Arabidopsis (Arabidopsis thaliana) dwarf at early stages1 (dwe1) mutant, which exhibits enhanced expression of defensin genes PLANT DEFENSIN1.2a (PDF1.2a) and PDF1.2b The dwe1 mutant showed increased resistance to herbivory by beet armyworms (Spodoptera exigua) and infection by botrytis (Botrytis cinerea). DWE1 encodes ROTUNDIFOLIA3, a cytochrome P450 protein essential for BR biosynthesis. The JA-inducible transcription of PDF1.2a and PDF1.2b was significantly reduced in the BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1) gain-of-function mutant bes1- D, which was highly susceptible to S. exigua and B. cinerea BES1 directly targeted the terminator regions of PDF1.2a/PDF1.2b and suppressed their expression. PDF1.2a overexpression diminished the enhanced susceptibility of bes1- D to B. cinerea but did not improve resistance of bes1- D to S. exigua In response to S. exigua herbivory, BES1 inhibited biosynthesis of the JA-induced insect defense-related metabolite indolic glucosinolate by interacting with transcription factors MYB DOMAIN PROTEIN34 (MYB34), MYB51, and MYB122 and suppressing expression of genes encoding CYTOCHROME P450 FAMILY79 SUBFAMILY B POLYPEPTIDE3 (CYP79B3) and UDP-GLUCOSYL TRANSFERASE 74B1 (UGT74B1). Thus, BR contributes to the growth-defense tradeoff by suppressing expression of defensin and glucosinolate biosynthesis genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Brasinoesteroides/biosíntesis , Ciclopentanos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Animales , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Botrytis/patogenicidad , Brasinoesteroides/metabolismo , Ciclopentanos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Glucosinolatos/biosíntesis , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Oxilipinas/farmacología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Hojas de la Planta/parasitología , Estomas de Plantas/genética , Estomas de Plantas/microbiología , Estomas de Plantas/parasitología , Estomas de Plantas/ultraestructura , Plantas Modificadas Genéticamente/metabolismo , Spodoptera/patogenicidad , Factores de Transcripción/metabolismo
11.
FEMS Microbiol Lett ; 366(16)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529017

RESUMEN

Salmonella enterica is one of the most common pathogens associated with produce outbreaks worldwide; nonetheless, the mechanisms uncovering their interaction with plants are elusive. Previous reports demonstrate that S. enterica ser. Typhimurium (STm), similar to the phytopathogen Pseudomonas syringae pv. tomato (Pst) DC3000, triggers a transient stomatal closure suggesting its ability to overcome this plant defense and colonize the leaf apoplast. In order to discover new molecular players that function in the stomatal reopening by STm and Pst DC3000, we performed an Arabidopsis mutant screening using thermal imaging. Further stomatal bioassay confirmed that the mutant plants exo70h4-3, sce1-3, bbe8, stp1, and lsu2 have smaller stomatal aperture widths than the wild type Col-0 in response to STm 14028s. The mutants bbe8, stp1 and lsu2 have impaired stomatal movement in response to Pst DC3000. These findings indicate that EXO70H4 and SCE1 are involved in bacterial-specific responses, while BBE8, STP1, and LSU2 may be required for stomatal response to a broad range of bacteria. The identification of new molecular components of the guard cell movement induced by bacteria will enable a better understanding of the initial stages of plant colonization and facilitate targeted prevention of leaf contamination with harmful pathogens.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Interacciones Huésped-Patógeno , Estomas de Plantas/microbiología , Pseudomonas syringae/crecimiento & desarrollo , Salmonella enterica/crecimiento & desarrollo , Arabidopsis/genética , Bioensayo , Pruebas Genéticas , Imagen Óptica , Enfermedades de las Plantas/microbiología , Estomas de Plantas/genética
12.
Plant Physiol ; 181(3): 1314-1327, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31548265

RESUMEN

Calmodulin (CaM) regulates plant disease responses through its downstream calmodulin-binding proteins (CaMBPs) often by affecting the biosynthesis or signaling of phytohormones, such as jasmonic acid (JA) and salicylic acid. However, how these CaMBPs mediate plant hormones and other stress resistance-related signaling remains largely unknown. In this study, we conducted analyses in Arabidopsis (Arabidopsis thaliana) on the functions of AtIQM1 (IQ-Motif Containing Protein1), a Ca2+-independent CaMBP, in JA biosynthesis and defense against the necrotrophic pathogen Botrytis cinerea using molecular, biochemical, and genetic analyses. IQM1 directly interacted with and promoted CATALASE2 (CAT2) expression and CAT2 enzyme activity and indirectly increased the activity of the JA biosynthetic enzymes ACX2 and ACX3 through CAT2, thereby positively regulating JA content and B. cinerea resistance. In addition, in vitro assays showed that in the presence of CaM5, IQM1 further enhanced the activity of CAT2, suggesting that CaM5 may affect the activity of CAT2 by combining with IQM1 in the absence of Ca2+ Our data indicate that IQM1 is a key regulatory factor in signaling of plant disease responses mediated by JA. The study also provides new insights that CaMBP may play a critical role in the cross talk of multiple signaling pathways in the context of plant defense processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Botrytis/fisiología , Proteínas de Unión a Calmodulina/metabolismo , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Señalización del Calcio , Proteínas de Unión a Calmodulina/genética , Ciclopentanos/metabolismo , Resistencia a la Enfermedad , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Estomas de Plantas/inmunología , Estomas de Plantas/microbiología , Ácido Salicílico/metabolismo
13.
Commun Biol ; 2: 302, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428690

RESUMEN

General Control Non-derepressible 2 (GCN2) is an evolutionarily conserved serine/threonine kinase that modulates amino acid homeostasis in response to nutrient deprivation in yeast, human and other eukaryotes. However, the GCN2 signaling pathway in plants remains largely unknown. Here, we demonstrate that in Arabidopsis, bacterial infection activates AtGCN2-mediated phosphorylation of eIF2α and promotes TBF1 translational derepression. Consequently, TBF1 regulates a subset of abscisic acid signaling components to modulate pre-invasive immunity. We show that GCN2 fine-tunes abscisic acid accumulation and signaling during both pre-invasive and post-invasive stages of an infection event. Finally, we also demonstrate that AtGCN2 participates in signaling triggered by phytotoxin coronatine secreted by P. syringae. During the preinvasive phase, AtGCN2 regulates stomatal immunity by affecting pathogen-triggered stomatal closure and coronatine-mediated stomatal reopening. Our conclusions support a conserved role of GCN2 in various forms of immune responses across kingdoms, highlighting GCN2's importance in studies on both plant and mammalian immunology.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Enfermedades de las Plantas/microbiología , Estomas de Plantas/enzimología , Proteínas Quinasas/metabolismo , Pseudomonas syringae/patogenicidad , Arabidopsis/inmunología , Arabidopsis/microbiología , Factor 2 Eucariótico de Iniciación/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Homeostasis , Interacciones Huésped-Patógeno , Fosforilación , Enfermedades de las Plantas/inmunología , Estomas de Plantas/inmunología , Estomas de Plantas/microbiología , Pseudomonas syringae/inmunología , Transducción de Señal
14.
Sci Rep ; 9(1): 7939, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138873

RESUMEN

Asexual urediniospore infection of primary cereal hosts by Puccinia graminis f. sp. tritici (Pgt), the wheat stem rust pathogen, was considered biphasic. The first phase, spore germination and appressoria formation, requires a dark period and moisture. The second phase, host entry by the penetration peg originating from the appressoria formed over the guard cells, was thought to require light to induce natural stomata opening. Previous studies concluded that inhibition of colonization by the dark was due to lack of penetration through closed stomata. A sensitive WGA-Alexa Fluor 488 fungal staining, surface creation and biovolume analysis method was developed enabling visualization and quantification of fungal growth in planta at early infection stages surpassing visualization barriers using previous methods. The improved method was used to investigate infection processes of Pgt during stomata penetration and colonization in barley and wheat showing that penetration is light independent. Based on the visual growth and fungal biovolume analysis it was concluded that the differences in pathogen growth dynamics in both resistant and susceptible genotypes was due to light induced pathogen growth after penetration into the substomatal space. Thus, light induced plant or pathogen cues triggers pathogen growth in-planta post penetration.


Asunto(s)
Basidiomycota/fisiología , Grano Comestible/microbiología , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Basidiomycota/ultraestructura , Resistencia a la Enfermedad , Grano Comestible/ultraestructura , Hordeum/genética , Hordeum/ultraestructura , Interacciones Huésped-Patógeno , Fotoperiodo , Enfermedades de las Plantas/genética , Estomas de Plantas/microbiología , Estomas de Plantas/ultraestructura
15.
Plant Cell Environ ; 42(8): 2411-2421, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31042812

RESUMEN

Many plant pathogens gain entry to their host via stomata. On sensing attack, plants close these pores to restrict pathogen entry. Here, we show that plants exhibit a second longer term stomatal response to pathogens. Following infection, the subsequent development of leaves is altered via a systemic signal. This reduces the density of stomata formed, thus providing fewer entry points for pathogens on new leaves. Arabidopsis thaliana leaves produced after infection by a bacterial pathogen that infects through the stomata (Pseudomonas syringae) developed larger epidermal pavement cells and stomata and consequently had up to 20% reductions in stomatal density. The bacterial peptide flg22 or the phytohormone salicylic acid induced similar systemic reductions in stomatal density suggesting that they might mediate this effect. In addition, flagellin receptors, salicylic acid accumulation, and the lipid transfer protein AZI1 were all required for this developmental response. Furthermore, manipulation of stomatal density affected the level of bacterial colonization, and plants with reduced stomatal density showed slower disease progression. We propose that following infection, development of new leaves is altered by a signalling pathway with some commonalities to systemic acquired resistance. This acts to reduce the potential for future infection by providing fewer stomatal openings.


Asunto(s)
Arabidopsis/microbiología , Estomas de Plantas/microbiología , Pseudomonas syringae/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/citología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/fisiología , Interacciones Huésped-Patógeno , Peronospora/fisiología , Ácidos Pipecólicos/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/citología , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología
16.
New Phytol ; 223(3): 1547-1559, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30980530

RESUMEN

The leaf outer epidermal cell wall acts as a barrier against pathogen attack and desiccation, and as such is covered by a cuticle, composed of waxes and the polymer cutin. Cutin monomers are formed by the transfer of fatty acids to glycerol by glycerol-3-phosphate acyltransferases, which facilitate their transport to the surface. The extent to which cutin monomers affect leaf cell wall architecture and barrier properties is not known. We report a dual functionality of pathogen-inducible GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 6 (GPAT6) in controlling pathogen entry and cell wall properties affecting dehydration in leaves. Silencing of Nicotiana benthamiana NbGPAT6a increased leaf susceptibility to infection by the oomycetes Phytophthora infestans and Phytophthora palmivora, whereas overexpression of NbGPAT6a-GFP rendered leaves more resistant. A loss-of-function mutation in tomato SlGPAT6 similarly resulted in increased susceptibility of leaves to Phytophthora infection, concomitant with changes in haustoria morphology. Modulation of GPAT6 expression altered the outer wall diameter of leaf epidermal cells. Moreover, we observed that tomato gpat6-a mutants had an impaired cell wall-cuticle continuum and fewer stomata, but showed increased water loss. This study highlights a hitherto unknown role for GPAT6-generated cutin monomers in influencing epidermal cell properties that are integral to leaf-microbe interactions and in limiting dehydration.


Asunto(s)
Aciltransferasas/metabolismo , Pared Celular/metabolismo , Nicotiana/metabolismo , Epidermis de la Planta/microbiología , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Botrytis/fisiología , Pared Celular/ultraestructura , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Phytophthora/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Epidermis de la Planta/metabolismo , Epidermis de la Planta/ultraestructura , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Estomas de Plantas/metabolismo , Estomas de Plantas/microbiología , Estomas de Plantas/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nicotiana/genética , Nicotiana/microbiología , Transcriptoma/genética
17.
Plant Biotechnol J ; 17(3): 665-673, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30183125

RESUMEN

Due to their different lifestyles, effective defence against biotrophic pathogens normally leads to increased susceptibility to necrotrophs, and vice versa. Solving this trade-off is a major challenge for obtaining broad-spectrum resistance in crops and requires uncoupling the antagonism between the jasmonate (JA) and salicylate (SA) defence pathways. Pseudomonas syringae pv. tomato (Pto) DC3000, the causal agent of tomato bacterial speck disease, produces coronatine (COR) that stimulates stomata opening and facilitates bacterial leaf colonization. In Arabidopsis, stomata response to COR requires the COR co-receptor AtJAZ2, and dominant AtJAZ2Δjas repressors resistant to proteasomal degradation prevent stomatal opening by COR. Here, we report the generation of a tomato variety resistant to the bacterial speck disease caused by PtoDC3000 without compromising resistance to necrotrophs. We identified the functional ortholog of AtJAZ2 in tomato, found that preferentially accumulates in stomata and proved that SlJAZ2 is a major co-receptor of COR in stomatal guard cells. SlJAZ2 was edited using CRISPR/Cas9 to generate dominant JAZ2 repressors lacking the C-terminal Jas domain (SlJAZ2Δjas). SlJAZ2Δjas prevented stomatal reopening by COR and provided resistance to PtoDC3000. Water transpiration rate and resistance to the necrotrophic fungal pathogen Botrytis cinerea, causal agent of the tomato gray mold, remained unaltered in Sljaz2Δjas plants. Our results solve the defence trade-off in a crop, by spatially uncoupling the SA-JA hormonal antagonism at the stomata, entry gates of specific microbes such as PtoDC3000. Moreover, our results also constitute a novel CRISPR/Cas-based strategy for crop protection that could be readily implemented in the field.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Edición Génica/métodos , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Represoras/genética , Solanum lycopersicum/genética , Genes de Plantas/genética , Genes de Plantas/fisiología , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/fisiología , Estomas de Plantas/microbiología , Pseudomonas syringae , Proteínas Represoras/fisiología
18.
New Phytol ; 221(2): 988-1000, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30117535

RESUMEN

The N-end rule pathway is a highly conserved constituent of the ubiquitin proteasome system, yet little is known about its biological roles. Here we explored the role of the N-end rule pathway in the plant immune response. We investigated the genetic influences of components of the pathway and known protein substrates on physiological, biochemical and metabolic responses to pathogen infection. We show that the glutamine (Gln) deamidation and cysteine (Cys) oxidation branches are both components of the plant immune system, through the E3 ligase PROTEOLYSIS (PRT)6. In Arabidopsis thaliana Gln-specific amino-terminal (Nt)-amidase (NTAQ1) controls the expression of specific defence-response genes, activates the synthesis pathway for the phytoalexin camalexin and influences basal resistance to the hemibiotroph pathogen Pseudomonas syringae pv tomato (Pst). The Nt-Cys ETHYLENE RESPONSE FACTOR VII transcription factor substrates enhance pathogen-induced stomatal closure. Transgenic barley with reduced HvPRT6 expression showed enhanced resistance to Ps. japonica and Blumeria graminis f. sp. hordei, indicating a conserved role of the pathway. We propose that that separate branches of the N-end rule pathway act as distinct components of the plant immune response in flowering plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Pseudomonas syringae/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Ascomicetos/fisiología , Etilenos/metabolismo , Hordeum/genética , Hordeum/inmunología , Hordeum/microbiología , Oxidación-Reducción , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Estomas de Plantas/genética , Estomas de Plantas/inmunología , Estomas de Plantas/microbiología , Proteolisis , Ubiquitina-Proteína Ligasas/genética
19.
Recent Pat Biotechnol ; 12(1): 65-76, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28474559

RESUMEN

BACKGROUND: Lignin and cellulose, organic constituents of the plant or plant-based material not commonly used for feeding purpose are referred as Biomass. Patents suggest that this can be used as the best resource of renewable energy. Vesicular Arbuscular Mycorrhizae (VAM) fungi can play an effective role in biomass manufacturing through activated metabolism of the plant under dual symbiosis. During C acclimatization, mycorrhizal inoculated plants existent greater number of leaves with a height of plants as compared to non-mycorrhizal plants. The current article discloses the search of the natural resources for C assimilation into biomass using mycorrhizal symbiosis. METHODS: The pot experiment was conducted in the natural environment for extraction of more bioenergy through biomass of Conocarpus erectus L under VAM (Glomus fasciculatum) inoculation in various environmental conditions with replicates. RESULTS: It observed that these fungal engineered plants showed distinctive prospective to offer, enhanced biomass to energy couple with a strong network for sinking CO2 from the atmosphere via strong roots and large surface area of leaves. There was an increase in biomass (9-17% respectively) of the plant under drought-VAM, VAM inoculation and VAM- enriched CO2 conditions in same period in comparison to control plants through lignin, cellulose and carbohydrate contents. It was followed by enhanced enzyme activities and nutrient ions in dual symbiosis. CONCLUSION: Coupling biomass-originated energy may recover environmental conditions and commercial value for sustainable growth in energy consumption sector. The green energy from fungal engineered plants may replace high demand of fossil fuel as a young biofuel and make the cities more productive in the fabrication of bioenergy too in the form of biomass or biofuel with C impartial atmosphere.


Asunto(s)
Dióxido de Carbono/metabolismo , Combretaceae/metabolismo , Glomeromycota/fisiología , Lignina/biosíntesis , Micorrizas/fisiología , Estomas de Plantas/metabolismo , Biocombustibles , Biomasa , Ciclo del Carbono/fisiología , Combretaceae/microbiología , Sequías , Patentes como Asunto , Estomas de Plantas/microbiología , Estomas de Plantas/ultraestructura , Simbiosis/fisiología
20.
Plant J ; 93(4): 771-780, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29205604

RESUMEN

Throughout their life plants are associated with various microorganisms, including commensal, symbiotic and pathogenic microorganisms. Pathogens are genetically adapted to aggressively colonize and proliferate in host plants to cause disease. However, disease outbreaks occur only under permissive environmental conditions. The interplay between host, pathogen and environment is famously known as the 'disease triangle'. Among the environmental factors, rainfall events, which often create a period of high atmospheric humidity, have repeatedly been shown to promote disease outbreaks in plants, suggesting that the availability of water is crucial for pathogenesis. During pathogen infection, water-soaking spots are frequently observed on infected leaves as an early symptom of disease. Recent studies have shown that pathogenic bacteria dedicate specialized virulence proteins to create an aqueous habitat inside the leaf apoplast under high humidity. Water availability in the apoplastic environment, and probably other associated changes, can determine the success of potentially pathogenic microbes. These new findings reinforce the notion that the fight over water may be a major battleground between plants and pathogens. In this article, we will discuss the role of water availability in host-microbe interactions, with a focus on plant-bacterial interactions.


Asunto(s)
Sequías , Interacciones Microbiota-Huesped , Interacciones Huésped-Patógeno , Plantas/microbiología , Agua , Regulación de la Expresión Génica de las Plantas , Homeostasis , Humedad , Enfermedades de las Plantas/microbiología , Hojas de la Planta , Estomas de Plantas/microbiología , Estomas de Plantas/fisiología , Rizosfera , Simbiosis , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...