Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55.489
Filtrar
1.
Aging (Albany NY) ; 16(11): 9876-9898, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38843385

RESUMEN

Estrogen is thought to have a role in slowing down aging and protecting cardiovascular and cognitive function. However, high doses of estrogen are still positively associated with autoimmune diseases and tumors with systemic inflammation. First, we administered exogenous estrogen to female mice for three consecutive months and found that the aorta of mice on estrogen develops inflammatory manifestations similar to Takayasu arteritis (TAK). Then, in vitro estrogen intervention was performed on mouse aortic vascular smooth muscle cells (MOVAS cells). Stimulated by high concentrations of estradiol, MOVAS cells showed decreased expression of contractile phenotypic markers and increased expression of macrophage-like phenotypic markers. This shift was blocked by tamoxifen and Krüppel-like factor 4 (KLF4) inhibitors and enhanced by Von Hippel-Lindau (VHL)/hypoxia-inducible factor-1α (HIF-1α) interaction inhibitors. It suggests that estrogen-targeted regulation of the VHL/HIF-1α/KLF4 axis induces phenotypic transformation of vascular smooth muscle cells (VSMC). In addition, estrogen-regulated phenotypic conversion of VSMC to macrophages is a key mechanism of estrogen-induced vascular inflammation, which justifies the risk of clinical use of estrogen replacement therapy.


Asunto(s)
Estrógenos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Macrófagos , Músculo Liso Vascular , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Animales , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/efectos de los fármacos , Femenino , Estrógenos/farmacología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Transdiferenciación Celular/efectos de los fármacos , Fenotipo , Aorta/patología , Aorta/efectos de los fármacos , Inflamación/metabolismo
2.
Sci Rep ; 14(1): 14454, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914633

RESUMEN

Hydrogen peroxide is considered deleterious molecule that cause cellular damage integrity and function. Its key redox signaling molecule in oxidative stress and exerts toxicity on a wide range of organisms. Thus, to understand whether oxidative stress alters visual development, zebrafish embryos were exposed to H2O2 at concentration of 0.02 to 62.5 mM for 7 days. Eye to body length ratio (EBR) and apoptosis in retina at 48 hpf, and optomotor response (OMR) at 7 dpf were all measured. To investigate whether hydrogen peroxide-induced effects were mediated by oxidative stress, embryos were co-incubated with the antioxidant, glutathione (GSH) at 50 µM. Results revealed that concentrations of H2O2 at or above 0.1 mM induced developmental toxicity, leading to increased mortality and hatching delay. Furthermore, exposure to 0.1 mM H2O2 decreased EBR at 48 hpf and impaired OMR visual behavior at 7 dpf. Additionally, exposure increased the area of apoptotic cells in the retina at 48 hpf. The addition of GSH reversed the effects of H2O2, suggesting the involvement of oxidative stress. H2O2 decreased the expression of eye development-related genes, pax6α and pax6ß. The expression of apoptosis-related genes, tp53, casp3 and bax, significantly increased, while bcl2α expression decreased. Antioxidant-related genes sod1, cat and gpx1a showed decreased expression. Expression levels of estrogen receptors (ERs) (esr1, esr2α, and esr2ß) and ovarian and brain aromatase genes (cyp19a1a and cyp19a1b, respectively) were also significantly reduced. Interestingly, co-incubation of GSH effectivity reversed the impact of H2O2 on most parameters. Overall, these results demonstrate that H2O2 induces adverse effects on visual development via oxidative stress, which leads to alter apoptosis, diminished antioxidant defenses and reduced estrogen production.


Asunto(s)
Antioxidantes , Apoptosis , Peróxido de Hidrógeno , Estrés Oxidativo , Pez Cebra , Animales , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Glutatión/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Estrógenos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Visión Ocular/efectos de los fármacos
3.
Reprod Domest Anim ; 59(6): e14656, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923054

RESUMEN

The cervix is an important organ that has to dilate sufficiently at delivery to allow the foetus to transition to extrauterine life. Insufficient dilatation of the cervix (IDC) is a frequent cause of dystocia in cattle. The mechanisms underlying cervical opening and the pathogenesis of IDC are still widely unclear. Systematic studies on the relationship between IDC and steroid hormones have been limited and have yielded inconsistent findings. This study aimed to measure oestrogen and progesterone (P4) concentrations in intrapartum cows presented with dystocia due to IDC and in a comparison (C) group of cows with eutocic delivery. Before any obstetrical procedures, and right after the initial evaluation, blood samples were taken from IDC and C animals. Concentrations of P4, oestradiol-17ß (E2), free total oestrogens (FTE) and conjugated total oestrogens (CTE) were measured by established radioimmunoassays. Concentrations of P4 (p = .538), FTE (p = .065) and CTE (p = .605) were not statistically different between C and IDC groups. However, E2 levels in group C were significantly lower when compared to those in the IDC group (p = .013), which is inconsistent with the function of oestrogens in cervical dilatation. The correlation analysis demonstrated significant positive correlations between the pairs P4 versus FTE, P4 versus E2 and FTE versus E2 in group C and between the pair FTE versus E2 in group IDC. In conclusion, the results suggest that local activities of steroids relevant to the aetiology of IDC are not reflected by concentrations in the systemic circulation or that other factors are clearly more important.


Asunto(s)
Cuello del Útero , Estrógenos , Progesterona , Animales , Femenino , Bovinos , Progesterona/sangre , Embarazo , Estrógenos/sangre , Distocia/veterinaria , Estradiol/sangre , Enfermedades de los Bovinos/sangre
4.
Genes (Basel) ; 15(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927745

RESUMEN

Brain lipid homeostasis is an absolute requirement for proper functionality of nerve cells and neurological performance. Current evidence demonstrates that lipid alterations are linked to neurodegenerative diseases, especially Alzheimer's disease (AD). The complexity of the brain lipidome and its metabolic regulation has hampered the identification of critical processes associated with the onset and progression of AD. While most experimental studies have focused on the effects of known factors on the development of pathological hallmarks in AD, e.g., amyloid deposition, tau protein and neurofibrillary tangles, neuroinflammation, etc., studies addressing the causative effects of lipid alterations remain largely unexplored. In the present study, we have used a multifactor approach combining diets containing different amounts of polyunsaturated fatty acids (PUFAs), estrogen availabilities, and genetic backgrounds, i.e., wild type (WT) and APP/PS1 (FAD), to analyze the lipid phenotype of the frontal cortex in middle-aged female mice. First, we observed that severe n-3 PUFA deficiency impacts the brain n-3 long-chain PUFA (LCPUFA) composition, yet it was notably mitigated by hepatic de novo synthesis. n-6 LCPUFAs, ether-linked fatty acids, and saturates were also changed by the dietary condition, but the extent of changes was dependent on the genetic background and hormonal condition. Likewise, brain cortex phospholipids were mostly modified by the genotype (FAD>WT) with nuanced effects from dietary treatment. Cholesterol (but not sterol esters) was modified by the genotype (WT>FAD) and dietary condition (higher in DHA-free conditions, especially in WT mice). However, the effects of estrogen treatment were mostly observed in relation to phospholipid remodeling in a genotype-dependent manner. Analyses of lipid-derived variables indicate that nerve cell membrane biophysics were significantly affected by the three factors, with lower membrane microviscosity (higher fluidity) values obtained for FAD animals. In conclusion, our multifactor analyses revealed that the genotype, diet, and estrogen status modulate the lipid phenotype of the frontal cortex, both as independent factors and through their interactions. Altogether, the outcomes point to potential strategies based on dietary and hormonal interventions aimed at stabilizing the brain cortex lipid composition in Alzheimer's disease neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Modelos Animales de Enfermedad , Estrógenos , Ácidos Grasos Omega-3 , Lóbulo Frontal , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/dietoterapia , Animales , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Ratones , Lóbulo Frontal/metabolismo , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/patología , Femenino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Estrógenos/metabolismo , Estrógenos/farmacología , Ratones Transgénicos , Presenilina-1/genética , Presenilina-1/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Humanos
5.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928442

RESUMEN

To enhance our understanding of teleost reproductive physiology, we identified six Sichuan bream (Sinibrama taeniatus) vitellogenin genes (vtg1-6) and characterized their sequence structures. We categorized them into type Ⅰ (vtg1,4,5 and 6), type Ⅱ (vtg2) and type Ⅲ (vtg3) based on differences in their subdomain structure. The promoter sequence of vtgs has multiple estrogen response elements, and their abundance appears to correlate with the responsiveness of vtg gene expression to estrogen. Gene expression analyses revealed that the vitellogenesis of Sichuan bream involves both heterosynthesis and autosynthesis pathways, with the dominant pathway originating from the liver. The drug treatment experiments revealed that 17ß-estradiol (E2) tightly regulated the level of vtg mRNA in the liver. Feeding fish with a diet containing 100 µg/g E2 for three weeks significantly induced vtg gene expression and ovarian development, leading to an earlier onset of vitellogenesis. Additionally, it was observed that the initiation of vtg transcription required E2 binding to its receptor, a process primarily mediated by estrogen receptor alpha in Sichuan bream. The findings of this study provide novel insights into the molecular information of the vitellogenin gene family in teleosts, thereby contributing to the regulation of gonadal development in farmed fish.


Asunto(s)
Estrógenos , Vitelogeninas , Animales , Vitelogeninas/genética , Vitelogeninas/metabolismo , Estrógenos/metabolismo , Estrógenos/farmacología , Vitelogénesis/genética , Estradiol/farmacología , Estradiol/metabolismo , Regiones Promotoras Genéticas , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Filogenia , Regulación de la Expresión Génica/efectos de los fármacos , Familia de Multigenes , Hígado/metabolismo , Genoma , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo
6.
FASEB J ; 38(11): e23718, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38847487

RESUMEN

Female carriers of a Duchenne muscular dystrophy (DMD) gene mutation manifest exercise intolerance and metabolic anomalies that may be exacerbated following menopause due to the loss of estrogen, a known regulator of skeletal muscle function and metabolism. Here, we studied the impact of estrogen depletion (via ovariectomy) on exercise tolerance and muscle mitochondrial metabolism in female mdx mice and the potential of estrogen replacement therapy (using estradiol) to protect against functional and metabolic perturbations. We also investigated the effect of estrogen depletion, and replacement, on the skeletal muscle proteome through an untargeted proteomic approach with TMT-labelling. Our study confirms that loss of estrogen in female mdx mice reduces exercise capacity, tricarboxylic acid cycle intermediates, and citrate synthase activity but that these deficits are offset through estrogen replacement therapy. Furthermore, ovariectomy downregulated protein expression of RNA-binding motif factor 20 (Rbm20), a critical regulator of sarcomeric and muscle homeostasis gene splicing, which impacted pathways involving ribosomal and mitochondrial translation. Estrogen replacement modulated Rbm20 protein expression and promoted metabolic processes and the upregulation of proteins involved in mitochondrial dynamics and metabolism. Our data suggest that estrogen mitigates dystrophinopathic features in female mdx mice and that estrogen replacement may be a potential therapy for post-menopausal DMD carriers.


Asunto(s)
Estrógenos , Ratones Endogámicos mdx , Músculo Esquelético , Proteínas de Unión al ARN , Animales , Femenino , Ratones , Estrógenos/metabolismo , Estrógenos/farmacología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Ratones Endogámicos C57BL , Ovariectomía , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos
7.
Int Immunopharmacol ; 136: 112369, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38824903

RESUMEN

Estrogen and related receptors have been shown to have a significant impact on human development, reproduction, metabolism and immune regulation and to play a critical role in tumor development and treatment. Traditionally, the nuclear estrogen receptors (nERs) ERα and ERß have been thought to be involved in mediating the estrogenic effects. However, our group and others have previously demonstrated that the G protein-coupled estrogen receptor (GPER) is the third independent ER, and estrogen signaling mediated by GPER is known to play an important role in normal physiology and a variety of abnormal diseases. Interestingly, recent studies have progressively revealed GPER involvement in the maintenance of the normal immune system, abnormal immune diseases, and inflammatory lesions, which may be of significant clinical value primarily in the immunotherapy of tumors. In this article, we review current advances in GPER-related immunomodulators and provide a theoretical basis and potential clinical targets to ameliorate immune-related diseases and immunotherapy for tumors.


Asunto(s)
Neoplasias , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/inmunología , Receptores de Estrógenos/metabolismo , Animales , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Inmunoterapia/métodos , Transducción de Señal , Estrógenos/metabolismo
8.
BMC Complement Med Ther ; 24(1): 227, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862934

RESUMEN

OBJECTIVE: Endometrial cancer (EC) is an oestrogen-dependent tumour, the occurrence of which is closely related to an imbalance of oestrogen homeostasis. Our previous studies explored the effects of Resveratrol(Res) on oestrogen metabolism. However, systematic research on the exact mechanism of action of Res is still lacking. Based on network pharmacology, molecular docking and animal experiments, the effects and molecular mechanisms of Res on endometrial cancer were investigated. METHODS: The target of Res was obtained from the high-throughput experiment and reference-guided database of TCM (HERB) and the Encyclopedia of Traditional Chinese Medicine (ETCM) databases, and the target of endometrial cancer was obtained by using the Genecards database. Venny map was used to obtain the intersection target of Res in the treatment of endometrial cancer, and the protein interaction network of the intersection target was constructed by importing the data into the STRING database. Then, the drug-disease-target interaction network was constructed based on Cytoscape 3.9.1 software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for intersection targets using the OmicShare cloud platform. Res and core targets were analysed by molecular docking. EC model mice induced by MNNG were randomly divided into the control group, Res group, MNNG group, MNNG + Res group, and MNNG + Res + MAPK/ERKi group. The protein levels of ERK and p-ERK in the mouse uterus were detected by Western blot. The levels of E1, E2, E3, 16-epiE3, 17-epiE3, 2-MeOE1, 4-MeOE1, 2-MeOE2, 4-MeOE2, 3-MeOE1, 2-OHE1, 4-OHE1, 2-OHE2, 4-OHE2, and 16α-OHE1 in the serum and endometrial tissue of mice were measured by LC‒MS/MS. RESULTS: A total of 174 intersection targets of Res anti-endometrial cancer were obtained. The signalling pathways analysed by KEGG enrichment included the AGE-RAGE signalling pathway in diabetic complications, the PI3K-Akt signalling pathway and the MAPK signalling pathway. The top 10 core targets were MAPK3, JUN, TP53, CASP3, TNF, IL1B, AKT1, FOS, VEGFA and INS. Molecular docking showed that in addition to TNF, other targets had good affinity for Res, and the binding activity with MAPK3 was stable. Western blot results showed that Res increased the phosphorylation level of ERK and that MAPK/ERKi decreased ERK activation. In the LC-MS/MS analysis, the levels of 2-MeOE1, 2-MeOE2 and 4-MeOE1 in serum and uterine tissue showed a significantly decreasing trend in the MNNG group, while that of 4-OHE2 was increased (P < 0.05). The concentrations of 4-MeOE1 in serum and 2-MeOE1 and 2-MeOE2 in the endometrial tissue of mice were significantly increased after Res treatment, and those of 4-OHE2 in the serum and uterus of mice were significantly decreased (P < 0.05). Meanwhile, in the MAPK/ERKi intervention group, the effect of Res on the reversal of oestrogen homeostasis imbalance was obviously weakened. CONCLUSION: Res has multiple targets and multiple approaches in the treatment of endometrial cancer. In this study, it was found that Res regulates oestrogen metabolism by activating the MAPK/ERK pathway. This finding provides a new perspective for subsequent research on the treatment of endometrial cancer.


Asunto(s)
Neoplasias Endometriales , Estrógenos , Sistema de Señalización de MAP Quinasas , Simulación del Acoplamiento Molecular , Resveratrol , Femenino , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/metabolismo , Animales , Resveratrol/farmacología , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrógenos/metabolismo , Estrógenos/farmacología , Humanos , Ratones Endogámicos BALB C , Farmacología en Red , Mapas de Interacción de Proteínas
9.
Sci Adv ; 10(24): eadi1621, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38865462

RESUMEN

The function of germ cells in somatic growth and aging has been demonstrated in invertebrate models but remains unclear in vertebrates. We demonstrated sex-dependent somatic regulation by germ cells in the short-lived vertebrate model Nothobranchius furzeri. In females, germ cell removal shortened life span, decreased estrogen, and increased insulin-like growth factor 1 (IGF-1) signaling. In contrast, germ cell removal in males improved their health with increased vitamin D signaling. Body size increased in both sexes but was caused by different signaling pathways, i.e., IGF-1 and vitamin D in females and males, respectively. Thus, vertebrate germ cells regulate somatic growth and aging through different pathways of the endocrine system, depending on the sex, which may underlie the sexual difference in reproductive strategies.


Asunto(s)
Envejecimiento , Células Germinativas , Factor I del Crecimiento Similar a la Insulina , Animales , Células Germinativas/metabolismo , Células Germinativas/citología , Masculino , Femenino , Envejecimiento/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Vertebrados , Transducción de Señal , Caracteres Sexuales , Tamaño Corporal , Vitamina D/metabolismo , Estrógenos/metabolismo
10.
Microb Biotechnol ; 17(6): e14485, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38850270

RESUMEN

Proanthocyanidin-rich grape seed extract (GSE) has been shown to have the potential to protect bones, although the underlying mechanism remains unknown. The current study aims to explore GSE's preventive and therapeutic impact on bone loss induced by oestrogen deficiency and the underlying mechanism through the gut microbiota (GM) and metabolomic responses. In oestrogen-deficient ovariectomized (OVX) mice, GSE ameliorated bone loss by inhibiting the expansion of bone marrow adipose tissue (BMAT), restoring BMAT lipolysis and promoting bone formation. GSE regulated OVX-induced GM dysbiosis by reducing the abundance of opportunistic pathogenic bacteria, such as Alistipes, Turicibacter and Romboutsia, while elevating the abundance of beneficial bacteria, such as Bifidobacterium. The modified GM primarily impacted lipid and amino acid metabolism. Furthermore, the serum metabolites of GSE exhibited a significant enrichment in lipid metabolism. In summary, GSE shows potential as a functional food for preventing oestrogen deficiency-induced bone loss by modulating GM and metabolite-mediated lipid metabolism.


Asunto(s)
Estrógenos , Microbioma Gastrointestinal , Extracto de Semillas de Uva , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Extracto de Semillas de Uva/farmacología , Ratones , Femenino , Estrógenos/deficiencia , Estrógenos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Disbiosis/prevención & control , Ratones Endogámicos C57BL , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Osteoporosis/prevención & control , Modelos Animales de Enfermedad , Tejido Adiposo/metabolismo , Ovariectomía
11.
Front Endocrinol (Lausanne) ; 15: 1384115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883607

RESUMEN

Background: Estrogen homeostasis is crucial for bladder function, and estrogen deprivation resulting from menopause, ovariectomy or ovarian dysfunction may lead to various bladder dysfunctions. However, the specific mechanisms are not fully understood. Methods: We simulated estrogen deprivation using a rat ovariectomy model and supplemented estrogen through subcutaneous injections. The metabolic characteristics of bladder tissue were analyzed using non-targeted metabolomics, followed by bioinformatics analysis to preliminarily reveal the association between estrogen deprivation and bladder function. Results: We successfully established a rat model with estrogen deprivation and, through multivariate analysis and validation, identified several promising biomarkers represented by 3, 5-tetradecadiencarnitine, lysoPC (15:0), and cortisol. Furthermore, we explored estrogen deprivation-related metabolic changes in the bladder primarily characterized by amino acid metabolism imbalance. Conclusion: This study, for the first time, depicts the metabolic landscape of bladder resulting from estrogen deprivation, providing an important experimental basis for future research on bladder dysfunctions caused by menopause.


Asunto(s)
Estrógenos , Metabolómica , Ovariectomía , Ratas Sprague-Dawley , Vejiga Urinaria , Animales , Femenino , Ratas , Metabolómica/métodos , Vejiga Urinaria/metabolismo , Estrógenos/metabolismo , Metaboloma , Menopausia/metabolismo , Biomarcadores/metabolismo
12.
Mol Reprod Dev ; 91(6): e23763, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895803

RESUMEN

Estrogen is an important hormone that plays a role in regulating follicle development and oocyte maturation. Transzonal projections (TZPs) act as communication bridges between follicle somatic cells and oocytes, and their dynamic changes are critical for oocyte development and maturation. However, the roles and mechanisms of estrogen in regulating TZPs during follicular development are not yet understood. We found that the proportion of oocytes spontaneously resuming meiosis increases as the follicle grows, which is accompanied by rising estrogen levels in follicles and decreasing TZPs in cumulus-oocyte complex. To further explore the effect of elevated estrogen levels on TZP assembly, additional estrogen was added to the culture system. The increased estrogen level significantly decreased the mRNA and protein expression levels of TZP assembly-related genes. Subsequent research revealed that TZP regulation by estrogen was mediated by the membrane receptor GPER and downstream ERK1/2 signaling pathway. In summary, our study suggests that estrogen may regulate goat oocyte meiosis arrest by decreasing TZP numbers via estrogen-mediated GPER activation during follicle development.


Asunto(s)
Células del Cúmulo , Estrógenos , Cabras , Oocitos , Folículo Ovárico , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Animales , Oocitos/metabolismo , Oocitos/citología , Femenino , Células del Cúmulo/metabolismo , Células del Cúmulo/citología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Estrógenos/metabolismo , Estrógenos/metabolismo , Folículo Ovárico/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/citología , Meiosis/fisiología , Sistema de Señalización de MAP Quinasas/fisiología
13.
Orphanet J Rare Dis ; 19(1): 236, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877584

RESUMEN

OBJECTIVE: This study aimed to enhance the understanding of the role of estrogen in lymphangioleiomyomatosis(LAM) and to conclude the impact of estrogen-altering events on the condition and recent advances in estrogen-based treatments for LAM. RESULTS: LAM development is strongly linked to mutations in the tuberous sclerosis gene (TSC1/2) and the presence of estrogen. Estrogen plays a significant role in the spread of TSC2-deficient uterine leiomyoma cells to the lungs and the production of pulmonary LAM. Menstruation, pregnancy, estrogen medication, and other events that cause an increase in estrogen levels can trigger the disorder, leading to a sudden worsening of symptoms. Current findings do not support using estrogen-blocking therapy regimens. However, Faslodex, which is an estrogen receptor antagonist, presents new possibilities for future therapeutic approaches in LAM. CONCLUSION: Estrogen is crucial in the development and spread of LAM. The use of estrogen inhibitors or estrogen receptor antagonists alone does not provide good control of the disease or even poses a greater risk, and the use of a combination of mTOR receptor inhibitors, complete estrogen receptor antagonists, estrogen inhibitors, and autophagy inhibitors targeting important signaling pathways in LAM pathogenesis may be of greater benefit to the patient.


Asunto(s)
Estrógenos , Linfangioleiomiomatosis , Linfangioleiomiomatosis/metabolismo , Linfangioleiomiomatosis/tratamiento farmacológico , Linfangioleiomiomatosis/patología , Linfangioleiomiomatosis/genética , Humanos , Estrógenos/metabolismo , Femenino
14.
Chemosphere ; 361: 142501, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825244

RESUMEN

In aquatic environments the concurrent exposure of molluscs to microplastics (MPs) and estrogens is common, as these pollutants are frequently released by wastewater treatment plants into estuaries. Therefore, this study aimed to evaluate the independent and co-exposure impacts of polyethylene microplastics (PE-MPs) and estrogenic endocrine-disrupting chemicals (EEDCs) at environmentally relevant concentrations on polar metabolites and morphological parameters of the Sydney rock oyster. A seven-day acute exposure revealed no discernible differences in morphology; however, significant variations in polar metabolites were observed across oyster tissues. The altered metabolites were mostly amino acids, carbohydrates and intermediates of the Kreb's cycle. The perturbation of metabolites were tissue and sex-specific. All treatments generally showed an increase of metabolites relative to controls - a possible stimulatory and/or a potential hormetic response. The presence of MPs impeded the exposure of adsorbed and free EEDCs potentially due to the selective feeding behaviour of oysters to microplastics, favouring algae over similar-sized PE-MPs, and the formation of an eco/bio-corona involving faeces, pseudo-faeces, natural organic matter, and algae.


Asunto(s)
Disruptores Endocrinos , Estrógenos , Metaboloma , Microplásticos , Ostreidae , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Ostreidae/metabolismo , Ostreidae/efectos de los fármacos , Estrógenos/toxicidad , Estrógenos/metabolismo , Disruptores Endocrinos/toxicidad , Metaboloma/efectos de los fármacos , Polietileno/toxicidad , Femenino
15.
PLoS One ; 19(6): e0304766, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38833439

RESUMEN

BACKGROUND: Xenoestrogens are synthetic or naturally occurring chemicals capable of altering the endocrine system of humans and animals owing to their molecular similarity to endogenous hormones. There is limited data regarding their effects on women´s health. Chronic exposure to xenoestrogens can promote the development of estrogen-related diseases. OBJECTIVES: To examine xenoestrogen concentration (TEXB-α) differences between women with leiomyomas or endometriosis and control women, and to study the relationship between the clinical and sociodemographic characteristics of these patients and their xenoestrogen levels. METHODS: Prospective case-control study. We selected 221 women who underwent surgery at Quironsalud Madrid University Hospital between 2017 and 2021. The cases included 117 patients: 74 women who underwent surgery for uterine leiomyomas, 21 with endometriosis, and 22 with both pathologies. The control group comprised 104 healthy women who underwent surgical procedures for other reasons. TEXB-α was determined in the omental fat of all patients. Using a questionnaire and reviewing the patients' medical records, we collected sociodemographic data and other relevant variables. RESULTS: A significant majority of study participants (68.8%) had detectable levels of xenoestrogens. We found no association between TEXB-α levels in omental fat and the presence of myomas or endometriosis. In the case group, women living or working in Madrid Community exhibited, on average, 3.12 Eeq pM/g higher levels of TEXB-α compared to those working in other areas (p = 0.030). Women who referred to the use of estrogen-containing hormonal contraceptives had, on average, 3.02 Eeq pM/g higher levels of TEXB-α than those who had never used them (p = 0.022). CONCLUSIONS: This study found no association between omental xenoestrogen levels and leiomyomas or endometriosis. However, their presence in most participants and their association with highly polluted areas emphasizes the importance of limiting environmental exposure to these substances. We also identified an association between hormonal contraceptive use and xenoestrogen concentration.


Asunto(s)
Endometriosis , Leiomioma , Humanos , Femenino , Leiomioma/cirugía , Adulto , Estudios de Casos y Controles , Persona de Mediana Edad , Estudios Prospectivos , Neoplasias Uterinas , Estrógenos/análisis
16.
Nat Aging ; 4(6): 839-853, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38858606

RESUMEN

Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages that they offer are compromised with aging. Here we show that treating mice with estrogen (E2), a hormone that decreases with age, can counteract the age-related decline in beige adipogenesis when exposed to cold temperature while concurrently enhancing energy expenditure and improving glucose tolerance in mice. Mechanistically, we found that nicotinamide phosphoribosyl transferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related endoplasmic reticulum (ER) stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. Together, our findings shed light on the mechanisms regulating the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT-controlled ER stress pathway as a key regulator of this process.


Asunto(s)
Adipocitos Beige , Adipogénesis , Envejecimiento , Estrés del Retículo Endoplásmico , Estrógenos , Nicotinamida Fosforribosiltransferasa , Nicotinamida Fosforribosiltransferasa/metabolismo , Animales , Adipogénesis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Estrógenos/metabolismo , Estrógenos/farmacología , Adipocitos Beige/efectos de los fármacos , Adipocitos Beige/metabolismo , Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos , Femenino , Ratones Endogámicos C57BL , Metabolismo Energético/efectos de los fármacos
17.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892322

RESUMEN

Estrogen (17ß-estradiol) deficiency post-menopause alters bone homeostasis whereby bone resorption by osteoclasts exceeds bone formation by osteoblasts, leading to osteoporosis in females. We established an in vitro model to examine the consequences of estrogen withdrawal (E2-WD) on osteoclasts derived from the mouse macrophage RAW 264.7 cell line and utilized it to investigate the mechanism behind the enhanced osteoclast activity post-menopause. We found that a greater population of osteoclasts that underwent E2-WD contained a podosome belt necessary for osteoclasts to adhere and resorb bone and possessed elevated resorptive activity compared to osteoclasts exposed to estrogen (E2) continuously. Our results show that compared to osteoclasts that received E2 continuously, those that underwent E2-WD had a faster rate of microtubule (MT) growth, reduced RhoA activation, and shorter podosome lifespan. Thus, altered podosome and MT dynamics induced by the withdrawal of estrogen supports podosome belt assembly/stability in osteoclasts, which may explain their enhanced bone resorption activity.


Asunto(s)
Resorción Ósea , Estrógenos , Osteoclastos , Animales , Osteoclastos/metabolismo , Osteoclastos/citología , Ratones , Células RAW 264.7 , Estrógenos/metabolismo , Estrógenos/farmacología , Resorción Ósea/metabolismo , Podosomas/metabolismo , Microtúbulos/metabolismo , Femenino , Proteína de Unión al GTP rhoA/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Técnicas de Cultivo de Célula
18.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892441

RESUMEN

In this narrative review, we attempt to provide an overview of the evidence regarding the role of estrogen (receptors) in cutaneous melanoma (CM). We reviewed 68 studies and 4 systematic reviews and meta-analyses published from 2002 up to and including 2022. The prevailing presence of estrogen receptor ß (ERß) instead of estrogen receptor α (ERα) in CM is notable, with ERß potentially playing a protective role and being less frequently detected in progressive cases. While men with CM generally experience a less favorable prognosis, this distinction may become negligible with advancing age. The role of oral contraceptives (OC) and hormone replacement therapy (HRT) in CM remains controversial. However, recent studies tend to associate the use of these exogenous hormones with a heightened risk of CM, mostly only when using estrogen therapy and not in combination with progesterone. On the contrary, the majority of studies find no substantial influence of in vitro fertilization (IVF) treatment on CM risk. Reproductive factors, including younger age at first childbirth, higher parity, and shorter reproductive life, show conflicting evidence, with some studies suggesting a lower CM risk. We suggest an important role for estrogens in CM. More research is needed, but the integration of estrogens and targeting the estrogen receptors in melanoma therapy holds promise for future developments in the field.


Asunto(s)
Estrógenos , Melanoma , Humanos , Melanoma/metabolismo , Estrógenos/metabolismo , Receptores de Estrógenos/metabolismo , Neoplasias Cutáneas/metabolismo , Femenino , Receptor beta de Estrógeno/metabolismo , Receptor alfa de Estrógeno/metabolismo
19.
Asian Pac J Cancer Prev ; 25(6): 2077-2087, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38918670

RESUMEN

BACKGROUND: Breast cancer represents one of the leading causes of death worldwide. Apart from genetic factors, the sex hormone estrogen plays a pivotal role in breast cancer development. We are exposed to a plethora of estrogen mimics on a daily basis via various routes. Nevertheless, how xenoestrogens, the exogenous estrogen mimics, modulate cancer-associated signaling pathways and interact with specific genes is still underexplored. Hence, this study aims to explore the direct or indirect binding partners of xenoestrogens and their expression upon exposure to these estrogenic compounds. METHODS: The collection of genes linked to the xenoestrogens Octylphenol, Nonylphenol, Bisphenol-A, and 2,2-bis(4-hydroxyphenyl)-1,1,1-trichloroethane were gathered from the Comparative Toxicogenomics Database. Venny 2.1 was utilized to pinpoint the genes shared by these xenoestrogens. Subsequently, the shared genes underwent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis using the Database for Annotation, Visualization, and Integrated Discovery bioinformatics resource. A xenoestrogen-protein interaction network was constructed using Search Tool for Interactions of Chemicals. The expressions of common genes were studied with the microarray dataset GSE5200 from the Gene Expression Omnibus database. Also, the expression of a common gene set within different breast cancer subtypes was identified using the University of California, Santa Cruz Xena. RESULTS: The genes linked to xenoestrogens were identified, and 13 genes were found to interact with all four xenoestrogens. Through DAVID analysis, the genes chosen are found to be enriched for various functions and pathways, including pathways in cancer, chemical carcinogenesis-receptor activation, and estrogen signaling pathways. The results of the Comparative Toxicogenomics Database and the chemical-protein interaction network derived from STITCH were similar. Microarray data analysis showed significantly high expression of all 13 genes in another study, with Bisphenol-A and Nonylphenol treated MCF-7 cells, most of the genes are expressed in luminal A or basal breast cancer subtype. CONCLUSION: In summary, the genes associated with the four xenoestrogens were mostly linked to pathways related to tumorigenesis, and the expression of these genes was found to be higher in breast cancer.


Asunto(s)
Neoplasias de la Mama , Estrógenos , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Biología Computacional/métodos , Simulación por Computador , Mapas de Interacción de Proteínas , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Compuestos de Bencidrilo
20.
J Acquir Immune Defic Syndr ; 96(3): 214-222, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905473

RESUMEN

OBJECTIVES: Estrogens may protect the gut barrier and reduce microbial translocation and immune activation, which are prevalent in HIV infection. We investigated relationships of the menopausal transition and estrogens with gut barrier, microbial translocation, and immune activation biomarkers in women with and without HIV. DESIGN: Longitudinal and cross-sectional studies nested in the Women's Interagency HIV Study. METHODS: Intestinal fatty acid binding protein, lipopolysaccharide binding protein, and soluble CD14 (sCD14) levels were measured in serum from 77 women (43 with HIV) before, during, and after the menopausal transition (∼6 measures per woman over ∼13 years). A separate cross-sectional analysis was conducted among 72 postmenopausal women with HIV with these biomarkers and serum estrogens. RESULTS: Women in the longitudinal analysis were a median age of 43 years at baseline. In piecewise, linear, mixed-effects models with cutpoints 2 years before and after the final menstrual period to delineate the menopausal transition, sCD14 levels increased over time during the menopausal transition (Beta [95% CI]: 38 [12 to 64] ng/mL/yr, P = 0.004), followed by a decrease posttransition (-46 [-75 to -18], P = 0.001), with the piecewise model providing a better fit than a linear model (P = 0.0006). In stratified analyses, these results were only apparent in women with HIV. In cross-sectional analyses, among women with HIV, free estradiol inversely correlated with sCD14 levels (r = -0.26, P = 0.03). Lipopolysaccharide binding protein and intestinal fatty acid binding protein levels did not appear related to the menopausal transition and estrogen levels. CONCLUSIONS: Women with HIV may experience heightened innate immune activation during menopause, possibly related to the depletion of estrogens.


Asunto(s)
Traslocación Bacteriana , Biomarcadores , Estrógenos , Proteínas de Unión a Ácidos Grasos , Infecciones por VIH , Receptores de Lipopolisacáridos , Menopausia , Humanos , Femenino , Infecciones por VIH/inmunología , Infecciones por VIH/sangre , Adulto , Estudios Transversales , Receptores de Lipopolisacáridos/sangre , Menopausia/sangre , Biomarcadores/sangre , Persona de Mediana Edad , Estudios Longitudinales , Estrógenos/sangre , Proteínas de Unión a Ácidos Grasos/sangre , Glicoproteínas de Membrana/sangre , Proteínas de Fase Aguda , Proteínas Portadoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA