Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 432(18): 5184-5196, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32353363

RESUMEN

A wide variety of antibiotics are targeted to the bacterial membrane due to its unique arrangement and composition relative to the host mammalian membranes. By modification of their membranes, some gram-negative pathogens resist the action of antibiotics. Lipid A phosphoethanolamine transferase (EptA) is an intramembrane enzyme that modifies the lipid A portion of lipopolysaccharide/lipooligosaccharide by the addition of phosphoethanolamine. This modification reduces the overall net-negative charge of the outer membrane of some gram-negative bacteria, conferring resistance to polymyxin. This resistance mechanism has resulted in a global public health issue due to the increased use of polymyxin as last-resort antibiotic treatments against multi-drug-resistant pathogens. Studies show that, without EptA, pathogenic bacteria become more sensitive to polymyxin and to clearance by the host immune system, suggesting the importance of this target enzyme for the development of novel therapeutic agents. In this review, EptA will be discussed comprehensively. Specifically, this review will cover the regulation of eptA expression by the two component systems PmrA/PmrB and PhoP/PhoQ, the site of modification on lipid A, the structure and catalytic mechanism of EptA in comparison to MCR-1 and Escherichia coli alkaline phosphatase, and the host immune system's response to lipid A modification by EptA. The overarching aim of this review is to provide a comprehensive overview of polymyxin resistance mediated by EptA.


Asunto(s)
Bacterias/enzimología , Etanolaminofosfotransferasa/química , Etanolaminofosfotransferasa/metabolismo , Lípido A/metabolismo , Fosfatasa Alcalina/metabolismo , Bacterias/efectos de los fármacos , Bacterias/inmunología , Farmacorresistencia Bacteriana , Etanolaminofosfotransferasa/genética , Humanos , Modelos Moleculares , Mutación , Polimixinas , Conformación Proteica
2.
J Biol Chem ; 295(18): 6225-6235, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32152228

RESUMEN

Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane-localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.


Asunto(s)
Escherichia coli/enzimología , Etanolaminofosfotransferasa/metabolismo , Glucosiltransferasas/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Disulfuros/química , Etanolaminofosfotransferasa/química , Glucosiltransferasas/química , Modelos Moleculares , Conformación Proteica
3.
J Infect ; 78(5): 364-372, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30851289

RESUMEN

The recent emergence of the plasmid-mediated colistin resistance gene mcr-1 poses a substantial clinical threat to the severe infections caused by CRE (Carbapenem Resistant Enterobacteriaceae), as the treatment failure of the mcr-1-positive CRE "Superbug" most likely occurs by using the combination of carbapenem and polymixins. Therefore, our study aims to seek a potent MCR-1 inhibitor to fight this infection. A checkerboard MIC (Minimum Inhibitory Concentration) assay, time-killing assay, MPNP (Modified rapid polymyxin Nordmann/Poirel) test, combined disk test and molecular modelling analysis were performed on different mcr-1-positive strains to confirm the synergistic effects of the combination of colistin and osthole (OST). And a thigh mouse infection model was also used to evaluate such synergies. We identified that OST regained the bactericidal activity of polymyxins (FIC (Fractional Inhibitory Concentration) index = 0.11±0.04 - 0.29±0.10) against mcr-1-positive Enterobacteriaceae including Escherichia coli and Klebsiella pneumoniae. The in-vitro time-killing assays showed that either OST or polymyxins failed to eradicate mcr-1-positive Enterobacteriaceae, but the combination eliminated mcr-1-positive Enterobacteriaceae by 3-7-h post-inoculation. The mouse infection model demonstrated that the combination therapy significantly reduced the bacterial load in the thighs following subcutaneous administration. Our results established that OST is a promising natural compound that could be used to extend the life of polymyxins and to tackle the inevitability of serious infections caused by polymyxin-resistant bacteria.


Asunto(s)
Antibacterianos/farmacología , Cumarinas/metabolismo , Farmacorresistencia Bacteriana , Inhibidores Enzimáticos/metabolismo , Etanolaminofosfotransferasa/antagonistas & inhibidores , Polimixinas/farmacología , Animales , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/enzimología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Cumarinas/administración & dosificación , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Inhibidores Enzimáticos/administración & dosificación , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Etanolaminofosfotransferasa/química , Femenino , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/patología , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Simulación del Acoplamiento Molecular , Resultado del Tratamiento
4.
Bioorg Chem ; 85: 282-292, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30641322

RESUMEN

New dithiocarbamate chalcone-based derivatives were synthesized, their structures were elucidated using different spectroscopic techniques. They were subjected to antimicrobial screening against selected Gram negative bacteria focusing on microbial resistance. Bacterial resistance was targeted via phosphoethanolamine transferase enzyme. Most of the synthesized compounds showed equal or higher activity to colistin standard. Compound 24 proved to be the most active candidate with MIC of 8 µg/ml against both Ps12 and K4 and MBC of 32 µg/ml against Ps12 and 16 µg/ml against K4 Molecular docking study showed that 20, 22, 24 and 25 had good binding affinity with active site residues via Thr280. DNA macromolecule was further targeted. Compounds 28 and 34 were recorded to have better DNA binding than doxurubucin with IC50 of 27.48 and 30.97 µg/ml respectively, suggesting that it could have a role in their higher antibacterial effect. Their docking into DNA has shown a clear intercalation matching with antibacterial data. Pharmacokinetics parameters of active compounds showed that they have better absorption through GIT.


Asunto(s)
Antibacterianos/farmacología , Chalconas/farmacología , ADN/metabolismo , Sustancias Intercalantes/farmacología , Tiocarbamatos/farmacología , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Dominio Catalítico , Chalconas/síntesis química , Chalconas/metabolismo , Colistina/farmacología , Doxorrubicina/farmacología , Etanolaminofosfotransferasa/química , Etanolaminofosfotransferasa/metabolismo , Sustancias Intercalantes/síntesis química , Sustancias Intercalantes/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Neisseria meningitidis/enzimología , Pseudomonas aeruginosa/efectos de los fármacos , Relación Estructura-Actividad , Tiocarbamatos/síntesis química , Tiocarbamatos/metabolismo
5.
mBio ; 9(2)2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636432

RESUMEN

Polymyxins, a family of cationic antimicrobial cyclic peptides, act as a last line of defense against severe infections by Gram-negative pathogens with carbapenem resistance. In addition to the intrinsic resistance to polymyxin E (colistin) conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance gene mcr-1 has been disseminated globally since the first discovery in Southern China, in late 2015. However, the molecular mechanisms for both intrinsic and transferable resistance to colistin remain largely unknown. Here, we aim to address this gap in the knowledge of these proteins. Structural and functional analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity that is required for the entry of the lipid substrate, phosphatidylethanolamine (PE). The in vitro and in vivo data together have allowed us to visualize the similarities in catalytic activity shared by EptA and MCR-1 and -2. The expression of either EptA or MCR-1 or -2 is shown to remodel the surface of enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, etc.), rendering them resistant to colistin. The parallels in the PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a comprehensive understanding of both intrinsic and transferable colistin resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase) are not functionally exchangeable. Taken together, the results represent a common mechanism for intrinsic and transferable PEA resistance to polymyxin, a last-resort antibiotic against multidrug-resistant pathogens.IMPORTANCE EptA and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to colistin, a final resort against carbapenem-resistant pathogens. Structural and functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid substrate-recognizing cavities, which explains intrinsic and transferable colistin resistance in gut bacteria. A similar mechanism is proposed for the catalytic activities of EptA and MCR-1 and -2. Together, they constitute a common mechanism for intrinsic and transferable polymyxin resistance.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Colistina/farmacología , Farmacorresistencia Bacteriana , Etanolaminofosfotransferasa/química , Etanolaminofosfotransferasa/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , China , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/enzimología , Etanolaminofosfotransferasa/genética , Modelos Moleculares , Neisseria/efectos de los fármacos , Neisseria/enzimología , Conformación Proteica
6.
Proc Natl Acad Sci U S A ; 114(9): 2218-2223, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193899

RESUMEN

Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.


Asunto(s)
Proteínas Bacterianas/química , Etanolaminofosfotransferasa/química , Lípido A/química , Neisseria meningitidis/química , Periplasma/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminofosfotransferasa/genética , Etanolaminofosfotransferasa/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Lípido A/metabolismo , Simulación de Dinámica Molecular , Neisseria meningitidis/enzimología , Periplasma/enzimología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
7.
Soft Matter ; 13(7): 1493-1504, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28125111

RESUMEN

Retention of amphiphilic protein activity within the lipid bilayer membrane of the nanostructured biomimetic bicontinuous cubic phase is crucial for applications utilizing these hybrid protein-lipid self-assembly materials, such as in meso membrane protein crystallization and drug delivery. Previous work, mainly on soluble and membrane-associated enzymes, has shown that enzyme activity may be modified when immobilized, including membrane bound enzymes. The effect on activity may be even greater for amphiphilic enzymes with a large hydrophilic domain, such as the Neisserial enzyme lipid A phosphoethanolamine transferase (EptA). Encapsulation within the biomimetic but non-endogenous lipid bilayer membrane environment may modify the enzyme conformation, while confinement of the large hydrophilic domain with the nanoscale water channels of a continuous lipid bilayer structure may prevent full function of this enzyme. Herein we show that NmEptA remains active despite encapsulation within a nanostructured bicontinuous cubic phase. Full transfer of the phosphoethanolamine (PEA) group from a 1,2-dioleoyl-glycero-phosphoethanolamine (DOPE) doped lipid to monoolein (MO), which makes up the bicontinuous cubic phase, is shown. The reaction was found to be non-specific to the alkyl chain identity. The observed rate of enzyme activity is similar to other membrane bound enzymes, with complete transfer of the PEA group occurring in vitro, under the conditions studied, over a 24 hour timescale.


Asunto(s)
Etanolaminofosfotransferasa/metabolismo , Lípido A/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Etanolaminofosfotransferasa/química , Modelos Moleculares , Neisseria/enzimología , Fosfatidiletanolaminas/metabolismo , Fosforilación , Conformación Proteica
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2730-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25286856

RESUMEN

The foodborne enteric pathogen Campylobacter jejuni decorates a variety of its cell-surface structures with phosphoethanolamine (pEtN). Modifying lipid A with pEtN promotes cationic antimicrobial peptide resistance, whereas post-translationally modifying the flagellar rod protein FlgG with pEtN promotes flagellar assembly and motility, which are processes that are important for intestinal colonization. EptC, the pEtN transferase required for all known pEtN cell-surface modifications in C. jejuni, is a predicted inner-membrane metalloenzyme with a five-helix N-terminal transmembrane domain followed by a soluble sulfatase-like catalytic domain in the periplasm. The atomic structure of the catalytic domain of EptC (cEptC) was crystallized and solved to a resolution of 2.40 Å. cEptC adopts the α/ß/α fold of the sulfatase protein family and harbors a zinc-binding site. A phosphorylated Thr266 residue was observed that was hypothesized to mimic a covalent pEtN-enzyme intermediate. The requirement for Thr266 as well as the nearby residues Asn308, Ser309, His358 and His440 was ascertained via in vivo activity assays on mutant strains. The results establish a basis for the design of pEtN transferase inhibitors.


Asunto(s)
Campylobacter jejuni/efectos de los fármacos , Etanolaminofosfotransferasa/química , Etanolaminofosfotransferasa/metabolismo , Polimixinas/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Campylobacter jejuni/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Farmacorresistencia Bacteriana , Etanolaminofosfotransferasa/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Zinc/metabolismo
9.
Int J Mol Sci ; 15(4): 6689-702, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24756091

RESUMEN

By comparison of the Proteus mirabilis HI4320 genome with known lipopolysaccharide (LPS) phosphoethanolamine transferases, three putative candidates (PMI3040, PMI3576, and PMI3104) were identified. One of them, eptC (PMI3104) was able to modify the LPS of two defined non-polar core LPS mutants of Klebsiella pneumoniae that we use as surrogate substrates. Mass spectrometry and nuclear magnetic resonance showed that eptC directs the incorporation of phosphoethanolamine to the O-6 of L-glycero-D-mano-heptose II. The eptC gene is found in all the P. mirabilis strains analyzed in this study. Putative eptC homologues were found for only two additional genera of the Enterobacteriaceae family, Photobacterium and Providencia. The data obtained in this work supports the role of the eptC (PMI3104) product in the transfer of PEtN to the O-6 of L,D-HepII in P. mirabilis strains.


Asunto(s)
Proteínas Bacterianas/metabolismo , Etanolaminofosfotransferasa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Secuencia de Carbohidratos , Etanolaminofosfotransferasa/química , Etanolaminofosfotransferasa/clasificación , Genoma Bacteriano , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Filogenia , Proteus mirabilis/enzimología , Proteus mirabilis/genética , Alineación de Secuencia , Espectrometría de Masa por Ionización de Electrospray
10.
Biomed Res Int ; 2013: 371429, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24228245

RESUMEN

Osmoregulated periplasmic glucans (OPGs) are oligosaccharides found in the periplasm of many Gram-negative bacteria. Glucose is the sole constitutive sugar and this backbone may be substituted by various kinds of molecules depending on the species. In E. coli, OPG are substituted by phosphoglycerol and phosphoethanolamine derived from membrane phospholipids and by succinyl residues. In this study, we describe the isolation of the opgE gene encoding the phosphoethanolamine transferase by a screen previously used for the isolation of the opgB gene encoding the phosphoglycerol transferase. Both genes show structural and functional similarities without sequence similarity.


Asunto(s)
Etanolaminofosfotransferasa/genética , Glucanos/biosíntesis , Glucosa/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Escherichia coli/genética , Etanolaminofosfotransferasa/química , Etanolaminofosfotransferasa/aislamiento & purificación , Etanolaminas/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucanos/genética , Glucosa/genética , Periplasma/genética , Periplasma/metabolismo , Conformación Proteica , Homología Estructural de Proteína , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química
11.
J Mol Biol ; 425(18): 3389-402, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23810904

RESUMEN

Gram-negative bacteria possess an outer membrane envelope consisting of an outer leaflet of lipopolysaccharides, also called endotoxins, which protect the pathogen from antimicrobial peptides and have multifaceted roles in virulence. Lipopolysaccharide consists of a glycan moiety attached to lipid A, embedded in the outer membrane. Modification of the lipid A headgroups by phosphoethanolamine (PEA) or 4-amino-arabinose residues increases resistance to the cationic cyclic polypeptide antibiotic, polymyxin. Lipid A PEA transferases are members of the YhjW/YjdB/YijP superfamily and usually consist of a transmembrane domain anchoring the enzyme to the periplasmic face of the cytoplasmic membrane attached to a soluble catalytic domain. The crystal structure of the soluble domain of the protein of the lipid A PEA transferase from Neisseria meningitidis has been determined crystallographically and refined to 1.4Å resolution. The structure reveals a core hydrolase fold similar to that of alkaline phosphatase. Loop regions in the structure differ, presumably to enable interaction with the membrane-localized substrates and to provide substrate specificity. A phosphorylated form of the putative nucleophile, Thr280, is observed. Metal ions present in the active site are coordinated to Thr280 and to residues conserved among the family of transferases. The structure reveals the protein components needed for the transferase chemistry; however, substrate-binding regions are not evident and are likely to reside in the transmembrane domain of the protein.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Etanolaminofosfotransferasa/química , Neisseria meningitidis/enzimología , Polimixinas/farmacología , Sitios de Unión , Etanolaminofosfotransferasa/genética , Etanolaminofosfotransferasa/metabolismo , Etanolaminas/metabolismo , Lípido A/metabolismo , Lipopolisacáridos/metabolismo , Modelos Biológicos , Modelos Moleculares , Neisseria meningitidis/efectos de los fármacos , Neisseria meningitidis/genética , Dominios y Motivos de Interacción de Proteínas/genética , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína/fisiología
12.
J Bacteriol ; 192(1): 208-16, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19854897

RESUMEN

The lipooligosaccharide (LOS) of Neisseria meningitidis contains heptose (Hep) residues that are modified with phosphoethanolamine (PEtn) at the 3 (3-PEtn) and/or 6 (6-PEtn) position. The lpt3 (NMB2010) and lpt6 (NMA0408) genes of N. meningitidis, which are proposed to encode the required HepII 3- and 6-PEtn transferases, respectively, were cloned and overexpressed as C-terminally polyhistidine-tagged fusion proteins in Escherichia coli and found to localize to the inner membrane, based on sucrose density gradient centrifugation. Lpt3-His(6) and Lpt6-His(6) were purified from Triton X-100-solubilized membranes by nickel chelation chromatography, and dot blot analysis of enzymatic reactions with 3-PEtn- and 6-PEtn-specific monoclonal antibodies demonstrated conclusively that Lpt3 and Lpt6 are phosphatidylethanolamine-dependent LOS HepII 3- and 6-PEtn transferases, respectively, and that both enzymes are capable of transferring PEtn to both fully acylated LOS and de-O-acylated (de-O-Ac) LOS. Further enzymatic studies using capillary electrophoresis-mass spectrometry (MS) demonstrated that both Lpt3 and Lpt6 are capable of transferring PEtn to de-O-Ac LOS molecules already containing PEtn at the 6 and 3 positions of HepII, respectively, demonstrating that there is no obligate order of PEtn addition in the generation of 3,6-di-PEtn LOS moieties in vitro.


Asunto(s)
Proteínas Bacterianas/metabolismo , Etanolaminofosfotransferasa/metabolismo , Lipopolisacáridos/metabolismo , Neisseria meningitidis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Electroforesis en Gel de Poliacrilamida , Etanolaminofosfotransferasa/química , Etanolaminofosfotransferasa/genética , Espectrometría de Masas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Neisseria meningitidis/genética , Especificidad por Sustrato
13.
J Lipid Res ; 48(3): 503-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17132865

RESUMEN

CDP-ethanolamine:diacylglycerol ethanolaminephosphotransferase (EPT) catalyzes the transfer of phosphoethanolamine from CDP-ethanolamine to diacylglycerol to produce phosphatidylethanolamine (PE). To date, the dual specificity of choline/ethanolaminephosphotransferase (CEPT) has been recognized as the total activity responsible for the synthesis of PE via the CDP-ethanolamine pathway in human. We report here the identification and characterization of another human cDNA that encodes CDP-ethanolamine-specific human EPT (hEPT1). Through homology search, we found that human selenoprotein I contained the CDP-alcohol phosphatidyltransferase signature, a common motif conserved in phospholipid synthases. Bacterial expression of the cDNA in Escherichia coli demonstrated that the product specifically used CDP-ethanolamine as the phosphobase donor to produce PE with the activation by both Mn(2+) and Mg(2+). RT-PCR and Northern blot analysis revealed that hEPT1 was ubiquitously expressed in multiple tissues, but in brain it was highly expressed in cerebellum. Here, we propose that in addition to previously identified CEPT, hEPT1 is involved in the biosynthesis of PE via the Kennedy pathway.


Asunto(s)
Etanolaminofosfotransferasa/genética , Etanolaminofosfotransferasa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Citidina Difosfato/análogos & derivados , Citidina Difosfato/metabolismo , Etanolaminofosfotransferasa/química , Etanolaminas/metabolismo , Perfilación de la Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Fosfatidiletanolaminas/metabolismo , Fosfolípidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Selenoproteínas/metabolismo , Alineación de Secuencia
14.
J Biol Chem ; 280(22): 21202-11, 2005 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15795227

RESUMEN

Addition of a phosphoethanolamine (pEtN) moiety to the outer 3-deoxy-D-manno-octulosonic acid (Kdo) residue of lipopolysaccharide (LPS) in WBB06, a heptose-deficient Escherichia coli mutant, occurs when cells are grown in 5-50 mM CaCl2 (Kanipes, M. I., Lin, S., Cotter, R. J., and Raetz, C. R. H. (2001) J. Biol. Chem. 276, 1156-1163). A Ca2+-induced, membrane-bound enzyme was responsible for the transfer of the pEtN unit to the Kdo domain. We now report the identification of the gene encoding the pEtN transferase. E. coli yhjW was cloned and overexpressed, because it is homologous to a putative pEtN transferase implicated in the modification of the beta-chain heptose residue of Neisseria meningitidis lipo-oligosaccharide (Mackinnon, F. G., Cox, A. D., Plested, J. S., Tang, C. M., Makepeace, K., Coull, P. A., Wright, J. C., Chalmers, R., Hood, D. W., Richards, J. C., and Moxon, E. R. (2002) Mol. Microbiol. 43, 931-943). In vitro assays with Kdo2-4'-[32P]lipid A as the acceptor showed that YhjW (renamed EptB) utilizes phosphatidylethanolamine in the presence of Ca2+ to transfer the pEtN group. Stoichiometric amounts of diacylglycerol were generated during the EptB-catalyzed transfer of pEtN to Kdo2-lipid A. EptB is an inner membrane protein of 574 amino acid residues with five predicted trans-membrane segments within its N-terminal region. An in-frame replacement of eptB with a kanamycin resistance cassette rendered E. coli WBB06 (but not wild-type W3110) hypersensitive to CaCl2 at 5 mM or higher. Ca2+ hypersensitivity was suppressed by excess Mg2+ in the medium or by restoring the LPS core of WBB06. The latter was achieved by reintroducing the waaC and waaF genes, which encode LPS heptosyl transferases I and II, respectively. Our data demonstrate that pEtN modification of the outer Kdo protected cells containing heptose-deficient LPS from damage by high concentrations of Ca2+. Based on its sequence similarity to EptA(PmrC), we propose that the active site of EptB faces the periplasmic surface of the inner membrane.


Asunto(s)
Escherichia coli/enzimología , Etanolaminofosfotransferasa/química , Lipopolisacáridos/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Azúcares Ácidos/química , Transporte Biológico , Calcio/metabolismo , Secuencia de Carbohidratos , Catálisis , Cationes , Membrana Celular/metabolismo , Cartilla de ADN/química , Diglicéridos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Eliminación de Gen , Vectores Genéticos , Heptosas/química , Hidrólisis , Iones , Kanamicina/farmacología , Metabolismo de los Lípidos , Lípidos/química , Lipopolisacáridos/metabolismo , Magnesio/química , Magnesio/metabolismo , Espectrometría de Masas , Modelos Químicos , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo
15.
Arch Biochem Biophys ; 430(2): 198-209, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15369819

RESUMEN

Phosphatidylethanolamine, but not phosphatidylcholine, is found in Chlamydomonas reinhardtii. A cDNA coding for diacylglycerol: CDP-ethanolamine ethanolaminephosphotransferase (EPT) was cloned from C. reinhardtii. The C. reinhardtii EPT appears phylogenetically more similar to mammalian aminoalcoholphosphotransferases than to those of yeast and the least close to those of plants. Similar membrane topography was found between the C. reinhardtii EPT and the aminoalcoholphosphotransferases from mammals, yeast, and plants. A yeast mutant deficient in both cholinephosphotransferase and ethanolaminephosphotransferase was complemented by the C. reinhardtii EPT gene. Enzymatic assays of C. reinhardtii EPT from the complemented yeast microsomes demonstrated that the C. reinhardtii EPT synthesized both PC and PE in the transformed yeast. The addition of either unlabeled CDP-ethanolamine or CDP-choline to reactions reduced incorporation of radiolabeled CDP-choline and radiolabeled CDP-ethanolamine into phosphatidylcholine and phosphatidylethanolamine. EPT activity from the transformed yeast or C. reinhardtii cells was inhibited nearly identically by unlabeled CDP-choline, CDP-ethanolamine, and CMP when [14C]CDP-choline was used as the primary substrate, but differentially by unlabeled CDP-choline and CDP-ethanolamine when [14C]CDP-ethanolamine was the primary substrate. The Km value of the enzyme for CDP-choline was smaller than that for CDP-ethanolamine. This provides evidence that C. reinhardtii EPT, similar to plant aminoalcoholphosphotransferase, is capable of catalyzing the final step of phosphatidylcholine biosynthesis, as well as that of phosphatidylethanolamine in the Kennedy pathway.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Etanolaminofosfotransferasa/metabolismo , Lípidos de la Membrana/biosíntesis , Fosfatidilcolinas/biosíntesis , Fosfatidiletanolaminas/biosíntesis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Catálisis , Secuencia Conservada , Etanolaminofosfotransferasa/química , Prueba de Complementación Genética , Cinética , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
16.
J Bacteriol ; 185(11): 3270-7, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12754224

RESUMEN

A gene, NMB1638, with homology to the recently characterized gene encoding a phosphoethanolamine transferase, lpt-3, has been identified from the Neisseria meningitidis genome sequence and was found to be present in all meningococcal strains examined. Homology comparison with other database sequences would suggest that NMB1638 and lpt-3 represent genes coding for members of a family of proteins of related function identified in a wide range of gram-negative species of bacteria. When grown and isolated under appropriate conditions, N. meningitidis elaborated lipopolysaccharide (LPS) containing a lipid A that was characteristically phosphorylated with multiple phosphate and phosphoethanolamine residues. In all meningococcal strains examined, each lipid A species contained the basal diphosphorylated species, wherein a phosphate group is attached to each glucosamine residue. Also elaborated within the population of LPS molecules are a variety of "phosphoforms" that contain either an additional phosphate residue, an additional phosphoethanolamine residue, additional phosphate and phosphoethanolamine residues, or an additional phosphate and two phosphoethanolamine residues in the lipid A. Mass spectroscopic analyses of LPS from three strains in which NMB1638 had been inactivated by a specific mutation indicated that there were no phosphoethanolamine residues included in the lipid A region of the LPS and that there was no further phosphorylation of lipid A beyond one additional phosphate species. We propose that NMB1638 encodes a phosphoethanolamine transferase specific for lipid A and propose naming the gene "lptA," for "LPS phosphoethenolamine transferase for lipid A."


Asunto(s)
Etanolaminofosfotransferasa/genética , Etanolaminofosfotransferasa/metabolismo , Lípido A/metabolismo , Lipopolisacáridos/química , Neisseria meningitidis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Etanolaminofosfotransferasa/química , Etanolaminas/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Neisseria meningitidis/clasificación , Neisseria meningitidis/genética , Neisseria meningitidis/crecimiento & desarrollo , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...