Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.333
Filtrar
1.
Sci Adv ; 10(19): eadk7636, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728397

RESUMEN

Corticotropin releasing factor (CRF) network in the oval nucleus of bed nuclei of the stria terminalis (ovBNST) is generally indicated in stress, but its role in female-biased susceptibility to anxiety is unknown. Here, we established a female-biased stress paradigm. We found that the CRF release in ovBNST during stress showed female-biased pattern, and ovBNST CRF neurons were more prone to be hyperexcited in female mice during stress in both in vitro and in vivo studies. Moreover, optogenetic modulation to exchange the activation pattern of ovBNST CRF neurons during stress between female and male mice could reverse their susceptibility to anxiety. Last, CRF receptor type 1 (CRFR1) mediated the CRF-induced excitation of ovBNST CRF neurons and showed female-biased expression. Specific knockdown of the CRFR1 level in ovBNST CRF neurons in female or overexpression that in male could reverse their susceptibility to anxiety. Therefore, we identify that CRFR1-mediated hyperexcitation of ovBNST CRF neurons in female mice encode the female-biased susceptibility to anxiety.


Asunto(s)
Ansiedad , Hormona Liberadora de Corticotropina , Neuronas , Receptores de Hormona Liberadora de Corticotropina , Núcleos Septales , Animales , Femenino , Ansiedad/metabolismo , Masculino , Neuronas/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Núcleos Septales/metabolismo , Ratones , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Reacción de Prevención/fisiología , Estrés Psicológico/metabolismo , Conducta Animal
2.
Epigenetics ; 19(1): 2346694, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38739481

RESUMEN

The transgenerational effects of exposing male mice to chronic social instability (CSI) stress are associated with decreased sperm levels of multiple members of the miR-34/449 family that persist after their mating through preimplantation embryo (PIE) development. Here we demonstrate the importance of these miRNA changes by showing that restoring miR-34c levels in PIEs derived from CSI stressed males prevents elevated anxiety and defective sociability normally found specifically in their adult female offspring. It also restores, at least partially, levels of sperm miR-34/449 normally reduced in their male offspring who transmit these sex-specific traits to their offspring. Strikingly, these experiments also revealed that inducing miR-34c levels in PIEs enhances the expression of its own gene and that of miR-449 in these cells. The same induction of embryo miR-34/449 gene expression likely occurs after sperm-derived miR-34c is introduced into oocytes upon fertilization. Thus, suppression of this miRNA amplification system when sperm miR-34c levels are reduced in CSI stressed mice can explain how a comparable fold-suppression of miR-34/449 levels can be found in PIEs derived from them, despite sperm containing ~50-fold lower levels of these miRNAs than those already present in PIEs. We previously found that men exposed to early life trauma also display reduced sperm levels of miR-34/449. And here we show that miR-34c can also increase the expression of its own gene, and that of miR-449 in human embryonic stem cells, suggesting that human PIEs derived from men with low sperm miR-34/449 levels may also contain this potentially harmful defect.


Asunto(s)
Blastocisto , Epigénesis Genética , MicroARNs , Espermatozoides , Estrés Psicológico , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Animales , Espermatozoides/metabolismo , Femenino , Ratones , Blastocisto/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/genética , Humanos , Ratones Endogámicos C57BL
3.
Brain Behav ; 14(5): e3482, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715397

RESUMEN

INTRODUCTION: Chronic adolescent stress profoundly affects prefrontal cortical networks regulating top-down behavior control. However, the neurobiological pathways contributing to stress-induced alterations in the brain and behavior remain largely unknown. Chronic stress influences brain growth factors and immune responses, which may, in turn, disrupt the maturation and function of prefrontal cortical networks. The tumor necrosis factor alpha-converting enzyme/a disintegrin and metalloproteinase 17 (TACE/ADAM17) is a sheddase with essential functions in brain maturation, behavior, and inflammatory responses. This study aimed to determine the impact of stress on the prefrontal cortex and whether TACE/ADAM17 plays a role in these responses. METHODS: We used a Lewis rat model that incorporates critical elements of chronic psychosocial stress, such as uncontrollability, unpredictability, lack of social support, and re-experiencing of trauma. RESULTS: Chronic stress during adolescence reduced the acoustic startle reflex and social interactions while increasing extracellular free water content and TACE/ADAM17 mRNA levels in the medial prefrontal cortex. Chronic stress altered various ethological behavioral domains in the observation home cages (decreased ingestive behaviors and increased walking, grooming, and rearing behaviors). A group of rats was injected intracerebrally either with a novel Accell™ SMARTpool TACE/ADAM17 siRNA or a corresponding siRNA vehicle (control). The RNAscope Multiplex Fluorescent v2 Assay was used to visualize mRNA expression. Automated puncta quantification and analyses demonstrated that TACE/ADAM17 siRNA administration reduced TACE/ADAM17 mRNA levels in the medial prefrontal cortex (59% reduction relative to control). We found that the rats that received prefrontal cortical TACE/ADAM17 siRNA administration exhibited altered eating patterns (e.g., increased food intake and time in the feeding zone during the light cycle). CONCLUSION: This study supports that the prefrontal cortex is sensitive to adolescent chronic stress and suggests that TACE/ADAM17 may be involved in the brain responses to stress.


Asunto(s)
Proteína ADAM17 , Corteza Prefrontal , Ratas Endogámicas Lew , Estrés Psicológico , Animales , Masculino , Ratas , Proteína ADAM17/metabolismo , Conducta Animal/fisiología , Corteza Prefrontal/metabolismo , Reflejo de Sobresalto/fisiología , Estrés Psicológico/fisiopatología , Estrés Psicológico/metabolismo , Femenino
4.
Sci Rep ; 14(1): 10045, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698013

RESUMEN

Chronic stress has been implicated in mental illnesses and depressive behaviors. Somatostatin 4 receptor (SSTR4) has been shown to mediate anxiolytic and depression-like effects. Here, we aimed to explore the potential of SSTR4 as a diagnostic marker for chronic stress in mice. The mice were divided into single stress, chronic restraint stress, and control groups, and Sstr4 mRNA expression in the pituitary, lungs, and thymus, its protein expression in the thymus, were analyzed. Compared to controls, Sstr4 mRNA expression decreased significantly in the pituitary gland of the chronic and single-stress groups (P = 0.0181 and 0.0022, respectively) and lungs of the single-stress group (P = 0.0124), whereas it significantly increased in the thymus of the chronic-stress group (P = 0.0313). Thymic SSTR4 expression did not decrease significantly in stress groups compared to that in the control group (P = 0.0963). These results suggest that SSTR4 expression fluctuates in response to stress. Furthermore, Sstr4 mRNA expression dynamics in each organ differed based on single or chronic restraint stress-loading periods. In conclusion, this study suggests that investigating SSTR4 expression in each organ could allow for its use as a stress marker to estimate the stress-loading period and aid in diagnosing chronic stress.


Asunto(s)
Biomarcadores , Receptores de Somatostatina , Estrés Psicológico , Timo , Animales , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/genética , Ratones , Estrés Psicológico/metabolismo , Masculino , Biomarcadores/metabolismo , Timo/metabolismo , Hipófisis/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Pulmón/metabolismo , Enfermedad Crónica , Estrés Fisiológico , Restricción Física
5.
Cell Mol Life Sci ; 81(1): 205, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703204

RESUMEN

BACKGROUND: Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS: Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS: CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.


Asunto(s)
Apoptosis , Catepsina K , Cloruros , Modelos Animales de Enfermedad , Compuestos Férricos , Trombosis , Animales , Humanos , Masculino , Ratones , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/genética , Catepsina K/metabolismo , Catepsina K/genética , Cloruros/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidor 1 de Activador Plasminogénico/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Trombosis/metabolismo , Trombosis/patología , Factor de Transcripción HES-1/metabolismo , Factor de Transcripción HES-1/genética
6.
Clin Oral Investig ; 28(5): 290, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691206

RESUMEN

BACKGROUND AND OBJECTIVE: Psychological stress has been identified in some observational studies as a potential factor that may modify and affect periodontal diseases, but there are no similar data for peri-implantitis. The aim of this study was to determine the relationship between interleukin (IL)-1ß, IL-6, IL-10, interferon (IFN)α inflammatory cytokines and the psychological stress-related markers, glucocorticoid receptor-α (GRα), and salivary α-amylase (sAA) gene expression levels in saliva samples obtained from healthy implants and peri-implantitis patients. MATERIALS AND METHODS: The study included a total of 50 systemically healthy subjects. Peri-implant clinical parameters were recorded and psychological stress level was evaluated with the hospital anxiety and depression scale (HAD) and state-trait anxiety inventory (STAI) questionnaire forms. Following the evaluations, the patients were divided into 4 groups according their stress and clinical status (Ia, Ib, IIa, IIb). IL-1ß, IL-6, IL-10, IFNα, GRα, sAA gene expression levels in the saliva samples were quantified by quantitative polymerase chain reaction (qPCR). RESULTS: In the group of peri-implantitis who had a high score in stress level assessment scales, significantly higher IL-1ß, IL-6, sAA expression levels were observed (p < 0.001). The IL-10 gene expression levels were lower in the groups with a high score in the stress level assessment scales (p < 0.001). GRα gene was expressed at lower levels in the group of peri-implantitis who had a high score in stress level assessment scales but the difference was not statistically significant (p = 0.065). CONCLUSION: The study findings suggest that psychological stress may increase the inflammation associated with peri-implantitis by affecting cytokine expression levels. CLINICAL RELEVANCE: To prevent peri-implantitis or reduce its prevalence, it could be beneficial to evaluate stress levels and identify individuals experiencing stress.


Asunto(s)
Biomarcadores , Citocinas , Periimplantitis , Saliva , Estrés Psicológico , Humanos , Periimplantitis/metabolismo , Saliva/química , Saliva/metabolismo , Masculino , Femenino , Citocinas/metabolismo , Estrés Psicológico/metabolismo , Persona de Mediana Edad , Adulto , Encuestas y Cuestionarios
7.
Front Endocrinol (Lausanne) ; 15: 1272270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689729

RESUMEN

During parturition and the immediate post-partum period there are two opposite, yet interdependent and intertwined systems that are highly active and play a role in determining lifelong health and behaviour in both the mother and her infant: the stress and the anti-stress (oxytocin) system. Before attempting to understand how the environment around birth determines long-term health trajectories, it is essential to understand how these two systems operate and how they interact. Here, we discuss together the hormonal and neuronal arms of both the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic systems and how they interact. Although the HPA axis and glucocorticoid stress axis are well studied, the role of oxytocin as an extremely powerful anti-stress hormone deserves more attention. It is clear that these anti-stress effects depend on oxytocinergic nerves emanating from the supraoptic nucleus (SON) and paraventricular nucleus (PVN), and project to multiple sites at which the stress system is regulated. These, include projections to corticotropin releasing hormone (CRH) neurons within the PVN, to the anterior pituitary, to areas involved in sympathetic and parasympathetic nervous control, to NA neurons in the locus coeruleus (LC), and to CRH neurons in the amygdala. In the context of the interaction between the HPA axis and the oxytocin system birth is a particularly interesting period as, for both the mother and the infant, both systems are very strongly activated within the same narrow time window. Data suggest that the HPA axis and the oxytocin system appear to interact in this early-life period, with effects lasting many years. If mother-child skin-to-skin contact occurs almost immediately postpartum, the effects of the anti-stress (oxytocin) system become more prominent, moderating lifelong health trajectories. There is clear evidence that HPA axis activity during this time is dependent on the balance between the HPA axis and the oxytocin system, the latter being reinforced by specific somatosensory inputs, and this has long-term consequences for stress reactivity.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Oxitocina , Sistema Hipófiso-Suprarrenal , Oxitocina/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiología , Femenino , Animales , Estrés Psicológico/metabolismo , Estrés Fisiológico/fisiología , Embarazo , Yin-Yang
8.
Dev Psychobiol ; 66(5): e22494, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38698641

RESUMEN

Though considerable work supports the Dimensional Model of Adversity and Psychopathology, prior research has not tested whether the dimensions-threat (e.g., abuse) and deprivation (e.g., neglect)-are uniquely related to salivary trait indicators of hypothalamic pituitary adrenal (HPA) axis activity. We examined the unique and interactive effects of threat and deprivation on latent trait cortisol (LTC)-and whether these effects were modified by co-occurring adversities. Emerging adults (n = 90; Mage = 19.36 years; 99.88% cisgender women) provided salivary cortisol samples four times a day (waking, 30 min and 45 min postwaking, bedtime) over three 3-day measurement waves over 13 weeks. Contextual life stress interviews assessed early adversity. Though the effects varied according to the conceptualization of early adversity, overall, threat-but not deprivation, nor other co-occurring adversities-was uniquely associated with the across-wave LTC. Specifically, the incidence and frequency of threat were each negatively related to the across-wave LTC. Threat severity was also associated with the across-wave LTC, but only among those with no deprivation. Finally, the effects of threat were modified by other co-occurring adversities. Findings suggest that threat has unique implications for individual differences in HPA axis activity among emerging adults, and that co-occurring adversities modify such effects.


Asunto(s)
Hidrocortisona , Sistema Hipotálamo-Hipofisario , Saliva , Humanos , Femenino , Masculino , Hidrocortisona/metabolismo , Adulto Joven , Adulto , Saliva/metabolismo , Saliva/química , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Adolescente , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiopatología , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Experiencias Adversas de la Infancia , Carencia Psicosocial
9.
Aging (Albany NY) ; 16(8): 6731-6744, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643466

RESUMEN

PURPOSE: To investigate the therapeutic effect of electroacupuncture (EA) on chronic and unpredictable mild stress (CUMS)-induced depression in mice and the underlying mechanism. METHODS: Male C57BL/6 mice were randomly divided into 6 groups: Control, CUMS, CUMS+EA-placebo, CUMS+EA, CUMS+ ad-NC, CUMS+ ad-cGAS-shRNA. CUMS was utilized to establish the depression model in mice. The behavioral changes were determined by the forced swimming, open field, and sucrose preference experiments. The pathological changes in the hippocampus tissue were evaluated by HE staining. The release of TNF-α, IL-1ß, IL-6, 5-HT, and NE in the hippocampus tissue was determined by ELISA. IBA-1 expression detected by the immunofluorescence was used to represent the activity of microglia. Western blot and RT-PCR were utilized to measure the expression of Bax, bcl-2, cGAS, STING, TBK1, IRF3, and NLRP3. RESULTS: The depression behavior in CUMS mice was significantly alleviated by the treatment of EA and cGAS-shRNA, accompanied by ameliorated hippocampus pathological changes, declined production of TNF-α, IL-1ß, and IL-6, elevated secretion of 5-HT and NE, and inhibition on the activity of microglia. Furthermore, significantly elevated expression level of Bax, cGAS, STING, TBK1, IRF3, and NLRP3 and declined expression level of bcl-2 were observed in the CUMS+EA and CUMS+ ad-cGAS-shRNA groups. CONCLUSIONS: EA significantly mitigated the symptom of depression in mice, which was closely associated with the repressed neuroinflammation, increased monoamine concentration, inactivated microglia, and inhibited cGAS-STING-NLRP3 signaling.


Asunto(s)
Depresión , Electroacupuntura , Hipocampo , Proteínas de la Membrana , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Nucleotidiltransferasas , Transducción de Señal , Animales , Electroacupuntura/métodos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Masculino , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Depresión/terapia , Depresión/metabolismo , Depresión/etiología , Hipocampo/metabolismo , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/terapia , Modelos Animales de Enfermedad , Microglía/metabolismo , Conducta Animal
10.
Behav Brain Res ; 467: 115005, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38641178

RESUMEN

BACKGROUND: Post-traumatic stress disorder (PTSD) refers to a chronic impairing psychiatric disorder occurring after exposure to the severe traumatic event. Studies have demonstrated that medicinal cannabis oil plays an important role in neuroprotection, but the mechanism by which it exerts anti-PTSD effects remains unclear. METHODS: The chronic complex stress (CCS) simulating the conditions of long voyage stress for 4 weeks was used to establish the PTSD mice model. After that, behavioral tests were used to evaluate PTSD-like behaviors in mice. Mouse brain tissue index was detected and hematoxylin-eosin staining was used to assess pathological changes in the hippocampus. The indicators of cell apoptosis and the BDNF/TRPC6 signaling activation in the mice hippocampus were detected by western blotting or real-time quantitative reverse transcription PCR experiments. RESULTS: We established the PTSD mice model induced by CCS, which exhibited significant PTSD-like phenotypes, including increased anxiety-like and depression-like behaviors. Medicinal cannabis oil treatment significantly ameliorated PTSD-like behaviors and improved brain histomorphological abnormalities in CCS mice. Mechanistically, medicinal cannabis oil reduced CCS-induced cell apoptosis and enhanced the activation of BDNF/TRPC6 signaling pathway. CONCLUSIONS: We constructed a PTSD model with CCS and medicinal cannabis oil that significantly improved anxiety-like and depressive-like behaviors in CCS mice, which may play an anti-PTSD role by stimulating the BDNF/TRPC6 signaling pathway.


Asunto(s)
Ansiedad , Factor Neurotrófico Derivado del Encéfalo , Depresión , Modelos Animales de Enfermedad , Hipocampo , Transducción de Señal , Trastornos por Estrés Postraumático , Canal Catiónico TRPC6 , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Masculino , Depresión/tratamiento farmacológico , Depresión/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/metabolismo , Canal Catiónico TRPC6/metabolismo , Conducta Animal/efectos de los fármacos , Marihuana Medicinal/farmacología , Ratones Endogámicos C57BL , Apoptosis/efectos de los fármacos , Aceites de Plantas/farmacología , Aceites de Plantas/administración & dosificación , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
11.
Eur J Pharmacol ; 973: 176582, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642668

RESUMEN

The growing burden of psychological stress among diabetes patients has contributed to a rising incidence of depression within this population. It is of significant importance to conduct research on the impact of stress on diabetes patients and to explore potential pharmacological interventions to counteract the stress-induced exacerbation of their condition. Gastrodin is a low molecular weight bioactive compound extracted from the rhizome of Gastrodiae elata Blume, and it may be a preventive strategy for diabetes and a novel treatment for depression symptoms. However, its relevant pharmacological mechanisms for protecting against the impacts of psychological stress in diabetic patients are unclear. In this study, we performed 5 weeks CUMS intervention and simultaneously administered gastrodin (140 mg/kg, once daily) on T2DM mice, to investigate the potential protective effects of gastrodin. The protective effect of gastrodin was evaluated by behavioral tests, biochemical analysis, histopathological examination, RT-qPCR and gut microbiota analysis. We found that the depressive-like behavior and glucolipid metabolism could be deteriorated by chronic stress in type 2 diabetic mice, while gastrodin showed a protective effect against these exacerbations by regulating HPA hormones, activating FXR and Cyp7a1, reducing inflammatory and oxidative stress responses, and regulating ileal gut microbiota abundance. Gastrodin might be a potential therapeutic agent for mitigating the deterioration of diabetes conditions due to chronic stress.


Asunto(s)
Conducta Animal , Alcoholes Bencílicos , Depresión , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Glucósidos , Estrés Psicológico , Animales , Alcoholes Bencílicos/farmacología , Alcoholes Bencílicos/uso terapéutico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/psicología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Masculino , Ratones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Microbioma Gastrointestinal/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Enfermedad Crónica
12.
J Affect Disord ; 356: 737-752, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649105

RESUMEN

The onset of depression commonly occurs in adolescence; therefore, depressive prevention and intervention are pivotal during this period. It is becoming evident that neurotransmitter imbalance and gut microbiota dysbiosis are prominent causes of depression. However, the underlying links and mechanisms remain poorly understood. In this study, with 16S ribosomal RNA gene sequencing, genus Coprococcus markedly differentiated between the healthy and unmedicated depressive adolescents. Based on this, transplantation of Coprococcus eutactus (C.e.) was found to dramatically ameliorate the chronic restraint stress (CRS) induced depression-like changes and prevent synaptic loss and glial-stimulated neuroinflammation in mice. The Ultra-high performance liquid chromatography tandem mass spectrometry analysis (UHPLC-MS/MS) further showed that neurotoxic neurotransmitters in kynurenine pathway (KP) such as 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) decreased in mouse brains, mechanistically deciphering the transfer of the tryptophan metabolic pathway to serotonin metabolic signaling in the brain after C.e. treatment, which was also verified in the colon. Molecularly, blockage of KP activities mediated by C.e. was ascribed to the restraint of the limit-step enzymes responsible for kynurenine, 3-HK, and quinolinic acid generation. In the colon, C.e. treatment significantly recovered goblet cells and mucus secretion in CRS mice which may ascribe to the rebalance of the disordered gut microbiota, especially Akkermansia, Roseburia, Rikenella, Blautia, and Alloprevotella. Taken together, the current study reveals for the first time the beneficial effects and potential mechanisms of C.e. in ameliorating CRS-induced depression, unraveling the direct links between C.e. treatment and neurotransmitter rebalance, which may provide efficacious therapeutic avenues for adolescent depressive intervention.


Asunto(s)
Depresión , Microbioma Gastrointestinal , Neurotransmisores , Restricción Física , Estrés Psicológico , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/complicaciones , Depresión/metabolismo , Humanos , Masculino , Neurotransmisores/metabolismo , Modelos Animales de Enfermedad , Adolescente , Encéfalo/metabolismo , Quinurenina/metabolismo , Quinurenina/análogos & derivados
13.
Behav Brain Res ; 466: 114983, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38580200

RESUMEN

Humans and other animals exhibit aversive behavioral and emotional responses to unequal reward distributions compared with their conspecifics. Despite the significance of this phenomenon, experimental animal models designed to investigate social inequity aversion and delve into the underlying neurophysiological mechanisms are limited. In this study, we developed a rat model to determine the effects of socially equal or unequal reward and stress on emotional changes in male rats. During the training session, the rats were trained to escape when a sound cue was presented, and they were assigned to one of the following groups: all escaping rats [advantageous equity (AE)], freely moving rats alongside a restrained rat [advantageous inequity (AI)], all restrained rats [disadvantageous equity (DE)], and a rat restrained in the presence of freely moving companions [disadvantageous inequity (DI)]. During the test session, rats in the advantageous group (AE and AI) escaped after the cue sound (expected reward acquisition), whereas rats in the disadvantageous group (DE and DI) could not escape despite the cue being presented (expected reward deprivation). Emotional alteration induced by exposure to restraint stress under various social interaction circumstances was examined using an open field test. Notably, the DI group displayed reduced exploration of the center zone during the open field tests compared with the other groups, indicating heightened anxiety-like behaviors in response to reward inequity. Immunohistochemical analysis revealed increased c-Fos expression in the medial prefrontal and orbitofrontal cortices, coupled with reduced c-Fos expression in the striatum and nucleus accumbens under DI conditions, in contrast to the other experimental conditions. These findings provide compelling evidence that rats are particularly sensitive to reward inequity, shedding light on the neurophysiological basis for distinct cognitive processes that manifest when individuals are exposed to social equity and inequity situations.


Asunto(s)
Conducta Animal , Emociones , Proteínas Proto-Oncogénicas c-fos , Recompensa , Estrés Psicológico , Animales , Masculino , Ratas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Emociones/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Conducta Animal/fisiología , Conducta Social , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Señales (Psicología) , Ratas Sprague-Dawley
14.
Behav Brain Res ; 466: 114976, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38599249

RESUMEN

Although there are various treatments available for depression, some patients may experience resistance to treatment or encounter adverse effects. Centella asiatica (C. asiatica) is an ancient medicinal herb used in Ayurvedic medicine for its rejuvenating, neuroprotective and psychoactive properties. This study aims to explore the antidepressant-like effects of the major constituents found in C. asiatica, i.e., asiatic acid, asiaticoside, madecassic acid, and madecassoside at three doses (1.25, 2.5, and 5 mg/kg, i.p), on the behavioural and cortisol level of unpredictable chronic stress (UCS) zebrafish model. Based on the findings from the behavioural study, the cortisol levels in the zebrafish body after treatment with the two most effective compounds were measured using enzyme-linked immunosorbent assay (ELISA). Furthermore, a molecular docking study was conducted to predict the inhibitory impact of the triterpenoid compounds on serotonin reuptake. The in vivo results indicate that madecassoside (1.25, 2.5, and 5 mg/kg), asiaticoside and asiatic acid (5 mg/kg) activated locomotor behaviour. Madecassoside at all tested doses and asiaticoside at 2.5 and 5 mg/kg significantly decreased cortisol levels compared to the stressed group, indicating the potential regulation effect of madecassoside and asiaticoside on the hypothalamic-pituitary-adrenal axis overactivity. This study highlights the potential benefits of madecassoside and asiaticoside in alleviating depressive symptoms through their positive effects on behaviour and the hypothalamic-pituitary-adrenal (HPA)- axis in a chronic unpredictable stress zebrafish model. Furthermore, the in silico study provided additional evidence to support these findings. These promising results suggest that C. asiatica may be a valuable and cost-effective therapeutic option for depression, and further research should be conducted to explore its potential benefits.


Asunto(s)
Antidepresivos , Centella , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Triterpenos , Pez Cebra , Animales , Triterpenos/farmacología , Centella/química , Antidepresivos/farmacología , Triterpenos Pentacíclicos/farmacología , Hidrocortisona/metabolismo , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Depresión/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Biomarcadores/metabolismo , Masculino
15.
Behav Brain Res ; 466: 114998, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38614210

RESUMEN

Patients with stress-triggered major depression disorders (MDD) can often seek comfort or temporary relief through alcohol consumption, as they may turn to it as a means of self-medication or coping with overwhelming emotions. The use of alcohol as a coping mechanism for stressful events can escalate, fostering a cycle where the temporary relief it provides from depression can deepen into alcohol dependence, exacerbating both conditions. Although, the specific mechanisms involved in stress-triggered alcohol dependence and MDD comorbidities are not well understood, a large body of literature suggests that the serotonin transporter (SERT) plays a critical role in these abnormalities. To further investigate this hypothesis, we used a lentiviral-mediated knockdown approach to examine the role of hippocampal SERT knockdown in social defeat stress-elicited depression like behavior and ethanol-induced place preference (CPP). The results showed that social defeat stress-pro depressant effects were reversed following SERT knockdown demonstrated by increased sucrose preference, shorter latency to feed in the novelty suppressed feeding test, and decreased immobility time in the tail suspension and forced swim tests. Moreover, and most importantly, social stress-induced ethanol-CPP acquisition and reinstatement were significantly reduced following hippocampal SERT knockdown using short hairpin RNA shRNA-expressing lentiviral vectors. Finally, we confirmed that SERT hippocampal mRNA expression correlated with measures of depression- and ethanol-related behaviors by Pearson's correlation analysis. Taken together, our data suggest that hippocampal serotoninergic system is involved in social stress-triggered mood disorders as well as in the acquisition and retrieval of ethanol contextual memory and that blockade of this transporter can decrease ethanol rewarding properties.


Asunto(s)
Depresión , Etanol , Hipocampo , Ratones Endogámicos C57BL , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Derrota Social , Estrés Psicológico , Animales , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Estrés Psicológico/metabolismo , Masculino , Etanol/farmacología , Etanol/administración & dosificación , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Depresión/metabolismo , Ratones , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Depresores del Sistema Nervioso Central/farmacología , Depresores del Sistema Nervioso Central/administración & dosificación , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , ARN Interferente Pequeño/farmacología
16.
Biomolecules ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672480

RESUMEN

Early adversity, the loss of the inhibitory GABAergic interneuron parvalbumin, and elevated neuroinflammation are associated with depression. Individuals with a maltreatment history initiate medicinal cannabis use earlier in life than non-maltreated individuals, suggesting self-medication. Female rats underwent maternal separation (MS) between 2 and 20 days of age to model early adversity or served as colony controls. The prelimbic cortex and behavior were examined to determine whether MS alters the cannabinoid receptor 2 (CB2), which has anti-inflammatory properties. A reduction in the CB2-associated regulatory enzyme MARCH7 leading to increased NLRP3 was observed with Western immunoblots in MS females. Immunohistochemistry with stereology quantified numbers of parvalbumin-immunoreactive cells and CB2 at 25, 40, and 100 days of age, revealing that the CB2 receptor associated with PV neurons initially increases at P25 and subsequently decreases by P40 in MS animals, with no change in controls. Confocal and triple-label microscopy suggest colocalization of these CB2 receptors to microglia wrapped around the parvalbumin neuron. Depressive-like behavior in MS animals was elevated at P40 and reduced with the CB2 agonist HU-308 or a CB2-overexpressing lentivirus microinjected into the prelimbic cortex. These results suggest that increasing CB2 expression by P40 in the prelimbic cortex prevents depressive behavior in MS female rats.


Asunto(s)
Depresión , Privación Materna , Receptor Cannabinoide CB2 , Estrés Psicológico , Animales , Femenino , Receptor Cannabinoide CB2/metabolismo , Ratas , Depresión/metabolismo , Estrés Psicológico/metabolismo , Parvalbúminas/metabolismo , Conducta Animal , Ratas Sprague-Dawley , Cannabinoides/farmacología
17.
Dev Psychobiol ; 66(5): e22490, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38680082

RESUMEN

Psychological stress is a ubiquitous facet of modern life, impacting individuals across diverse contexts and demographics. Understanding its physiological manifestations through biomarkers has gained substantial attention within the scientific community. A comprehensive search was conducted across multiple databases for peer-reviewed articles published within the past decade. Preliminary findings reveal many biomarkers associated with psychological stress across different biological systems, including the hypothalamic-pituitary-adrenal axis, immune system, cardiovascular system, and central nervous system. This systematic review explores psychological, physiological, and biochemical biomarkers associated with stress. Analyzing recent literature, it synthesizes findings across these three categories, elucidating their respective roles in stress response mechanisms. Psychological markers involve subjective assessments like self-reported stress levels, perceived stress scales, or psychometric evaluations measuring anxiety, depression, or coping mechanisms. Physiological markers include heart rate variability, blood pressure, and immune system responses such as cytokine levels or inflammatory markers. Biochemical markers involve hormones or chemicals linked to stress. It includes cortisol, catecholamines, copeptin, salivary amylase, IL-6, and C-reactive protein.


Asunto(s)
Biomarcadores , Estrés Psicológico , Humanos , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiopatología
18.
Stress ; 27(1): 2317856, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38563163

RESUMEN

In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.


Asunto(s)
Neuroesteroides , Humanos , Estrés Psicológico/metabolismo , Esteroides/fisiología , Hormonas Esteroides Gonadales , Encéfalo/fisiología
19.
PLoS One ; 19(4): e0287421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38653001

RESUMEN

This study examined the psychogenic stress (PS) effects on changes in oxidative stress and the antioxidant capacity of an organism at different growth stages. The experimental animals were male Wistar rats of five different ages from growth periods (GPs) to old age. The growth stages were randomly classified into control (C) and experimental (PS) groups. The PS was performed using restraint and water immersion once daily for 3 h for 4 weeks. Reactive oxygen metabolites (d-ROMs) and the biological antioxidant potential (BAP) were measured before and after the experiment. In addition, the liver and adrenal glands were removed, and the wet weight was measured. The d-ROM and BAP of all growth stages given PS increased significantly. The d-ROM in the C group without PS increased significantly in GPs while decreased significantly in old-aged rats. In addition, the BAP of the C group in GP and early adulthood were all significantly elevated. There were significant differences in organ weights between the C and PS groups at all growth stages. Oxidative stress and antioxidant capacity differed depending on the organism's developmental status and growth stage, and PS also showed different effects. In particular, the variability in oxidative stress was remarkable, suggesting that the effect of PS was more significant in the organism's immature organs.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Ratas Wistar , Estrés Psicológico , Animales , Antioxidantes/metabolismo , Masculino , Ratas , Estrés Psicológico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hígado/metabolismo , Tamaño de los Órganos , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/crecimiento & desarrollo
20.
Pharmacol Biochem Behav ; 239: 173757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574898

RESUMEN

Depression is a major chronic mental illness worldwide, characterized by anhedonia and pessimism. Exposed to the same stressful stimuli, some people behave normally, while others exhibit negative behaviors and psychology. The exact molecular mechanisms linking stress-induced depressive susceptibility and resilience remain unclear. Connexin 43 (Cx43) forms gap junction channels between the astrocytes, acting as a crucial role in the pathogenesis of depression. Cx43 dysfunction could lead to depressive behaviors, and depression down-regulates the expression of Cx43 in the prefrontal cortex (PFC). Besides, accumulating evidence indicates that inflammation is one of the most common pathological features of the central nervous system dysfunction. However, the roles of Cx43 and peripheral inflammation in stress-susceptible and stress-resilient individuals have rarely been investigated. Thus, animals were classified into the chronic unpredictable stress (CUS)-susceptible group and the CUS-resilient group based on the performance of behavioral tests following the CUS protocol in this study. The protein expression of Cx43 in the PFC, the Cx43 functional changes in the PFC, and the expression levels including interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, IL-2, IL-10, and IL-18 in the peripheral serum were detected. Here, we found that stress exposure triggered a significant reduction in Cx43 protein expression in the CUS-susceptible mice but not in the CUS-resilient mice accompanied by various Cx43 phosphorylation expression and the changes of inflammatory signals. Stress resilience is associated with Cx43 in the PFC and fluctuation in inflammatory signaling, showing that therapeutic targeting of these pathways might promote stress resilience.


Asunto(s)
Conexina 43 , Inflamación , Corteza Prefrontal , Estrés Psicológico , Animales , Corteza Prefrontal/metabolismo , Conexina 43/metabolismo , Ratones , Estrés Psicológico/metabolismo , Masculino , Inflamación/metabolismo , Resiliencia Psicológica , Ratones Endogámicos C57BL , Depresión/metabolismo , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Conducta Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA